1
|
Chantadul V, Rotpenpian N, Arayapisit T, Wanasuntronwong A. Transient receptor potential channels in dental inflammation and pain perception: A comprehensive review. Heliyon 2025; 11:e41730. [PMID: 39872449 PMCID: PMC11761930 DOI: 10.1016/j.heliyon.2025.e41730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Transient Receptor Potential (TRP) channels are a family of ion channels that play pivotal roles in various physiological processes, including sensory transduction, temperature regulation, and inflammation. In the context of dentistry, recent research has highlighted the involvement of TRP channels in mediating sensory responses and inflammation in dental tissues and temporo-mandibular joint (TMJ) structure. TRP channels have emerged as major contributors in the development of inflammatory conditions and pain affecting the oral cavity and related structures, such as periodontitis, dental erosion cause hypersensitivity, pulpitis, and TMJ disorders. These inflammatory conditions notably contribute to oral health challenges, often leading to sharp pain, dull aches, and compromised functionality. Pharmacological interventions and emerging strategies aimed at modulating TRP channel activity are critically evaluated. The therapeutic potential of targeting TRP channels in the management within dental practice is a focal point of view to alleviate pain and inflammation. In conclusion, this comprehensive review provides a valuable synthesis of current knowledge regarding the involvement of TRP channels in inflammatory conditions of dentistry underscoring the potential of TRP channels as promising targets for therapeutic intervention, and then paving the way for innovative strategies to address the complexities of inflammatory dental conditions.
Collapse
Affiliation(s)
- Varunya Chantadul
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Nattapon Rotpenpian
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Tawepong Arayapisit
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Aree Wanasuntronwong
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Buoite Stella A, Rupel K, Tamos M, Fratter G, Deodato M, Martini M, Biasotto M, Di Lenarda R, Ottaviani G. Effect of repeated topical capsaicin gel administration on oral thermal quantitative sensory testing: A two-arm longitudinal study. Oral Dis 2025; 31:217-224. [PMID: 38808363 DOI: 10.1111/odi.15012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVES Few studies used thermal quantitative sensory testing to assess the effects of repeated capsaicin gel administration in the oral cavity. This study aimed to investigate thermal sensory and pain thresholds before and after repeated capsaicin gel administration. SUBJECTS AND METHODS Ten healthy females (22 ± 2 years) applied a capsaicin gel on the gingival mucosa twice daily for 14 days, and heat pain threshold, warm detection threshold, cold pain threshold, and cold detection threshold were assessed on the oral mucosa. Measurements were performed before and after the 14 days and were compared to a control sample (n = 10, all females, 23 ± 3 years). RESULTS Capsaicin increased heat pain threshold in the anterior maxilla by 2.9°C (95% CI: 1.6-4.2) (p < 0.001) and in the anterior mandible by 2.2°C (95% CI: 1.0-3.4) (p = 0.001), similar to warm detection threshold that increased by Δ1.1°C (95% CI: 0.3-1.9) (p = 0.009). No significant changes were found in the controls. CONCLUSIONS These findings encourage the use of thermal quantitative sensory testing in the oral cavity to assess thermal sensation, which might be useful for assessing the effects of therapies aimed at reducing pain.
Collapse
Affiliation(s)
- Alex Buoite Stella
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Katia Rupel
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Martina Tamos
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giampaolo Fratter
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Manuela Deodato
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Miriam Martini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Matteo Biasotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Roberto Di Lenarda
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ottaviani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Özden C, Afacan B, İlhan HA, Köse T, Emingil G. Oral biofluid levels of Activin-A and interleukin-1beta in stage III periodontitis. Clin Oral Investig 2024; 29:7. [PMID: 39656274 DOI: 10.1007/s00784-024-06088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/28/2024] [Indexed: 02/07/2025]
Abstract
OBJECTIVES Activin-A belongs to the transforming growth factor-beta superfamily and is a multifunctional cytokine that plays a role in inflammation, immune response, tissue repair and regeneration. Proinflammatory cytokine interleukin-1beta (IL-1β) can increase Activin-A expression in various cell types. This study aims to evaluate gingival crevicular fluid (GCF) and salivary Activin-A and IL-β levels in stage III periodontitis. MATERIALS AND METHODS 23 patients with stage III periodontitis, 26 with gingivitis and 26 periodontally healthy individuals were included. Full-mouth clinical periodontal indices were recorded, unstimulated whole saliva and GCF samples were obtained, Activin-A and IL-1β total amounts were determined by ELISA. Statistical comparisons were performed using non-parametric tests. Receiver operating characteristics curve was used for estimating the area under the curve (AUC). RESULTS Periodontitis group exhibited significantly lower GCF Activin-A levels but higher IL-1β levels than the periodontally healthy group (p < 0.05). Gingivitis group had similar GCF Activin-A and IL-1β levels to the periodontitis and periodontally healthy groups (p > 0.05). Salivary Activin-A and IL-1β concentrations were similar among study groups (p > 0.05). GCF Activin-A level showed an excellent diagnostic performance (an AUC value of 0.82 with 87% sensitivity) to discriminate periodontitis from periodontal health. CONCLUSIONS For the first time, this study demonstrated oral biofluid levels of Activin-A in periodontal health and diseases. Within the limits of the study, it might be suggested that diseased sites in periodontitis are associated with reduced Activin-A and increased IL-1β levels in GCF. CLINICAL RELEVANCE Reduced GCF Activin-A levels and the accompanying increase in IL-1β might be associated with diseased sites in stage III periodontitis.
Collapse
Affiliation(s)
- Can Özden
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey.
| | - Harika Atmaca İlhan
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, İstinye University, İstanbul, Turkey
| |
Collapse
|
4
|
Ikuyo Y, Yokoi H, Wang J, Furukawa M, Raju R, Yamada M, Aoki Y, Matsushita K. Capsaicin modulates TRPV1, induces β-defensin expression, and regulates NF-κB in oral senescent cells and a murine model. Genes Cells 2024; 29:1069-1076. [PMID: 39266282 DOI: 10.1111/gtc.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Aging is associated with a decline in oral immune function, marked by reduced levels of antimicrobial peptides such as defensins. Capsaicin, a bioactive component found in chili peppers, has been theorized to modulate immune responses through specific receptor pathways. This study examined the effects of aging on oral defensin levels and the potential mitigating role of capsaicin, mediated by the immune response in oral tissues. We conducted a comparative analysis between young and aged mice, with or without capsaicin supplementation, for 3 months. The effect of capsaicin was also studied in vitro in senescence-induced human oral keratinocytes. We found that aging did not reduce defensin levels uniformly but did so in some instances. Capsaicin treatment increased defensin levels in these cases, potentially through transient receptor potential cation channel subfamily V member 1 (TRPV1)-mediated pathways in the oral cavity. Capsaicin supplementation may counteract age-related declines in oral defensin levels, enabling the maintenance of oral immune function during aging.
Collapse
Affiliation(s)
- Yoriko Ikuyo
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Tohto University, Fukaya, Japan
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Haruna Yokoi
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Jingshu Wang
- Nagoya College of Physical & Occupational Therapy, Nagoya, Japan
| | - Masae Furukawa
- Department of Dental Hygiene, Ogaki Women's College, Ogaki, Japan
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitsuyoshi Yamada
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yu Aoki
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo, Japan
| | - Kenji Matsushita
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai, Japan
- Department of Dental Hygiene, Ogaki Women's College, Ogaki, Japan
| |
Collapse
|
5
|
Favero G, Gianò M, Franco C, Pinto D, van Noorden CJ, Rinaldi F, Rezzani R. Relation Between Reactive Oxygen Species Production and Transient Receptor Potential Vanilloid1 Expression in Human Skin During Aging. J Histochem Cytochem 2024; 72:157-171. [PMID: 38440794 PMCID: PMC10956443 DOI: 10.1369/00221554241236537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Skin sensitivity and impaired epidermal barrier function are associated with aging and are at least partly due to increased production of reactive oxygen species (ROS). Transient receptor potential vanilloid1 (TRPV1) is expressed in keratinocytes, fibroblasts, mast cells, and endothelial cells in skin. We investigated in skin biopsies of adult and elderly donors whether TRPV1 expression is involved in the skin aging process. We found that aging skin showed a strongly reduced epidermal thickness, strongly increased oxidative stress, protease expression, and mast cell degranulation and strongly increased TRPV1 expression both in epidermis and dermis. Based on our findings, the aging-related changes observed in the epidermis of the skin level are associated with increased ROS production, and hypothesized alterations in TRPV1 expression are mechanistically linked to this process.
Collapse
Affiliation(s)
- Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubliana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| |
Collapse
|
6
|
Williams A, Khatkar P, Branscome H, Kim Y, Erickson J, Jenabian MA, Costiniuk CT, Kashanchi F. The Use of CBD and Its Synthetic Analog HU308 in HIV-1-Infected Myeloid Cells. Pharmaceuticals (Basel) 2023; 16:1147. [PMID: 37631062 PMCID: PMC10458222 DOI: 10.3390/ph16081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Currently, there is no cure for human immunodeficiency virus type 1 (HIV-1) infection. However, combined antiretroviral therapy (cART) aids in viral latency and prevents the progression of HIV-1 infection into acquired immunodeficiency syndrome (AIDS). cART has extended many lives, but people living with HIV-1 (PLWH) face lifelong ailments such as HIV-associated neurocognitive disorders (HAND) that range from asymptomatic HAND to HIV-1-associated dementia. HAND has been attributed to chronic inflammation and low-level infection within the central nervous system (CNS) caused by proinflammatory cytokines and viral products. These molecules are shuttled into the CNS within extracellular vesicles (EVs), lipid bound nanoparticles, and are released from cells as a form of intercellular communication. This study investigates the impact of cannabidiol (CBD), as a promising and potential therapeutic for HAND patients, and a similar synthetic molecule, HU308, on the EVs released from HIV-1-infected myeloid cells as well as HIV-1-infected 3D neurospheres. The data shows that both CBD and HU308 decrease non-coding and coding viral RNA (TAR and env) as well as proinflammatory cytokines as IL-1β and TNF-α mRNA. This decrease in viral RNA occurs in in vitro differentiated primary macrophages, in EVs released from HIV-1-infected cells monocytes, and infected neurospheres. Furthermore, a 3D neurosphere model shows an overall decrease in proinflammatory mRNA with HU308. Finally, using a humanized mouse model of HIV-1 infection, plasma viral RNA was shown to significantly decrease with HU308 alone and was most effective in combination with cART, even when compared to the typical cART treatment. Overall, CBD or HU308 may be a viable option to decrease EV release and associated cytokines which would dampen the virus spread and may be used in effective treatment of HAND in combination with cART.
Collapse
Affiliation(s)
- Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Center, University of Quebec in Montreal, Montreal, QC H2L 2C4, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA 20110, USA
| |
Collapse
|
7
|
Tsuchiya H. COVID-19 Oral Sequelae: Persistent Gustatory and Saliva Secretory Dysfunctions after Recovery from COVID-19. Med Princ Pract 2023; 32:166-177. [PMID: 37271130 PMCID: PMC10601698 DOI: 10.1159/000531373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/21/2023] [Indexed: 06/06/2023] Open
Abstract
Diverse manifestations have been recognized to last for a long time in patients infected with SARS-CoV-2. However, understanding of oral sequelae after recovery from COVID-19 is relatively poor compared to that of oral symptoms in the acute phase of COVID-19 and other COVID-19 sequelae. The aim of the present study was to characterize persistent gustatory and saliva secretory dysfunctions and to speculate on their pathogenic mechanisms. Articles were retrieved by searching scientific databases with a cutoff date of September 30, 2022. The literature search indicated that ageusia/dysgeusia and xerostomia/dry mouth are reported by 1-45% of COVID-19 survivors at follow-ups of 21-365 days and by 2-40% of COVID-19 survivors at follow-ups of 28-230 days, respectively. The prevalence of gustatory sequelae partly depends on difference in ethnicity, gender, age, and disease severity of subjects. Co-occurring gustatory and saliva secretory sequelae are pathogenically related to either or both of the following: expression of SARS-CoV-2 cellular entry-relevant receptors in taste buds and salivary glands, and SARS-CoV-2 infection-induced deficiency in zinc that is essential for normality of taste perception and saliva secretion. Given the long-term oral sequelae, hospital discharge is not the end of the disease; therefore, careful attention should be continuously paid to oral conditions of post-COVID-19 patients.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Japan
| |
Collapse
|
8
|
Xu P, Shao RR, Zhang S, Tan ZW, Guo YT, He Y. The mechanism on Prevotella melaninogenica promoting the inflammatory progression of oral lichen planus. Clin Exp Immunol 2022; 209:215-224. [PMID: 35605143 DOI: 10.1093/cei/uxac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease occurring in the oral mucosa. Bacteria is a key driver of mucosal immune response and can induce changes in gene expression and function of epithelial keratinocytes. IL-36γ can induce the expression of antimicrobial peptides, cytokines and chemokines, and is widely involved in many chronic inflammatory diseases. Our aim is to explore the role of IL-36γ in pathological process of OLP when Prevotella melaninogenica (P. melaninogenica) invades oral mucosa. The expression of IL-36γ in OLP lesions and mice was detected by immunohistochemistry. Recombinant human IL-36Gamma (rhIL-36γ) was used to treat oral keratinocytes and the expression levels of inflammatory cytokines were detected by qRT-PCR and ELISA. The expression of IL-36γ and TRPV1 was detected by western blotting following co-culturing P. melaninogenica with oral keratinocytes. The mRNA expression of IL-36γ was detected by qRT-PCR. From our results, IL-36γ was upregulated in OLP lesions. Exogenous rhIL-36γ promoted the expression of pro-inflammatory cytokines and antibacterial peptides in oral keratinocytes. The expression of IL-36γ was significantly increased following the stimulation of P. melaninogenica in oral keratinocytes and mice. TRPV1 activation was induced by P. melaninogenica and its activation enhanced the expression of IL-36γ. IL-36Ra could reduce the inflammation in OLP in vitro. In summary, overexpression of IL-36γ in OLP lesions could promote its pathogenesis by inducing inflammation. P. melaninogenica invasion of oral keratinocytes could induce the expression of IL-36γ by the activation of TRPV1, thereby regulating the interaction between bacteria and oral epithelial cells.
Collapse
Affiliation(s)
- Pan Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Ru-Ru Shao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Shi Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Zheng-Wu Tan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yi-Ting Guo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Yuan He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Ohshima H, Mishima K, Amizuka N. Oral biosciences: The annual review 2020. J Oral Biosci 2021; 63:1-7. [PMID: 33582294 DOI: 10.1016/j.job.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review featured the review articles in the fields of "Microbiology," "Palate," "Stem Cells," "Mucosal Diseases," "Bone Cell Biology," "MicroRNAs," "TRPV1 Cation Channels," and "Interleukins" in addition to the review article by prize-winners of the "Rising Members Award" ("DKK3 expression and function in head and neck squamous cell carcinoma and other cancers"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding the various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|