1
|
Xiao M, Xue J, Jin E. SPOCK: Master regulator of malignant tumors (Review). Mol Med Rep 2024; 30:231. [PMID: 39392048 PMCID: PMC11487499 DOI: 10.3892/mmr.2024.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
SPARC/osteonectin, CWCV and Kazal‑like domain proteoglycan (SPOCK) is a family of highly conserved multidomain proteins. In total, three such family members, SPOCK1, SPOCK2 and SPOCK3, constitute the majority of extracellular matrix glycoproteins. The SPOCK gene family has been demonstrated to serve key roles in tumor regulation by affecting MMPs, which accelerates the progression of cancer epithelial‑mesenchymal transition. In addition, they can regulate the cell cycle via overexpression, inhibit tumor cell proliferation by inactivating PI3K/AKT signaling and have been associated with numerous microRNAs that influence the expression of downstream genes. Therefore, the SPOCK gene family are potential cancer‑regulating genes. The present review summarizes the molecular structure, tissue distribution and biological function of the SPOCK family of proteins, in addition to its association with cancer. Furthermore, the present review documents the progress made in investigations into the role of SPOCK, whilst also discussing prospects for the future of SPOCK‑targeted therapy, to provide novel ideas for clinical application and treatment.
Collapse
Affiliation(s)
- Mingyuan Xiao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Jiancheng Xue
- Department of Otolaryngology, Head and Neck Surgery, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Clinical Research Center for Otolaryngology Diseases, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Enli Jin
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| |
Collapse
|
2
|
Yao J, Hua X, Shi J, Hu X, Lui K, He K, Mai J, Lan T, Lu M. LncRNA THEMIS2-211, a tumor-originated circulating exosomal biomarker, promotes the growth and metastasis of hepatocellular carcinoma by functioning as a competing endogenous RNA. FASEB J 2022; 36:e22238. [PMID: 35224785 DOI: 10.1096/fj.202101564r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major challenge for human health. Finding reliable diagnostic biomarkers and therapeutic targets for HCC is highly desired in the clinic. Currently, circulating exosomal lncRNA is a promising biomarker for the diagnosis of cancer and lncRNA is also a potential target in cancer therapy. Here, the diagnostic value of a panel based on exosomal lncRNA THEMIS2-211 and PRKACA-202, superior to that of AFP, was identified for diagnosing human HCC. Besides, the performance of exosomal lncRNA THEMIS2-211 alone exceeds that of AFP in diagnosing early-stage HCC patients (stage I). Furthermore, lncRNA THEMIS2-211 is highly expressed in HCC tissues and correlated with the poor prognosis of HCC patients. LncRNA THEMIS2-211 is upregulated and localized in the cytoplasm of HCC cells. LncRNA THEMIS2-211 exerts its biological function as an oncogene that promotes the proliferation, migration, invasion, EMT of HCC cells by physically interacting with miR-940 and therefore promoting SPOCK1 expressions. Rescue assays show the regulation of SPOCK1 by lncRNA THEMIS2-211 dependents on miR-940. The discovery of lncRNA THEMIS2-211 further illuminates the molecular pathogenesis of HCC and the THEMIS2-211/miR-940/SPOCK1 axis may act as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jiyou Yao
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xuefeng Hua
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Jiewei Shi
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaoyuan Hu
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Kayin Lui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaitao He
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Jialuo Mai
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Tian Lan
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Minqiang Lu
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Váncza L, Karászi K, Péterfia B, Turiák L, Dezső K, Sebestyén A, Reszegi A, Petővári G, Kiss A, Schaff Z, Baghy K, Kovalszky I. SPOCK1 Promotes the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:819883. [PMID: 35186754 PMCID: PMC8853618 DOI: 10.3389/fonc.2022.819883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.
Collapse
Affiliation(s)
- Lóránd Váncza
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Dezső
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Schaff
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Ilona Kovalszky, ;
| |
Collapse
|
4
|
Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 2021; 15:567-580. [PMID: 34613590 DOI: 10.1007/s12079-021-00650-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular communication network 2 (CCN2), also known as connective tissue growth factor (CTGF) regulates diverse cellular processes, some at odds with others, including adhesion, proliferation, apoptosis, and extracellular matrix (ECM) protein synthesis. Although a cause-and-effect relationship between CCN2/CTGF expression and local fibrotic reactions has initially been established, CCN2/CTGF manifests cell-, tissue-, and context-specific functions and differentially affects developmental and pathological processes ranging from progenitor cell fate decisions and angiogenesis to inflammation and tumorigenesis. CCN2/CTGF multimodular structure, binding to and activation or inhibition of multiple cell surface receptors, growth factors and ECM proteins, and susceptibility for proteolytic cleavage highlight the complexity to CCN2/CTGF biochemical attributes. CCN2/CTGF expression and dosage in the local environment affects a defined community of its interacting partners, and this results in sequestration of growth factors, interference with or potentiation of ligand-receptor binding, cellular internalization of CCN2/CTGF, inhibition or activation of proteases, and generation of CCN2/CTGF degradome products that add molecular diversity and expand the repertoire of functional modules in the cells and their microenvironment. Through these interactions, different intracellular signals and cellular responses are elicited culminating into physiological or pathological reactions. Thus, the CCN2/CTGF interactome is a defining factor of its tissue- and context-specific effects. Mapping of new CCN2/CTGF binding partners might shed light on yet unknown roles of CCN2/CTGF and provide a solid basis for tissue-specific targeting this molecule or its interacting partners in a therapeutic context.
Collapse
Affiliation(s)
- Viktor Zaykov
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
5
|
Proteomic Analysis Reveals Commonly Secreted Proteins of Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Synovial Membrane to Show Potential for Cartilage Regeneration in Knee Osteoarthritis. Stem Cells Int 2021; 2021:6694299. [PMID: 34306096 PMCID: PMC8264516 DOI: 10.1155/2021/6694299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Paracrine factors secreted by mesenchymal stem cells (MSCs) reportedly modulate inflammation and reparative processes in damaged tissues and have been explored for knee osteoarthritis (OA) therapy. Although various studies have reported the effects of paracrine factors in knee OA, it is not yet clear which paracrine factors directly affect the regeneration of damaged cartilage and which are secreted under various knee OA conditions. In this study, we cultured MSCs derived from three types of tissues and treated each type with IL-1β and TNF-α or not to obtain conditioned medium. Each conditioned medium was used to analyse the paracrine factors related to cartilage regeneration using liquid chromatography-tandem mass spectrometry. Bone marrow-, adipose tissue-, and synovial membrane-MSCs (all-MSCs) exhibited expression of 93 proteins under normal conditions and 105 proteins under inflammatory conditions. It was confirmed that the types of secreted proteins differed depending on the environmental conditions, and the proteins were validated using ELISA. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using a list of proteins secreted by all-MSCs under each condition confirmed that the secreted proteins were closely related to cartilage repair under inflammatory conditions. Protein-protein interaction networks were confirmed to change depending on environmental differences and were found to enhance the secretion of paracrine factors related to cartilage regeneration under inflammatory conditions. In conclusion, our results demonstrated that compared with knee OA conditions, the differential expression proteins may contribute to the regeneration of damaged cartilage. In addition, the detailed information on commonly secreted proteins by all-MSCs provides a comprehensive basis for understanding the potential of paracrine factors to influence tissue repair and regeneration in knee OA.
Collapse
|
6
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Alshargabi R, Shinjo T, Iwashita M, Yamashita A, Sano T, Nishimura Y, Hayashi M, Zeze T, Fukuda T, Sanui T, Nishimura F. SPOCK1 induces adipose tissue maturation: New insights into the function of SPOCK1 in metabolism. Biochem Biophys Res Commun 2020; 533:1076-1082. [PMID: 33012508 DOI: 10.1016/j.bbrc.2020.09.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 11/24/2022]
Abstract
SPOCK1 is a calcium-binding matricellular proteoglycan that has been extensively studied in several cancer cells. Previously, we generated a mouse line overexpressing SPOCK1 (Spock1-Tg mouse) and showed that SPOCK1 might play an important role in drug-induced gingival overgrowth, indicating that it possesses physiological functions in non-cancer diseases as well. Although SPOCK1 was reported to be secreted from human adipocytes, its role in adipocyte physiology has not been addressed yet. In this study, SPOCK1 protein expression was confirmed in pancreas, adipose tissues, spleen, and liver of normal diet (ND)-fed mice. Interestingly, SPOCK1 was up-regulated in the pancreas and adipose tissues of the high-fat diet (HFD)-fed mice. Spock1-Tg mice fed with ND showed increased maturation in epididymal and inguinal adipose tissues. In addition, Spock1 overexpression strongly decreased expression of UCP-1 in adipose tissues, suggesting that SPOCK1 might regulate thermogenic function through suppression of UCP-1 expression. Finally, exogenous SPOCK1 treatment directly accelerated the differentiation of 3T3-L1 adipocytes, accompanied by the up-regulation of adipocyte differentiation-related gene expression. In conclusion, we demonstrated for the first time that SPOCK1 induced adipocyte differentiation via the up-regulation of adipogenesis-related genes.
Collapse
Affiliation(s)
- Rehab Alshargabi
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanori Shinjo
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Misaki Iwashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akiko Yamashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomomi Sano
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hayashi
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuro Zeze
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takao Fukuda
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Terukazu Sanui
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Chen S, Zou Q, Chen Y, Kuang X, Wu W, Guo M, Cai Y, Li Q. Regulation of SPARC family proteins in disorders of the central nervous system. Brain Res Bull 2020; 163:178-189. [DOI: 10.1016/j.brainresbull.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
|
9
|
Black RM, Wang Y, Struglics A, Lorenzo P, Tillgren V, Rydén M, Grodzinsky AJ, Önnerfjord P. Proteomic analysis reveals dexamethasone rescues matrix breakdown but not anabolic dysregulation in a cartilage injury model. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2. [PMID: 34322675 DOI: 10.1016/j.ocarto.2020.100099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objectives In this exploratory study, we used discovery proteomics to follow the release of proteins from bovine knee articular cartilage in response to mechanical injury and cytokine treatment. We also studied the effect of the glucocorticoid Dexamethasone (Dex) on these responses. Design Bovine cartilage explants were treated with either cytokines alone (10 ng/ml TNFα, 20 ng/ml IL-6, 100 ng/ml sIL-6R), a single compressive mechanical injury, cytokines and injury, or no treatment, and cultured in serum-free DMEM supplemented with 1% ITS for 22 days. All samples were incubated with or without addition of 100 nM Dex. Mass spectrometry and western blot analyses were performed on medium samples for the identification and quantification of released proteins. Results We identified 500 unique proteins present in all three biological replicates. Many proteins involved in the catabolic response of cartilage degradation had increased release after inflammatory stress. Dex rescued many of these catabolic effects. The release of some proteins involved in anabolic and chondroprotective processes was inconsistent, indicating differential effects on processes that may protect cartilage from injury. Dex restored only a small fraction of these to the control state, while others had their effects exacerbated by Dex exposure. Conclusions We identified proteins that were released upon cytokine treatment which could be potential biomarkers of the inflammatory contribution to cartilage degradation. We also demonstrated the imperfect rescue of Dex on the effects of cartilage degradation, with many catabolic factors being reduced, while other anabolic or chondroprotective processes were not.
Collapse
Affiliation(s)
- Rebecca Mae Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - André Struglics
- Department of Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pilar Lorenzo
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Viveka Tillgren
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Rydén
- Department of Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrik Önnerfjord
- Department of Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Sun LR, Li SY, Guo QS, Zhou W, Zhang HM. SPOCK1 Involvement in Epithelial-to-Mesenchymal Transition: A New Target in Cancer Therapy? Cancer Manag Res 2020; 12:3561-3569. [PMID: 32547193 PMCID: PMC7244346 DOI: 10.2147/cmar.s249754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cancer metastasis is the main obstacle to increasing the lifespan of cancer patients. Epithelial-to-mesenchymal transition (EMT) plays a significant role in oncogenic processes, including tumor invasion, intravasation, and micrometastasis formation, and is especially critical for cancer invasion and metastasis. The extracellular matrix (ECM) plays a crucial role in the occurrence of EMT corresponding to the change in adhesion between cells and matrices. Conclusion SPOCK1 is a critical regulator of the ECM and mediates EMT in cancer cells. This suggests an important role for SPOCK1 in tumorigenesis, migration and invasion. SPOCK1 is a critical regulator of some processes involved in cancer progression, including cancer cell proliferation, apoptosis and migration. Herein, the functions of SPOCK1 in cancer progression are expounded, revealing the association between SPOCK1 and EMT in cancer metastasis. SPOCK1 is a positive downstream regulator of transforming growth factor-β, and SPOCK1-mediated EMT regulates invasion and metastasis through the Wnt/β-catenin pathway and PI3K/Akt signaling pathway. It is of significance that SPOCK1 may be an attractive prognostic biomarker and therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Si-Yu Li
- Department of Pathology, Hangzhou Third Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
11
|
Singh P, Rai A, Dohare R, Arora S, Ali S, Parveen S, Syed MA. Network-based identification of signature genes KLF6 and SPOCK1 associated with oral submucous fibrosis. Mol Clin Oncol 2020; 12:299-310. [PMID: 32190310 PMCID: PMC7058035 DOI: 10.3892/mco.2020.1991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanism of oral submucous fibrosis (OSF) is yet to be fully elucidated. The identification of reliable signature genes to screen patients with a high risk of OSF and to provide oral cancer surveillance is therefore required. The present study produced a filtering criterion based on network characteristics and principal component analysis, and identified the genes that were involved in OSF prognosis. Two gene expression datasets were analyzed using meta-analysis, the results of which revealed 1,176 biologically significant genes. A co-expression network was subsequently constructed and weighted gene modules were detected. The pathway and functional enrichment analyses of the present study allowed for the identification of modules 1 and 2, and their respective genes, SPARC (osteonectin), cwcv and kazal like domain proteoglycan 1 (SPOCK1) and kruppel like factor 6 (KLF6), which were involved in the occurrence of OSF. The results revealed that both genes had a prominent role in epithelial to mesenchymal transition during OSF progression. The genes identified in the present study require further exploration and validation within clinical settings to determine their roles in OSF.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arpita Rai
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shweta Arora
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
12
|
Zhao P, Guan HT, Dai ZJ, Ma YG, Liu XX, Wang XJ. Knockdown of SPOCK1 Inhibits the Proliferation and Invasion in Colorectal Cancer Cells by Suppressing the PI3K/Akt Pathway. Oncol Res 2017; 24:437-445. [PMID: 28281964 PMCID: PMC7838686 DOI: 10.3727/096504016x14685034103554] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan (testican) 1 (SPOCK1), known as testican-1, were found to be involved in the development and progression of tumors. However, in colorectal cancer (CRC), the expression pattern of SPOCK1 and its functional role remain poorly investigated. In the present study, we explored the role of SPOCK1 in CRC. Our results demonstrated that SPOCK1 is overexpressed in CRC cell lines. SPOCK1 silencing significantly inhibited the proliferation in vitro and the tumor growth in vivo. Furthermore, SPOCK1 silencing significantly attenuated the migration/invasion by reversing the EMT process in CRC cells. Finally, knockdown of SPOCK1 obviously decreased the protein expression levels of p-PI3K and p-Akt in HCT116 cells. In total, our study demonstrated for the first time that knockdown of SPOCK1 inhibits the proliferation and invasion in CRC cells, possibly through the PI3K/Akt signaling pathway. Therefore, SPOCK1 may be a potential therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | | | | | | | | | | |
Collapse
|
13
|
Viloria K, Munasinghe A, Asher S, Bogyere R, Jones L, Hill NJ. A holistic approach to dissecting SPARC family protein complexity reveals FSTL-1 as an inhibitor of pancreatic cancer cell growth. Sci Rep 2016; 6:37839. [PMID: 27886258 PMCID: PMC5122892 DOI: 10.1038/srep37839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
SPARC is a matricellular protein that is involved in both pancreatic cancer and diabetes. It belongs to a wider family of proteins that share structural and functional similarities. Relatively little is known about this extended family, but evidence of regulatory interactions suggests the importance of a holistic approach to their study. We show that Hevin, SPOCKs, and SMOCs are strongly expressed within islets, ducts, and blood vessels, suggesting important roles for these proteins in the normal pancreas, while FSTL-1 expression is localised to the stromal compartment reminiscent of SPARC. In direct contrast to SPARC, however, FSTL-1 expression is reduced in pancreatic cancer. Consistent with this, FSTL-1 inhibited pancreatic cancer cell proliferation. The complexity of SPARC family proteins is further revealed by the detection of multiple cell-type specific isoforms that arise due to a combination of post-translational modification and alternative splicing. Identification of splice variants lacking a signal peptide suggests the existence of novel intracellular isoforms. This study underlines the importance of addressing the complexity of the SPARC family and provides a new framework to explain their controversial and contradictory effects. We also demonstrate for the first time that FSTL-1 suppresses pancreatic cancer cell growth.
Collapse
Affiliation(s)
- Katrina Viloria
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Amanda Munasinghe
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Sharan Asher
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Roberto Bogyere
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Lucy Jones
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| | - Natasha J. Hill
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames, UK
| |
Collapse
|
14
|
Chen Q, Yao YT, Xu H, Chen YB, Gu M, Cai ZK, Wang Z. SPOCK1 promotes tumor growth and metastasis in human prostate cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2311-21. [PMID: 27486308 PMCID: PMC4958368 DOI: 10.2147/dddt.s91321] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer is the most diagnosed noncutaneous cancer and ranks as the second leading cause of cancer-related deaths in American males. Metastasis is the primary cause of prostate cancer mortality. Survival rate is only 28% for metastatic patients, but is nearly 100% for patients with localized prostate cancers. Molecular mechanisms that underlie this malignancy remain obscure, and this study investigated the role of SPARC/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) in prostate cancer progression. Initially, we found that SPOCK1 expression was significantly higher in prostate cancer tissues relative to noncancerous tissues. In particular, SPOCK1 expression was also markedly high in metastatic tissues compared with nonmetastatic cancerous tissues. SPOCK1 expression knockdown by specific short hairpin RNA in PC3 cells was significantly inhibited, whereas SPOCK1 overexpression in RWPE-1 cells promoted cell viability, colony formation in vitro, and tumor growth in vivo. Moreover, the SPOCK1 knockdown in PC3 cells was associated with cell cycle arrest in G0/G1 phase, while the SPOCK1 overexpression in RWPE-1 cells induced cell cycle arrest in S phase. The SPOCK1 knockdown in PC3 cells even increased cell apoptosis. SPOCK1 modulation was also observed to affect cancerous cell proliferation and apoptotic processes in the mouse model of prostate cancer. Additionally, the SPOCK1 knockdown decreased, whereas the SPOCK1 overexpression increased cell migration and invasion abilities in vitro. Injection of SPOCK1-depleted PC3 cells significantly decreased metastatic nodules in mouse lungs. These findings suggest that SPOCK1 is a critical mediator of tumor growth and metastasis in prostate cancer.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuan-Ting Yao
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Huan Xu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yan-Bo Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Meng Gu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhi-Kang Cai
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhong Wang
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
15
|
Characterization of the Transcriptional Complexity of the Receptive and Pre-receptive Endometria of Dairy Goats. Sci Rep 2015; 5:14244. [PMID: 26373443 PMCID: PMC4571617 DOI: 10.1038/srep14244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
Endometrium receptivity is essential for successful embryo implantation in mammals. However, the lack of genetic information remains an obstacle to understanding the mechanisms underlying the development of a receptive endometrium from the pre-receptive phase in dairy goats. In this study, more than 4 billion high-quality reads were generated and de novo assembled into 102,441 unigenes; these unigenes were annotated using published databases. A total of 3,255 unigenes that were differentially expressed (DEGs) between the PE and RE were discovered in this study (P-values < 0.05). In addition, 76,729–77,102 putative SNPs and 12,837 SSRs were discovered in this study. Bioinformatics analysis of the DEGs revealed a number of biological processes and pathways that are potentially involved in the establishment of the RE, notably including the GO terms proteolysis, apoptosis, and cell adhesion and the KEGG pathways Cell cycle and extracellular matrix (ECM)-receptor interaction. We speculated that ADCY8, VCAN, SPOCK1, THBS1, and THBS2 may play important roles in the development of endometrial receptivity. The de novo assembly provided a good starting point and will serve as a valuable resource for further investigations into endometrium receptivity in dairy goats and future studies on the genomes of goats and other related mammals.
Collapse
|
16
|
Shu YJ, Weng H, Ye YY, Hu YP, Bao RF, Cao Y, Wang XA, Zhang F, Xiang SS, Li HF, Wu XS, Li ML, Jiang L, Lu W, Han BS, Jie ZG, Liu YB. SPOCK1 as a potential cancer prognostic marker promotes the proliferation and metastasis of gallbladder cancer cells by activating the PI3K/AKT pathway. Mol Cancer 2015; 14:12. [PMID: 25623055 PMCID: PMC4320842 DOI: 10.1186/s12943-014-0276-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023] Open
Abstract
Background Gallbladder cancer (GBC) is a leading cause of cancer-related death worldwide, and its prognosis remains poor, with 5-year survival of approximately 5%. In this study, we analyzed the involvement of a novel proteoglycan, Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1), in the tumor progression and prognosis of human GBC. Methods SPOCK1 expression levels were measured in fresh samples and stored specimens of GBC and adjacent nontumor tissues. The effect of SPOCK1 on cell growth, DNA replication, migration and invasion were explored by Cell Counting Kit-8, colony formation, EdU retention assay, wound healing, and transwell migration assays, flow cytometric analysis, western blotting, and in vivo tumorigenesis and metastasis in nude mice. Results SPOCK1 mRNA and protein levels were increased in human GBC tissues compared with those in nontumor tissues. Immunohistochemical analysis indicated that SPOCK1 levels were increased in tumors that became metastatic, compared with those that did not, which was significantly associated with histological differentiation and patients with shorter overall survival periods. Knockdown of SPOCK1 expression by lentivirus-mediated shRNA transduction resulted in significant inhibition of GBC cell growth, colony formation, DNA replication, and invasion in vitro. The knockdown cells also formed smaller xenografted tumors than control GBC cells in nude mice. Overexpression of SPOCK1 had the opposite effects. In addition, SPOCK1 promoted cancer cell migration and epithelial-mesenchymal transition by regulating the expression of relevant genes. We found that activation of the PI3K/Akt pathway was involved in the oncogenic functions of SPOCK1 in GBC. Conclusions SPOCK1 activates PI3K/Akt signaling to block apoptosis and promote proliferation and metastasis by GBC cells in vitro and in vivo. Levels of SPOCK1 increase with the progression of human GBC. SPOCK1 acts as an oncogene and may be a prognostic factor or therapeutic target for patients with GBC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-014-0276-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Jun Shu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Hao Weng
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yuan-Yuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yun-Ping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Run-Fa Bao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yang Cao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xu-An Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Fei Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shan-Shan Xiang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Huai-Feng Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xiang-Song Wu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Mao-Lan Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Lin Jiang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Wei Lu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Bao-San Han
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Zhi-Gang Jie
- The Department of General Surgery, First affiliated hospital of Nanchang University, No.17 Yongwaizheng street, Nanchang, 330006, Jiangxi, China.
| | - Ying-Bin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
17
|
Chang YH, Sun YH. Carrier of Wingless (Cow), a secreted heparan sulfate proteoglycan, promotes extracellular transport of Wingless. PLoS One 2014; 9:e111573. [PMID: 25360738 PMCID: PMC4216105 DOI: 10.1371/journal.pone.0111573] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 12/04/2022] Open
Abstract
Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen.
Collapse
Affiliation(s)
- Yung-Heng Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yi Henry Sun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
18
|
Novel de novo SPOCK1 mutation in a proband with developmental delay, microcephaly and agenesis of corpus callosum. Eur J Med Genet 2014; 57:181-4. [DOI: 10.1016/j.ejmg.2014.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
|
19
|
Humphrys MS, Creasy T, Sun Y, Shetty AC, Chibucos MC, Drabek EF, Fraser CM, Farooq U, Sengamalay N, Ott S, Shou H, Bavoil PM, Mahurkar A, Myers GSA. Simultaneous transcriptional profiling of bacteria and their host cells. PLoS One 2013; 8:e80597. [PMID: 24324615 PMCID: PMC3851178 DOI: 10.1371/journal.pone.0080597] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness). Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.
Collapse
Affiliation(s)
- Michael S. Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Todd Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yezhou Sun
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcus C. Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elliott F. Drabek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Umar Farooq
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sandy Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Huizhong Shou
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Patrik M. Bavoil
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Garry S. A. Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Miao L, Wang Y, Xia H, Yao C, Cai H, Song Y. SPOCK1 is a novel transforming growth factor-β target gene that regulates lung cancer cell epithelial-mesenchymal transition. Biochem Biophys Res Commun 2013; 440:792-7. [PMID: 24134845 DOI: 10.1016/j.bbrc.2013.10.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/06/2023]
Abstract
Lung cancer is the leading cause of cancer related death worldwide and the prognosis is still poor with 5-year survival of approximately 15%. Metastasis is the leading cause of death by cancer. Recent researches have demonstrated that epithelial-to-mesenchymal transition (EMT) plays a key role in the early process of metastasis of cancer cells. Here, we identified that SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 1 (SPOCK1) is a novel transforming growth factor-β1 (TGF-β) target gene that regulates lung cancer cell EMT. TGF-β has been reported as a major inductor of EMT. We observed that the expression of SPOCK1 in lung cancer tumor tissues is significantly higher than matched normal lung tissues. Moreover, the expression of SPOCK1 was also significantly higher in metastasis tumor tissues than non-metastasis tumor tissues. Levels of SPOCK1 mRNA were increased among patients with shorter disease-free survival times, indicating the potential role of SPOCK1 in lung cancer progression and metastasis. Silencing SPOCK1 expression with endoribonuclease-prepared small interfering RNA (esiRNA) in lung cells inhibits lung cancer cell growth, colony formation and invasion in vitro. Interestingly, ectopic expression of SPOCK1 in epithelial lung cancer cells induced EMT with increased expression of the mesenchymal marker Vimentin and decreased expression of epithelial marker E-cadherin. We also found that the expression of SPOCK1 was increased under treatment of TGF-β, indicating that SPOCK1 is a novel downstream target of TGF-β. Taken together, our study showed that SPOCK1 is a novel metastasis related biomarker in lung cancer and may be new diagnostic and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Liyun Miao
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Chen Q, Ross AC. Retinoic acid and tumor necrosis factor-α induced monocytic cell gene expression is regulated in part by induction of transcription factor MafB. Exp Cell Res 2012; 318:2407-16. [PMID: 22820162 DOI: 10.1016/j.yexcr.2012.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022]
Abstract
All-trans-retinoic acid (RA), the major active metabolite of vitamin A, is a regulator of gene expression with many roles in cell differentiation. In the present study, we investigated RA in the regulation of MafB, a basic leucine-zipper transcription factor with broad roles in embryonic development, hematopoiesis and monocyte-macrophage differentiation. In RA-treated THP-1 human monocytic cells, MafB mRNA and protein levels were up-regulated by RA dose and time-dependently, while, additionally, RA and tumor necrosis factor (TNF)α, also known to induce monocyte to macrophage differentiation, increased MafB expression synergistically. Screening of potential targets containing Maf recognition elements (MARE motifs) in their promoter regions identified SPOCK1, Blimp1 and CCL2 as potential targets; these genes are related to cell communication, recruitment and differentiation, respectively. Across cell treatments, SPOCK1, Blimp1 and CCL2 mRNA levels were highly correlated (P<0.001) with MafB. ChIP assays demonstrated increased MafB protein binding to MARE elements in the promoter regions of SPOCK1, Blimp1 and CCL2 in RA and TNFα-treated cells, as well as acetylation of histone-H4 in MARE-containing regions, indicative of chromatin activation. Conversely, reducing MafB protein by microRNA silencing significantly decreased the expression of SPOCK1, Blimp1 and CCL2 (P<0.01). Moreover, the reduction in MafB expression and these downstream targets correlated with decreased cell differentiation as determined by cell-surface CD11b expression and phagocytic activity. We conclude that MafB may be a key factor in mediating the ability of RA and TNFα to regulate monocytic cell communication, recruitment and differentiation through regulation of MafB target genes including SPOCK1, CCL2 and Blimp1.
Collapse
Affiliation(s)
- Y Zhang
- The Pennsylvania State University, Department of Nutritional Sciences, 110 Chandlee Laboratory, University Park, PA 16802, United States
| | | | | |
Collapse
|
22
|
Pimentel-Santos FM, Ligeiro D, Matos M, Mourão AF, Costa J, Santos H, Barcelos A, Godinho F, Pinto P, Cruz M, Fonseca JE, Guedes-Pinto H, Branco JC, Brown MA, Thomas GP. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 2011; 13:R57. [PMID: 21470430 PMCID: PMC3132052 DOI: 10.1186/ar3309] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/07/2010] [Accepted: 04/07/2011] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. METHODS A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). RESULTS A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. CONCLUSIONS We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease.
Collapse
Affiliation(s)
- Fernando M Pimentel-Santos
- CEDOC, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Campo dos Mártires da Pátria, n° 130, 1169-056 Lisboa, Portugal
- Instituto de Biotecnologia e Bioengenharia, Centro de Genómica e Biotecnologia, da Universidade de Trás-os-Montes e Alto Douro (IBB/CGB - UTAD), Quinta dos Prados, 5000-262 Vila Real, Portugal
- Centro Hospitalar Lisboa Ocidental (CHLO), Hospital de Egas Moniz EPE, Rua da Junqueira, n° 126, 1349-019 Lisboa, Portugal
| | - Dário Ligeiro
- Centro de Histocompatibilidade do Sul, Alameda das Linhas de Torres, n° 117, 1769 - 001 Lisboa, Portugal
| | - Mafalda Matos
- Universidade de Trás-os-Montes e Alto Douro, Quinta dos Prados, 5000-262 Vila Real, Portugal
| | - Ana F Mourão
- CEDOC, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Campo dos Mártires da Pátria, n° 130, 1169-056 Lisboa, Portugal
- Centro Hospitalar Lisboa Ocidental (CHLO), Hospital de Egas Moniz EPE, Rua da Junqueira, n° 126, 1349-019 Lisboa, Portugal
| | - José Costa
- Centro Hospitalar do Alto Minho (CHAM), Hospital Conde de Bertiandos EPE, Largo Conde de Bertiandos, 4990-041 Ponte de Lima, Portugal
| | - Helena Santos
- Instituto Português de Reumatologia (IPR), Rua da Beneficência, n° 7, 1050-034 Lisboa, Portugal
| | - Anabela Barcelos
- Centro Hospitalar Baixo Vouga, Hospital Infante D. Pedro EPE, Avenida Artur Ravara, 3814-501 Aveiro, Portugal
| | - Fátima Godinho
- Hospital Garcia de Orta EPE, Av. Torrado da Silva, Pragal, 2801-951 Almada, Portugal
| | - Patricia Pinto
- Centro Hospitalar de Vila Nova de Gaia/Espinho EPE, Rua Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal
| | - Margarida Cruz
- Centro Hospitalar Oeste Norte, Centro Hospitalar das Caldas da Rainha, Rua Diário de Notícias, 2500-176 Caldas da Rainha, Portugal
| | - João E Fonseca
- Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular (IMM), Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Professor Egas Moniz, 1649-035 Lisboa, Portugal
- Centro Hospitalar de Lisboa Norte, Hospital Santa Maria EPE, Av. Professor Egas Moniz, 1649-035 Lisboa, Portugal
| | - Henrique Guedes-Pinto
- Instituto de Biotecnologia e Bioengenharia, Centro de Genómica e Biotecnologia, da Universidade de Trás-os-Montes e Alto Douro (IBB/CGB - UTAD), Quinta dos Prados, 5000-262 Vila Real, Portugal
| | - Jaime C Branco
- CEDOC, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Campo dos Mártires da Pátria, n° 130, 1169-056 Lisboa, Portugal
- Centro Hospitalar Lisboa Ocidental (CHLO), Hospital de Egas Moniz EPE, Rua da Junqueira, n° 126, 1349-019 Lisboa, Portugal
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | - Gethin P Thomas
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
23
|
MicroRNA-488 suppresses cell migration through modulation of the focal adhesion activity during chondrogenic differentiation of chick limb mesenchymal cells. Cell Biol Int 2011; 35:179-85. [DOI: 10.1042/cbi20100204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. AN ACAD BRAS CIENC 2010; 81:409-29. [PMID: 19722012 DOI: 10.1590/s0001-37652009000300007] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
25
|
Krishnatry AS, Brazeau DA, Fung HL. Broad regulation of matrix and adhesion molecules in THP-1 human macrophages by nitroglycerin. Nitric Oxide 2009; 22:11-7. [PMID: 19836459 DOI: 10.1016/j.niox.2009.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 12/23/2022]
Abstract
Although nitroglycerin (NTG) is effective for the acute relief in coronary ischemic diseases, its long-term benefits in mortality and morbidity have been questioned. The possibility has been raised that NTG may increase the activity of matrix metalloproteinases (MMP), which could lead to disruption and dislodging of atherosclerotic plaques. This study examined the broad effects of acute NTG exposure on the expression and activity of genes encoding MMP-9, as well as an array of ECM and adhesion molecules in THP-1 human macrophages. Gene array studies identified that while NTG exposure (100microM, 48h) did not significantly increase MMP-9 gene expression, genes encoding testican-1, integrin alpha-1, thrombospondin-3, fibronectin-1 and MMP-26 were significantly down-regulated. On the other hand, genes encoding catenin beta-1 and vascular cell-adhesion molecule-1 were up-regulated. Real-time PCR studies confirmed significant down-regulation of testican-1 gene expression, but its protein expression was not significantly altered. NTG exposure, caused a significant increase in total MMP-9 protein expression (1.96-fold) and active MMP-9 (3.7-fold) concentrations. Recombinant MMP-9 was significantly activated by NTG and its dinitrate metabolites, indicating post-translation modification of this protein by organic nitrates. These results indicate that NTG exposure could broadly affect the gene expression and activity of proteases that govern the ECM cascade, thereby potentially altering atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Anu Shilpa Krishnatry
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260-1200, USA
| | | | | |
Collapse
|
26
|
Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet 2009; 5:e1000420. [PMID: 19282985 PMCID: PMC2652107 DOI: 10.1371/journal.pgen.1000420] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 02/12/2009] [Indexed: 02/07/2023] Open
Abstract
For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects—all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09×10−3 and 4.37×10−3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19×10−5 and 1.02×10−4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM. Menarche is a physical milestone in a woman's life. Age at menarche (AAM) is related to many common female health problems. AAM is mainly determined by genetic factors. However, the specific genes and the associated mechanisms underlying AAM are largely unknown. Here, taking advantage of the most recent technological advances in the field of human genetics, we identified multiple genetic variants in a gene, SPOCK, which are associated with AAM variation in a group of Caucasian women. This association was subsequently confirmed not only in two independent groups of Caucasian women but also across ethnic boundaries in one group of Chinese women. In addition, SPOCK has a function in regulating a key factor involved in menstrual cycles, MMP-2, which provides further support to our findings. Our study provides a solid basis for further investigation of the gene, which may help to reveal the underlying mechanisms for the timing of menarche and for AAM's relationship with women's health in general.
Collapse
|
27
|
Rodgers KD, San Antonio JD, Jacenko O. Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 2008; 237:2622-42. [PMID: 18629873 DOI: 10.1002/dvdy.21593] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current understanding of the presence and function of heparan sulfate proteoglycans (HSPGs) in skeletal development and hematopoiesis. Although proteoglycans (PGs) comprise a large and diverse group of cell surface and matrix molecules, we chose to focus on HSPGs owing to their many proposed functions in skeletogenesis and hematopoiesis. Specifically, we discuss how HSPGs play predominant roles in establishing and regulating niches during skeleto-hematopoietic development by participating in distinct developmental processes such as patterning, compartmentalization, growth, differentiation, and maintenance of tissues. Special emphasis is placed on our novel hypothesis that mechanistically links endochondral skeletogenesis to the establishment of the hematopoietic stem cell (HSC) niche in the marrow. HSPGs may contribute to these developmental processes through their unique abilities to establish and mediate morphogen, growth factor, and cytokine gradients; facilitate signaling; provide structural stability to tissues; and act as molecular filters and barriers.
Collapse
Affiliation(s)
- Kathryn D Rodgers
- Department of Animal Biology, Division of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6046, USA.
| | | | | |
Collapse
|
28
|
Andreas K, Lübke C, Häupl T, Dehne T, Morawietz L, Ringe J, Kaps C, Sittinger M. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther 2008; 10:R9. [PMID: 18205922 PMCID: PMC2374452 DOI: 10.1186/ar2358] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 12/28/2007] [Accepted: 01/18/2008] [Indexed: 02/10/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, inflammatory and systemic autoimmune disease that leads to progressive cartilage destruction. Advances in the treatment of RA-related destruction of cartilage require profound insights into the molecular mechanisms involved in cartilage degradation. Until now, comprehensive data about the molecular RA-related dysfunction of chondrocytes have been limited. Hence, the objective of this study was to establish a standardized in vitro model to profile the key regulatory molecules of RA-related destruction of cartilage that are expressed by human chondrocytes. Methods Human chondrocytes were cultured three-dimensionally for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatants from SV40 T-antigen immortalized human synovial fibroblasts (SF) derived from a normal donor (NDSF) and from a patient with RA (RASF), respectively. To identify RA-related factors released from SF, supernatants of RASF and NDSF were analyzed with antibody-based protein membrane arrays. Stimulated cartilage-like cultures were used for subsequent gene expression profiling with oligonucleotide microarrays. Affymetrix GeneChip Operating Software and Robust Multi-array Analysis (RMA) were used to identify differentially expressed genes. Expression of selected genes was verified by real-time RT-PCR. Results Antibody-based protein membrane arrays of synovial fibroblast supernatants identified RA-related soluble mediators (IL-6, CCL2, CXCL1–3, CXCL8) released from RASF. Genome-wide microarray analysis of RASF-stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (adenosine A2A receptor, cyclooxygenase-2), the NF-κB signaling pathway (toll-like receptor 2, spermine synthase, receptor-interacting serine-threonine kinase 2), cytokines/chemokines and receptors (CXCL1–3, CXCL8, CCL20, CXCR4, IL-1β, IL-6), cartilage degradation (matrix metalloproteinase (MMP)-10, MMP-12) and suppressed matrix synthesis (cartilage oligomeric matrix protein, chondroitin sulfate proteoglycan 2). Conclusion Differential transcriptome profiling of stimulated human chondrocytes revealed a disturbed catabolic–anabolic homeostasis of chondrocyte function and disclosed relevant pharmacological target genes of cartilage destruction. This study provides comprehensive insight into molecular regulatory processes induced in human chondrocytes during RA-related destruction of cartilage. The established model may serve as a human in vitro disease model of RA-related destruction of cartilage and may help to elucidate the molecular effects of anti-rheumatic drugs on human chondrocyte gene expression.
Collapse
Affiliation(s)
- Kristin Andreas
- Tissue Engineering Laboratory and Berlin - Brandenburg Center for Regenerative Therapies, Department of Rheumatology, Charité - Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Turner HC, Budak MT, Murat Akinci MA, Wolosin JM. Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays. Invest Ophthalmol Vis Sci 2007; 48:2050-61. [PMID: 17460260 PMCID: PMC2909883 DOI: 10.1167/iovs.06-0998] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To determine global mRNA expression levels in corneal and conjunctival epithelia and identify transcripts that exhibit preferential tissue expression. METHODS cDNA samples derived from human conjunctival and corneal epithelia were hybridized in three independent experiments to a commercial oligonucleotide array representing more than 22,000 transcripts. The resultant signal intensities and microarray software transcript present/absent calls were used in conjunction with the local pooled error (LPE) statistical method to identify transcripts that are preferentially or exclusively expressed in one of the two tissues at significant levels (expression >1% of the beta-actin level). EASE (Expression Analysis Systematic Explorer software) was used to identify biological systems comparatively overrepresented in either epithelium. Immuno-, and cytohistochemistry was performed to validate or expand on selected results of interest. RESULTS The analysis identified 332 preferential and 93 exclusive significant corneal epithelial transcripts. The corresponding numbers of conjunctival epithelium transcripts were 592 and 211, respectively. The overrepresented biological processes in the cornea were related to cell adhesion and oxiredox equilibria and cytoprotection activities. In the conjunctiva, the biological processes that were most prominent were related to innate immunity and melanogenesis. Immunohistochemistry for antigen-presenting cells and melanocytes was consistent with these gene signatures. The transcript comparison identified a substantial number of genes that have either not been identified previously or are not known to be highly expressed in these two epithelia, including testican-1, ECM1, formin, CRTAC1, and NQO1 in the cornea and, in the conjunctiva, sPLA(2)-IIA, lipocalin 2, IGFBP3, multiple MCH class II proteins, and the Na-Pi cotransporter type IIb. CONCLUSIONS Comparative gene expression profiling leads to the identification of many biological processes and previously unknown genes that are potentially active in the function of corneal and conjunctival epithelia.
Collapse
Affiliation(s)
- Helen C. Turner
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York
| | - Murat T. Budak
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M. A. Murat Akinci
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York
| | - J. Mario Wolosin
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
31
|
Jin EJ, Choi YA, Kyun Park E, Bang OS, Kang SS. MMP-2 functions as a negative regulator of chondrogenic cell condensation via down-regulation of the FAK-integrin beta1 interaction. Dev Biol 2007; 308:474-84. [PMID: 17604018 DOI: 10.1016/j.ydbio.2007.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 05/31/2007] [Accepted: 06/05/2007] [Indexed: 11/29/2022]
Abstract
Matrix metalloprotease-2 (MMP-2) has the capacity to degrade cartilage extracellular matrix molecules, the turnover of which is an essential event in chondrogenesis. Here, we investigated the functional role of MMP-2 in chondrogenesis of leg bud mesenchymal cells. Small interference RNA (siRNA)-mediated knockdown of mmp-2 promoted precartilage condensation and chondrogenesis. Treatment with bafilomycin A1, an MMP-2 activator, or GM6001, an MMP inhibitor, at the pre-condensation stage resulted in the inhibition or promotion of chondrogenesis, respectively. By comparison, treatment at the post-condensation stage had little or no effect on chondrogenesis. These results indicate that MMP-2 is involved in the regulation of cell condensation. Inhibition of MMP-2 activity by mmp-2 specific siRNA increased the protein level of fibronectin, and integrins alpha5 and beta1. The interaction between focal adhesion kinase (FAK) and integrin beta1 leading to tyrosine phosphorylation of FAK was also enhanced. Moreover, inactivation of p38MAPK down-regulated the level of MMP-2 mRNA and activity, and increased mesenchymal cell condensation in parallel with enhanced phosphorylation of FAK. Taken together, our data indicate that MMP-2 mediates the inhibitory signals of p38MAPK during mesenchymal cell condensation by functioning as a negative regulator of focal adhesion activity regulated by FAK via interactions with fibronectin through integrin beta1.
Collapse
Affiliation(s)
- Eun-Jung Jin
- Department of Biology, College of Natural Sciences (BK21), Daegu 702-701, Korea
| | | | | | | | | |
Collapse
|
32
|
Röll S, Seul J, Paulsson M, Hartmann U. Testican-1 is dispensable for mouse development. Matrix Biol 2006; 25:373-81. [PMID: 16806869 DOI: 10.1016/j.matbio.2006.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 05/12/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
Testicans are proteoglycans belonging to the BM-40/SPARC/osteonectin family of extracellular calcium-binding proteins. Testican-1 is strongly expressed in the brain and has been reported to modulate neuronal attachment and matrix metalloproteinase activation. Characterization of the mouse testican-1 gene (Ticn1), consisting of 12 exons out of which exon 3 is alternatively spliced, allowed the construction of a gene targeting construct. Mice deficient in testican-1 showed no obvious morphological or behavioral abnormalities, were fertile, and had normal life spans. Despite the fact that neither of the testican-1 homologues expressed in the brain, testican-2, testican-3 and SC1/hevin, showed an increased expression in Ticn1 null mice, these results, together with those from other gene targetings, indicate extensive functional redundancy among brain proteoglycans.
Collapse
Affiliation(s)
- Sandra Röll
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|