1
|
Hunziker EB, Nishii N, Shintani N, Lippuner K, Keel MJB, Voegelin E. The chondrogenic potential of the bovine tendon sheath-a novel source of stem cells for cartilage repair. Stem Cells 2025; 43:sxae071. [PMID: 39656905 DOI: 10.1093/stmcls/sxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/17/2024] [Indexed: 12/17/2024]
Abstract
The human hand is traumatized more frequently than any other bodily part. Trauma and pathological processes (eg, rheumatoid arthritis, osteoarthritis) commonly implicate the finger joints and specifically damage also the layer of articular cartilage. Endeavors are now being made to surgically repair such cartilage lesions biologically using tissue-engineering approaches that draw on donor cells and/or donor tissues. The tendon sheaths, particularly their inner layers, that is, the peritendineum, surround the numerous tendons in the hand. The peritendineum is composed of mesenchymal tissue. We hypothesize that this tissue harbors pluripotent mesenchymal stem cells and thus could be used for cartilage repair, irrespective of the donor's age. Using a bovine model (young calves vs adult cows), the pluripotentiality of the peritendineal stem cells, namely, their osteogenicity, chondrogenicity, and adipogenicity, was investigated by implementing conventional techniques. Subsequently, the chondrogenic potential of the peritendineal tissue itself was analyzed. Its differentiation into cartilage was induced by the application of specific growth factors (members of the TGF-β-superfamily). The characteristics of the tissue formed were evaluated structurally (immuno) histochemically, histomorphometrically, and biochemically (gene expression and protein level). Our data confirm that the bovine peritendineum contains stem cells whose pluripotentiality is independent of donor age. This tissue could also be induced to differentiate into cartilage, likewise, irrespective of the donor's age. Preliminary investigations with adult human peritendineal biopsy material derived from the hand's peritendineal flexor tendon sheaths revealed that this tissue can also be induced to differentiate into cartilage.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Naomi Nishii
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Nahoko Shintani
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Marius J B Keel
- Trauma Center Hirslanden, Clinic Hirslanden, Zurich, Medical School, University of Zurich, 8006 Zurich, Switzerland
| | - Esther Voegelin
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Bandyopadhyay A, Ghibhela B, Mandal BB. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Biofabrication 2024; 16:022006. [PMID: 38277686 DOI: 10.1088/1758-5090/ad22f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Majumder N, Roy C, Doenges L, Martin I, Barbero A, Ghosh S. Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9925-9943. [PMID: 38362893 DOI: 10.1021/acsami.3c18903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFβ), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFβ3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses. The 3D bioprinted constructs with chondrogenically differentiated hBMSCs were incubated in an OA-inducing medium for 14 days and assessed through a detailed qPCR, immunofluorescence, and biochemical analyses. Despite substantial heterogeneity in the observations among the donors, the IL1Ra molecule illustrated the maximum efficiency in enhancing the expression of articular cartilage components, reducing the expression of hypertrophic markers (re-validated by the GeneMANIA tool), as well as reducing the production of inflammatory molecules by the hBMSCs. Therefore, this study demonstrated a novel strategy to develop a chemically decorated, printable and biomimetic SF-G bioink to produce hyaline cartilage grafts resistant to acquiring OA traits that can be used for the treatment of degenerated cartilage lesions.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chandrashish Roy
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Laura Doenges
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Strauß S, Diemer M, Bucan V, Kuhbier JW, Asendorf T, Vogt PM, Schlottmann F. Spider silk enhanced tissue engineering of cartilage tissue: Approach of a novel bioreactor model using adipose derived stromal cells. J Appl Biomater Funct Mater 2024; 22:22808000241226656. [PMID: 38253568 DOI: 10.1177/22808000241226656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Human cartilage tissue remains a challenge for the development of therapeutic options due to its poor vascularization and reduced regenerative capacities. There are a variety of research approaches dealing with cartilage tissue engineering. In addition to different biomaterials, numerous cell populations have been investigated in bioreactor-supported experimental setups to improve cartilage tissue engineering. The concept of the present study was to investigate spider silk cocoons as scaffold seeded with adipose-derived stromal cells (ASC) in a custom-made bioreactor model using cyclic axial compression to engineer cartilage-like tissue. For chemical induction of differentiation, BMP-7 and TGF-β2 were added and changes in cell morphology and de-novo tissue formation were investigated using histological staining to verify chondrogenic differentiation. By seeding spider silk cocoons with ASC, a high colonization density and cell proliferation could be achieved. Mechanical induction of differentiation using a newly established bioreactor model led to a more roundish cell phenotype and new extracellular matrix formation, indicating a chondrogenic differentiation. The addition of BMP-7 and TGF-β2 enhanced the expression of cartilage specific markers in immunohistochemical staining. Overall, the present study can be seen as pilot study and valuable complementation to the published literature.
Collapse
Affiliation(s)
- Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian Diemer
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Jörn W Kuhbier
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
- Department of Plastic, Aesthetic and Hand Surgery, Helios Klinikum Hildesheim, Hildesheim, Germany
| | - Tomke Asendorf
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Kim Y, An SB, Lee SH, Lee JJ, Kim SB, Ahn JC, Hwang DY, Han I. Enhanced Intervertebral Disc Repair via Genetically Engineered Mesenchymal Stem Cells with Tetracycline Regulatory System. Int J Mol Sci 2023; 24:16024. [PMID: 38003216 PMCID: PMC10671788 DOI: 10.3390/ijms242216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFβ1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFβ1) protein secretion, and the effect of MSC-TetOff-TGFβ1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFβ1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFβ1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFβ1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Yeji Kim
- Research Competency Milestones Program of School of Medicine, CHA University School of Medicine, Seongnam-si 13496, Republic of Korea;
| | - Seong Bae An
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| | - Sang-Hyuk Lee
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Jong Joo Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea;
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Jae-Cheul Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Dong-Youn Hwang
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
- Department of Microbiology, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| |
Collapse
|
6
|
Vaca-González JJ, Culma JJS, Nova LMH, Garzón-Alvarado DA. Anatomy, molecular structures, and hyaluronic acid - Gelatin injectable hydrogels as a therapeutic alternative for hyaline cartilage recovery: A review. J Biomed Mater Res B Appl Biomater 2023. [PMID: 37178328 DOI: 10.1002/jbm.b.35261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Cartilage damage caused by trauma or osteoarthritis is a common joint disease that can increase the social and economic burden in society. Due to its avascular characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Hydrogels have been developed into one of the most suitable biomaterials for the regeneration of cartilage because of its characteristics such as high-water absorption, biodegradation, porosity, and biocompatibility similar to natural extracellular matrix. Therefore, the present review article presents a conceptual framework that summarizes the anatomical, molecular structure and biochemical properties of hyaline cartilage located in long bones: articular cartilage and growth plate. Moreover, the importance of preparation and application of hyaluronic acid - gelatin hydrogels for cartilage tissue engineering are included. Hydrogels possess benefits of stimulating the production of Agc1, Col2α1-IIa, and SOX9, molecules important for the synthesis and composition of the extracellular matrix of cartilage. Accordingly, they are believed to be promising biomaterials of therapeutic alternatives to treat cartilage damage.
Collapse
Affiliation(s)
- Juan Jairo Vaca-González
- Escuela de Pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede de La Paz, Cesar, Colombia
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan José Saiz Culma
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Diego Alexander Garzón-Alvarado
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
7
|
Chae DS, Han S, Lee MK, Kim SW. BMP-2 Genome-Edited Human MSCs Protect against Cartilage Degeneration via Suppression of IL-34 in Collagen-Induced Arthritis. Int J Mol Sci 2023; 24:ijms24098223. [PMID: 37175932 PMCID: PMC10179718 DOI: 10.3390/ijms24098223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Even though the regenerative potential of mesenchymal stem cells (MSCs) has been extensively studied, there is a debate regarding their minimal therapeutic properties. Bone morphogenetic proteins (BMP) are involved in cartilage metabolism, chondrogenesis, and bone healing. In this study, we aimed to analyze the role of genome-edited BMP-2 overexpressing amniotic mesenchymal stem cells (AMMs) in a mouse model of collagen-induced arthritis (CIA). The BMP-2 gene was synthesized and inserted into AMMs using transcription activator-like effector nucleases (TALENs), and BMP-2-overexpressing AMMs (AMM/B) were sorted and characterized using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The co-culture of AMM/B with tumor necrosis factor (TNF)-α-treated synovial fibroblasts significantly decreased the levels of interleukin (IL)-34. The therapeutic properties of AMM/B were evaluated using the CIA mouse model. The injection of AMM/B attenuated CIA progression and inhibited T helper (Th)17 cell activation in CIA mice. In addition, the AMM/B injection increased proteoglycan expression in cartilage and decreased the infiltration of inflammatory cells and factors, including IL-1β, TNF-α, cyclooxygenase (COX)-2, and Nuclear factor kappa B (NF-kB) in the joint tissues. Therefore, editing the BMP-2 genome in MSCs might be an alternative strategy to enhance their therapeutic potential for treating cartilage degeneration in arthritic joints.
Collapse
Affiliation(s)
- Dong-Sik Chae
- Department of Orthopedic Surgery, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon 22711, Republic of Korea
| | - Seongho Han
- Department of Family Medicine, Dong-A University College of Medicine, Dong-A University Medical Center, Busan 49201, Republic of Korea
| | - Min-Kyung Lee
- Department of Dental Hygiene, Dong-Eui University, Busan 47340, Republic of Korea
| | - Sung-Whan Kim
- Department Medicine, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea
| |
Collapse
|
8
|
Kuwahara M, Akasaki Y, Goto N, Kurakazu I, Sueishi T, Toya M, Uchida T, Tsutsui T, Hirose R, Tsushima H, Nakashima Y. Fluvastatin promotes chondrogenic differentiation of adipose-derived mesenchymal stem cells by inducing bone morphogenetic protein 2. BMC Pharmacol Toxicol 2022; 23:61. [PMID: 35945639 PMCID: PMC9361648 DOI: 10.1186/s40360-022-00600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADMSCs) are a promising source of material source for medical regeneration of cartilage. Growth factors, including transforming growth factor-β (TGFβ) subfamily members and bone morphogenetic proteins (BMPs), play important roles in inducing and promoting chondrogenic differentiation of MSCs. However, these exogenous growth factors have some drawbacks related to their cost, biological half-life, and safety for clinical application. Several studies have reported that statins, the competitive inhibitors of 3-hydroxy-2-methylglutaryl coenzyme A (HMG-CoA) reductase, induce the expression of BMP2 in multiple cell types as the pleotropic effects. The objective of this study was to investigate the effects of fluvastatin during chondrogenic differentiation of human ADMSCs (hADMSCs). Methods The effects of fluvastatin were analyzed during chondrogenic differentiation of hADMSCs in the pellet culture without exogenous growth factors by qRT-PCR and histology. For functional studies, Noggin, an antagonist of BMPs, mevalonic acid (MVA) and geranylgeranyl pyrophosphate (GGPP), metabolites of the mevalonate pathway, ROCK inhibitor (Y27632), or RAC1 inhibitor (NSC23766) were applied to cells during chondrogenic differentiation. Furthermore, RhoA activity was measured by RhoA pulldown assay during chondrogenic differentiation with or without fluvastatin. Statistically significant differences between groups were determined by Student’s t-test or the Tukey–Kramer test. Results Fluvastatin-treated cells expressed higher levels of BMP2, SOX9, ACAN, and COL2A1 than control cells, and accumulated higher levels of glycosaminoglycans (GAGs). Noggin significantly inhibited the fluvastatin-mediated upregulation of ACAN and COL2A1. Both MVA and GGPP suppressed the effects of fluvastatin on the expressions of BMP2, SOX9, ACAN, and COL2A1. Furthermore, fluvastatin suppressed the RhoA activity, and inhibition of RhoA–ROCK signaling by Y27632 increased the expressions of BMP2, SOX9, ACAN, and COL2A1, as well as fluvastatin. Conclusions Our results suggest that fluvastatin promotes chondrogenic differentiation of hADMSCs by inducing endogenous BMP2, and that one of the mechanisms underlying the effects is inhibition of RhoA–ROCK signaling via suppression of GGPP. Fluvastatin is a safe and low-cost compound that holds promise for use in transplantation of hADMSCs for cartilage regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00600-7.
Collapse
Affiliation(s)
- Masanari Kuwahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan.
| | - Norio Goto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Ichiro Kurakazu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Takuya Sueishi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Taisuke Uchida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Tomoaki Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Ryota Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Hidetoshi Tsushima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
10
|
Hunziker EB, Shintani N, Haspl M, Lippuner K, Voegelin E, Keel MJ. The synovium of human osteoarthritic joints retains its chondrogenic potential irrespective of age. Tissue Eng Part A 2021; 28:283-295. [PMID: 34693739 DOI: 10.1089/ten.tea.2021.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The autologous synovium is a potential tissue source for local induction of chondrogenesis by tissue engineering approaches to repair articular cartilage defects such as they occur in osteoarthritis. It was the aim of the present study to ascertain whether the aging of human osteoarthritic patients compromises the chondrogenic potential of their knee-joint synovium and the structural and metabolic stability of the transformed tissue. The patients were allocated to one of the following two age categories: 54 - 65 years and 66 - 86 years (n = 7-11 donors per time point and experimental group; total number of donors: 64). Synovial biopsies were induced in vitro to undergo chondrogenesis by exposure to either bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-ß1 (TGF-ß1) alone, or a combination of the two growth factors, for up to 6 weeks. The differentiated explants were evaluated morphologically and morphometrically for the volume fraction of metachromasia (sulfated proteoglycans), immunohistochemically for type-II collagen, and for the gene-expression levels of anabolic chondrogenic markers as well as catabolic factors by a real-time polymerase-chain-reaction (RT-PCR) analysis. Quantitative metachromasia revealed that chondrogenic differentiation of human synovial explants was induced to the greatest degree by either BMP-2 alone or the BMP-2/TGF-1 combination, i.e. to a comparable level with each of the two stimulation protocols and within both age categories. The BMP-2/TGF-1combination protocol resulted in chondrocytes of a physiological size for normal human articular cartilage, unlike the BMP-2 alone stimulation that resulted in cell sizes of terminal hypertrophy. The stable gene-expression levels of the anabolic chondrogenic markers confirmed the superiority of these two stimulation protocols and demonstrated the hyaline-like qualities of the generated cartilage matrix. The gene-expression levels of the catabolic markers remained extremely low. The data also confirmed the usefulness of experimental in vitro studies with bovine synovial tissue as a paradigm for human synovial investigations. Our data reveal the chondrogenic potential of the human knee-joint synovium of osteoarthritic patients to be uncompromised by ageing and catabolic processes. The potential of synovium-based clinical engineering (repair) of cartilage tissue using autologous synovium may thus not be reduced by the age of the human patient.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Inselspital Universitatsspital Bern, 27252, Departments of Osteoporosis and Orthopaedic Surgery, Freiburgstrasse 10, Bern, Switzerland, 3010.,Switzerland;
| | - Nahoko Shintani
- Inselspital Universitatsspital Bern, 27252, Department of Osteoporosis, Bern, Switzerland;
| | - Miroslav Haspl
- University of Zagreb, 37631, of Orthopaedic Surgery, Zagreb, Zagreb, Croatia;
| | - Kurt Lippuner
- Inselspital University Hospital Bern, 27252, Department of Osteoporosis, Bern, BE, Switzerland;
| | - Esther Voegelin
- Inselspital Universitatsspital Bern, 27252, of Plastic and Hand Surgery, Bern, BE, Switzerland;
| | - Marius J Keel
- Inselspital Universitatsspital Bern, 27252, Orthopedic Department, Bern, BE, Switzerland;
| |
Collapse
|
11
|
Jung HG, Lee D, Lee SW, Kim I, Kim Y, Jang JW, Lee JH, Lee G, Yoon DS. Nanoindentation for Monitoring the Time-Variant Mechanical Strength of Drug-Loaded Collagen Hydrogel Regulated by Hydroxyapatite Nanoparticles. ACS OMEGA 2021; 6:9269-9278. [PMID: 33842796 PMCID: PMC8028154 DOI: 10.1021/acsomega.1c00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 05/08/2023]
Abstract
Hydroxyapatite nanoparticle-complexed collagen (HAP/Col) hydrogels have been widely used in biomedical applications as a scaffold for controlled drug release (DR). The time-variant mechanical properties (Young's modulus, E) of HAP/Col hydrogels are highly relevant to the precise and efficient control of DR. However, the correlation between the DR and the E of hydrogels remains unclear because of the lack of a nondestructive and continuous measuring system. To reveal the correlations, herein, we investigate the time-variant behavior of E for HAP/Col hydrogels during 28 days using the atomic force microscopy (AFM) nanoindentation technique. The initial E of hydrogels was controlled from 200 to 9000 Pa by the addition of HAPs. Subsequently, we analyzed the relationship between the DR of the hydrogels and the changes in their mechanical properties (ΔE) during hydrogel degradation. Interestingly, the higher the initial E value of HAP/Col hydrogels is, the higher is the rate of hydrogel degradation over time. However, the DR of hydrogels with higher initial E appeared to be significantly delayed by up to 40% at a maximum. The results indicate that adding an appropriate amount of HAPs into hydrogels plays a crucial role in determining the initial E and their degradation rate, which can contribute to the properties that prolong DR. Our findings may provide insights into designing hydrogels for biomedical applications such as bone regeneration and drug-delivery systems.
Collapse
Affiliation(s)
- Hyo Gi Jung
- School
of Biomedical Engineering, Korea University, Seoul 02841, South Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, South Korea
| | - Dongtak Lee
- School
of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Sang Won Lee
- School
of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Insu Kim
- School
of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Yonghwan Kim
- School
of Biomedical Engineering, Korea University, Seoul 02841, South Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, South Korea
| | - Jae Won Jang
- School
of Biomedical Engineering, Korea University, Seoul 02841, South Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, South Korea
| | - Jeong Hoon Lee
- Department
of Electrical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Gyudo Lee
- Department
of Biotechnology and Bioinformatics, Korea
University, Sejong 30019, South Korea
- Interdisciplinary
Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Dae Sung Yoon
- School
of Biomedical Engineering, Korea University, Seoul 02841, South Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, South Korea
| |
Collapse
|
12
|
Arvinius C, Civantos A, Rodríguez-Bobada C, Rojo FJ, Pérez-Gallego D, Lopiz Y, Marco F. Enhancement of in vivo supraspinatus tendon-to-bone healing with an alginate-chitin scaffold and rhBMP-2. Injury 2021; 52:78-84. [PMID: 33223258 DOI: 10.1016/j.injury.2020.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Rotator cuff disorders present a high retear rate despite advances in surgical treatment. Tissue engineering could therefore be interesting in order to try to enhance a more biological repair. RhBMP-2 is one of the most osteogenic growth factors and it also induces the formation of collagen type I. However, it has a short half-life and in order to get a more stable release over time it could be integrated in a more slowly degradable carrier, such as an alginate-chitin scaffold. The aim of this study was to investigate the role of the alginate-chitin scaffold alone and in combination with different concentrations of rhBMP-2 when applied on chronic rotator cuff lesions in a rat model. MATERIALS AND METHODS We performed an experimental study with 80 Sprague-Dawley rats, 8 months old, with a chronic rupture of the supraspinatus tendon that was repaired with a modified Mason Allen suture. A scaffold was applied over the suture and 4 groups were obtained; suture (S) only suture, double control (DC) alginate and chitin scaffold, single sample (SS) scaffold of alginate with rhBMP-2 (20 µg rhBMP-2) and chitin, double sample (DS) a scaffold containing alginate with rhBMP-2 and chitin with rhBMP-2 (40 µg rhBMP-2). Macroscopic, histological and biomechanical studies were performed at 4 months after reparation. RESULTS The modified Åström and Rausing's histological scale (the higher the score the worse outcome, 0 points=native tendon) was applied: S got 52 points compared to DC 30 (p = 0,034), SS 22 (p = 0,009) and DS 16 (p = 0,010). Biomechanically the maximum load was highest in DC (63,05 N), followed by DS (61,60 N), SS (52,35 N) and S (51,08), p = 0,025 DS vs S. As to the elastic constant a higher value was obtained in DC (16,65), DS (12,55) and SS (12,20) compared to S (9,33), p = 0,009 DC vs S and 0,034 DS vs S. CONCLUSIONS The alginate-chitin scaffold seems to promote a more biological response after the reparation of a chronic rotator cuff lesion. Its effect is further enhanced by the addition of rhBMP-2 since the osteotendinous junction is more native-like and has better biomechanical properties.
Collapse
Affiliation(s)
- Camilla Arvinius
- Shoulder and Elbow Surgery Unit, Traumatology and Orthopaedic Surgery, Hospital Clinico San Carlos, Madrid, Spain.
| | - Ana Civantos
- Tissue Regeneration Group, Biofunctional Studies Institute, Universidad Complutense de Madrid (IEB-UCM), Spain
| | | | | | - Daniel Pérez-Gallego
- Department of Materials Science, Universidad Politécnica de Madrid, Madrid, Spain
| | - Yaiza Lopiz
- Shoulder and Elbow Surgery Unit, Traumatology and Orthopaedic Surgery, Hospital Clinico San Carlos, Madrid, Spain
| | - Fernando Marco
- Shoulder and Elbow Surgery Unit, Traumatology and Orthopaedic Surgery, Hospital Clinico San Carlos, Madrid, Spain
| |
Collapse
|
13
|
Kovermann NJ, Basoli V, Della Bella E, Alini M, Lischer C, Schmal H, Kubosch EJ, Stoddart MJ. BMP2 and TGF-β Cooperate Differently during Synovial-Derived Stem-Cell Chondrogenesis in a Dexamethasone-Dependent Manner. Cells 2019; 8:cells8060636. [PMID: 31242641 PMCID: PMC6628125 DOI: 10.3390/cells8060636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies highlighting mesenchymal stem cell (MSC) epigenetic memory suggest that a different differentiation medium may be required depending on the tissue of origin. As synovial-derived stem cells (SDSCs) attract interest we aimed to investigate the influence of TGF-β1, BMP-2 and dexamethasone on SDSC chondrogenesis in vitro. We demonstrate that dexamethasone-free medium led to enhanced chondrogenic differentiation at both the mRNA and matrix level. The greatest COL2A1/COL10A1 ratio was detected in cells exposed to a combination medium containing 10 ng/mL BMP-2 and 1 ng/mL TGF-β1 in the absence of dexamethasone, and this was reflected in the total amount of glycosaminoglycans produced. In summary, dexamethasone-free medium containing BMP-2 and TGF-β1 may be the most suitable when using SDSCs for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Nikolas J Kovermann
- AO Research Institute, AO Foundation, 7270 Davos, Switzerland.
- Equine Clinic, Free University of Berlin, 14163 Berlin, Germany.
| | | | | | - Mauro Alini
- AO Research Institute, AO Foundation, 7270 Davos, Switzerland.
| | | | - Hagen Schmal
- Department of Orthopaedics and Traumatology, Odense University Hospital, 5000 Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark.
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085 Freiburg, Germany.
| | - Martin J Stoddart
- AO Research Institute, AO Foundation, 7270 Davos, Switzerland.
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085 Freiburg, Germany.
| |
Collapse
|
14
|
Xue K, Zhang X, Gao Z, Xia W, Qi L, Liu K. Cartilage progenitor cells combined with PHBV in cartilage tissue engineering. J Transl Med 2019; 17:104. [PMID: 30925884 PMCID: PMC6441183 DOI: 10.1186/s12967-019-1855-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Bone marrow-derived stem cells (BMSCs) and chondrocytes have been reported to present “dedifferentiation” and “phenotypic loss” during the chondrogenic differentiation process in cartilage tissue engineering, and cartilage progenitor cells (CPCs) are novel seeding cells for cartilage tissue engineering. In our previous study, cartilage progenitor cells from different subtypes of cartilage tissue were isolated and identified in vitro, but the study on in vivo chondrogenic characteristics of cartilage progenitor cells remained rarely. In the current study, we explored the feasibility of combining cartilage progenitor cells with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to produce tissue-engineered cartilage and compared the proliferation ability and chondrogenic characteristics of cartilage progenitor cells with those of bone marrow-derived stem cells and chondrocytes. Methods These three cells combined with PHBV were cultured in vitro for 1 week without chondrogenic induction and then transplanted subcutaneously into nude mice for 6 weeks. The cell-PHBV constructs were evaluated by gross observation, histological staining, glycosaminoglycan content measurement, biomechanical analysis and RT-PCR. Results The chondrocyte-PHBV constructs and CPC-PHBV constructs became an ivory-whitish cartilage-like tissue, while the BMSC-PHBV constructs became vascularized 6 weeks after the subcutaneous implantation. Histological examination showed that many typical cartilage structures were present in the chondrocyte group, some typical cartilage structures were observed in the CPC group, while no typical cartilage structures were observed in the BMSC group. Conclusions Cartilage progenitor cells may undergo chondrogenesis without chondrogenic induction and are better at chondrogenesis than BMSCs but worse than chondrocytes in the application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Xiaodie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Zixu Gao
- The Second Clinical Medical College of Nanchang University, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang, 330006, China
| | - Wanyao Xia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Lin Qi
- Department of Radiology, Huadong Hospital, Fudan University, 221 West Yan-an Road, Shanghai, 200040, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
15
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
16
|
Deng ZH, Li YS, Gao X, Lei GH, Huard J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage 2018; 26:1153-1161. [PMID: 29580979 DOI: 10.1016/j.joca.2018.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/18/2018] [Accepted: 03/19/2018] [Indexed: 02/02/2023]
Abstract
Degeneration of articular cartilage (AC) tissue is the most common cause of osteoarthritis (OA) and rheumatoid arthritis. Bone morphogenetic proteins (BMPs) play important roles in bone and cartilage formation. This article reviews the experimental and clinical applications of BMPs in cartilage regeneration. Experimental evidence indicates that BMPs play an important role in protection against cartilage damage caused by inflammation or trauma, by binding to different receptor combinations and, consequently, activating different intracellular signaling pathways. Loss of function of BMP-related receptors contributes to the decreased intrinsic repair capacity of damaged cartilage and, thus, the multifunctional effects of BMPs make them attractive tools for the treatment of cartilage damage in patients with degenerative diseases. However, the development of BMP therapy as a treatment modality for cartilage regeneration has been hampered by certain factors, such as the eligibility of participants in clinical trials, financial support, drug delivery carrier safety, availabilities of effective scaffolds, appropriate selection of optimal dose and timing of administration, and side effects. Further research is needed to overcome these issues for future routine clinical applications. Research and development leading to the successful application of BMPs can initiate a new era in the treatment of cartilage degenerative diseases like OA.
Collapse
Affiliation(s)
- Z H Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong Province, China
| | - Y S Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - X Gao
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA
| | - G H Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - J Huard
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA.
| |
Collapse
|
17
|
Filardo G, Perdisa F, Gelinsky M, Despang F, Fini M, Marcacci M, Parrilli AP, Roffi A, Salamanna F, Sartori M, Schütz K, Kon E. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:74. [PMID: 29804259 DOI: 10.1007/s10856-018-6074-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Current therapeutic strategies for osteochondral restoration showed a limited regenerative potential. In fact, to promote the growth of articular cartilage and subchondral bone is a real challenge, due to the different functional and anatomical properties. To this purpose, alginate is a promising biomaterial for a scaffold-based approach, claiming optimal biocompatibility and good chondrogenic potential. A previously developed mineralized alginate scaffold was investigated in terms of the ability to support osteochondral regeneration both in a large and medium size animal model. The results were evaluated macroscopically and by microtomography, histology, histomorphometry, and immunohistochemical analysis. No evidence of adverse or inflammatory reactions was observed in both models, but limited subchondral bone formation was present, together with a slow scaffold resorption time.The implantation of this biphasic alginate scaffold provided partial osteochondral regeneration in the animal model. Further studies are needed to evaluate possible improvement in terms of osteochondral tissue regeneration for this biomaterial.
Collapse
Affiliation(s)
- Giuseppe Filardo
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesco Perdisa
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Florian Despang
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Milena Fini
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maurilio Marcacci
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| | - Anna Paola Parrilli
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Alice Roffi
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesca Salamanna
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Elizaveta Kon
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| |
Collapse
|
18
|
Tsintou M, Dalamagkas K, Seifalian A. Injectable Hydrogel versus Plastically Compressed Collagen Scaffold for Central Nervous System Applications. Int J Biomater 2018; 2018:3514019. [PMID: 29552037 PMCID: PMC5820565 DOI: 10.1155/2018/3514019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Central Nervous System (CNS) repair has been a challenge, due to limited CNS tissue regenerative capacity. The emerging tools that neural engineering has to offer have opened new pathways towards the discovery of novel therapeutic approaches for CNS disorders. Collagen has been a preferable material for neural tissue engineering due to its similarity to the extracellular matrix, its biocompatibility, and antigenicity. The aim was to compare properties of a plastically compressed collagen hydrogel with the ones of a promising collagen-genipin injectable hydrogel and a collagen-only hydrogel for clinical CNS therapy applications. The focus was demonstrating the effects of genipin cross-linking versus plastic compression methodology on a collagen hydrogel and the impact of each method on clinical translatability. The results showed that injectable collagen-genipin hydrogel is better clinical translation material. Full collagen compression seemed to form extremely stiff hydrogels (up to about 2300 kPa) so, according to our findings, a compression level of up to 75% should be considered for CNS applications, being in line with CNS stiffness. Taking that into consideration, partially compressed collagen 3D hydrogel systems may be a good tunable way to mimic the natural hierarchical model of the human body, potentially facilitating neural repair application.
Collapse
Affiliation(s)
- Magdalini Tsintou
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Kyriakos Dalamagkas
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre Ltd., The London BioScience Innovation Centre, London, UK
| |
Collapse
|
19
|
Chijimatsu R, Kobayashi M, Ebina K, Iwahashi T, Okuno Y, Hirao M, Fukuhara A, Nakamura N, Yoshikawa H. Impact of dexamethasone concentration on cartilage tissue formation from human synovial derived stem cells in vitro. Cytotechnology 2018; 70:819-829. [PMID: 29352392 DOI: 10.1007/s10616-018-0191-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/11/2018] [Indexed: 02/05/2023] Open
Abstract
Human synovial mesenchymal stem cells (hSMSCs) are a promising cell source for cartilage regeneration because of their superior chondrogenic potential in vitro. This study aimed to further optimize the conditions for inducing chondrogenesis of hSMSCs, focusing on the dose of dexamethasone in combination with transforming growth factor-β3 (TGFβ3) and/or bone morphogenetic protein-2 (BMP2). When hSMSCs-derived aggregates were cultured with TGFβ3, dexamethasone up to 10 nM promoted chondrogenesis, but attenuated it with heterogeneous tissue formation when used at concentrations over than 100 nM. On the other hands, BMP2-induced chondrogenesis was remarkably disturbed in the presence of more than 10 nM dexamethasone along with unexpected adipogenic differentiation. In the presence of both TGFβ3 and BMP2, dexamethasone dose dependently promoted cartilaginous tissue formation as judged by tissue volume, proteoglycan content, and type 2 collagen expression, whereas few adipocytes were detected in the formed tissue when cultures were supplemented with over 100 nM dexamethasone. Even in chondrogenic conditions, dexamethasone thus affected hSMSCs differentiation not only toward chondrocytes, but also towards adipocytes dependent on the dose and combined growth factor. These findings have important implications regarding the use of glucocorticoids in in vitro tissue engineering for cartilage regeneration using hSMSCs.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Masato Kobayashi
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Kosuke Ebina
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Toru Iwahashi
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yosuke Okuno
- Graduate School of Medicine, Metabolic Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Makoto Hirao
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Graduate School of Medicine, Metabolic Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Norimasa Nakamura
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
- Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Kita-ku Tenma, Osaka, Osaka, Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Japan
| | - Hideki Yoshikawa
- Graduate School of Medicine, Orthopaedic Surgery, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
20
|
Lam J, Lee EJ, Clark EC, Mikos AG. Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering. Cold Spring Harb Perspect Med 2017; 7:a025734. [PMID: 28348176 PMCID: PMC5710100 DOI: 10.1101/cshperspect.a025734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An avenue of tremendous interest and need in health care encompasses the regeneration of bone and cartilage. Over the years, numerous tissue engineering strategies have contributed substantial progress toward the realization of clinically relevant therapies. Cell and tissue culture protocols, however, show many variations that make experimental results among different publications challenging to compare. This collection surveys prevalent cell sources, soluble factors, culture medium formulations, environmental factors, and genetic modification approaches in the literature. The intent of consolidating this information is to provide a starting resource for scientists considering how to optimize the parameters for cell differentiation and tissue culture procedures within the context of bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Johnny Lam
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Esther J Lee
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Elisa C Clark
- Department of Bioengineering, Rice University, Houston, Texas 77251
| | - Antonios G Mikos
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251
| |
Collapse
|
21
|
You F, Eames BF, Chen X. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. Int J Mol Sci 2017; 18:E1597. [PMID: 28737701 PMCID: PMC5536084 DOI: 10.3390/ijms18071597] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 01/29/2023] Open
Abstract
Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.
Collapse
Affiliation(s)
- Fu You
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
| | - B Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
| |
Collapse
|
22
|
Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 2017; 57:1-25. [PMID: 28088667 PMCID: PMC5545789 DOI: 10.1016/j.actbio.2017.01.036] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
Abstract
Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. STATEMENT OF SIGNIFICANCE Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering platform to address this issue. In this article, we describe the fundamental problems encountered in this field and review recent progress in designing cell-hydrogel constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel composition, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation hydrogel/inorganic particle/stem cell hybrid composites with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing and bioengineering technologies (e.g. 3D bioprinting) for fabrication of hydrogel-based osteochondral and cartilage constructs.
Collapse
Affiliation(s)
- Jingzhou Yang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Guangzhou Women and Children's Medical Center, Sun Yat-sen University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
23
|
Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair. Stem Cells Int 2017; 2017:1960965. [PMID: 28607560 PMCID: PMC5451770 DOI: 10.1155/2017/1960965] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a new source for tissue engineering of cartilage.
Collapse
|
24
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
25
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
26
|
Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application. Carbohydr Polym 2016; 153:573-581. [DOI: 10.1016/j.carbpol.2016.07.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022]
|
27
|
Çelik E, Bayram C, Akçapınar R, Türk M, Denkbaş EB. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:221-229. [DOI: 10.1016/j.msec.2016.04.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/28/2022]
|
28
|
Extracorporeal shockwave therapy promotes chondrogenesis in cartilage tissue engineering: A hypothesis based on previous evidence. Med Hypotheses 2016; 91:9-15. [DOI: 10.1016/j.mehy.2016.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 01/08/2023]
|
29
|
Norton A, Hancocks R, Spyropoulos F, Grover L. Development of 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) staining for the characterisation of low acyl gellan microstructures. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Green JD, Tollemar V, Dougherty M, Yan Z, Yin L, Ye J, Collier Z, Mohammed MK, Haydon RC, Luu HH, Kang R, Lee MJ, Ho SH, He TC, Shi LL, Athiviraham A. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes Dis 2015; 2:307-327. [PMID: 26835506 PMCID: PMC4730920 DOI: 10.1016/j.gendis.2015.09.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.
Collapse
Affiliation(s)
- Jordan D. Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mark Dougherty
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhengjian Yan
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangjun Yin
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zachary Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Tsai HC, Li YC, Hsu SH, Young TH, Chen MH. Inhibition of growth and migration of oral and cervical cancer cells by citrus polyphenol. J Formos Med Assoc 2015; 115:171-85. [PMID: 26133268 DOI: 10.1016/j.jfma.2015.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND/PURPOSE It has been confirmed that polyphenolic compounds present in food have various pharmaceutical functions. The purpose of this study was to evaluate citrus polyphenol (CP) for dental applications. The culture medium with CP was developed to inhibit the proliferation of oral cancer cells. CP could be used as a supplemental compound for topical application for oral cancer patients. METHODS In this study, the metabolic activity and cell toxicity of CP (at concentrations of 1%, 0.1%, and 0.01%) for oral and cervical cancer cells were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase assays (n = 6). Furthermore, the effects of CP on motilities of oral and cervical cancer cells were also evaluated using a scratch assay model. RESULTS We found that the growth of Ca9-22 and HeLa cells on tissue culture polystyrene was greatly inhibited when 1% CP was added to the medium. In addition, significant differences (p < 0.01) in cytotoxicities of oral and cervical cancer cells were observed after 6 days in the culture medium to which 1% CP was added. Furthermore, using a scratch assay model to evaluate the migratory abilities of oral and cervical cancer cells, it was also found that CP could inhibit the migratory abilities of cancer cells. CONCLUSION The results confirmed the feasibility of the topical application of CP as a supplemental compound for inhibition of cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Hsiao-Cheng Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Li
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hao Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
32
|
|
33
|
Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci 2014; 15:153-82. [PMID: 25283763 DOI: 10.1002/mabi.201400335] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- Seri-Biotechnology Unit, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, India
| | | | | |
Collapse
|
34
|
Schütz K, Despang F, Lode A, Gelinsky M. Cell-laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue. J Tissue Eng Regen Med 2014; 10:404-17. [PMID: 24644134 DOI: 10.1002/term.1879] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
Abstract
Sufficient treatment of chondral and osteochondral defects to restore function of the respective tissue remains challenging in regenerative medicine. Biphasic scaffolds that mimic properties of bone and cartilage are appropriate to regenerate both tissues at the same time. The present study describes the development of biphasic, but monolithic scaffolds based on alginate, which are suitable for embedding of living cells in the chondral part. Scaffolds are fabricated under sterile and cell-compatible conditions according to the principle of diffusion-controlled, directed ionotropic gelation, which leads to the formation of channel-like, parallel aligned pores, running through the whole length of the biphasic constructs. The synthesis process leads to an anisotropic structure, as it is found in many natural tissues. The two different layers of the scaffolds are characterized by different microstructure and mechanical properties which provide a suitable environment for cells to form the respective tissue. Human chondrocytes and human mesenchymal stem cells were embedded within the chondral layer of the biphasic scaffolds during hydrogel formation and their chondrogenic (re)differentiation was successfully induced. Whereas viability of non-induced human mesenchymal stem cells decreased during culture, cell viability of human chondrocytes and chondrogenically induced human mesenchymal stem cells remained high within the scaffolds over the whole culture period of 3 weeks, demonstrating successful fabrication of cell-laden centimetre-scaled constructs for potential application in regenerative treatment of osteochondral defects. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| | - Florian Despang
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Germany
| |
Collapse
|
35
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
36
|
Abstract
Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A), hyaluronic acid repair (group B), and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C). Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.
Collapse
|
37
|
Iwakura T, Sakata R, Reddi AH. Induction of chondrogenesis and expression of superficial zone protein in synovial explants with TGF-β1 and BMP-7. Tissue Eng Part A 2013; 19:2638-44. [PMID: 23848497 DOI: 10.1089/ten.tea.2013.0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Superficial zone protein (SZP) functions as a boundary lubricant in articular cartilage and decreases the coefficient of friction. As lubrication of articular cartilage is critical for normal joint function, the ability to secrete SZP at the surface of tissue-engineered cartilage is a prerequisite for optimal lubrication. Synovium-derived mesenchymal stem cells (MSCs) are thought to be an attractive cell source for cartilage regeneration. However, optimization of a three-dimensional environment is necessary for tissue engineering. In this study, we investigated whether synovial explants, which would preserve the physiologic microenvironment for MSCs therein, have the potential of SZP secretion after chondrogenic differentiation by treatment with transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7). Immunostaining and enzyme-linked immunosorbent assay analysis demonstrated that synovial explants can synthesize and secrete SZP following chondrogenic differentiation in response to TGF-β1 and BMP-7. Interestingly, the combined treatment with TGF-β1 and BMP-7 or treatment first with TGF-β1 followed by BMP-7 was more effective than other treatment groups in both chondrogenic differentiation and SZP secretion. In conclusion, synovial explants represent not only a superb source of progenitors/stem cells for the regeneration of the surface zone of articular cartilage, but also a useful model system for the in vitro differentiation into mature articular cartilage phenotypes in response to morphogens for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Takashi Iwakura
- Department of Orthopaedic Surgery, Center for Tissue Regeneration and Repair, University of California , Sacramento, California
| | | | | |
Collapse
|
38
|
Chang CH, Chen CC, Liao CH, Lin FH, Hsu YM, Fang HW. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J Biomed Mater Res A 2013; 102:2248-57. [PMID: 23913750 DOI: 10.1002/jbm.a.34897] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/19/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Chih-Hung Chang
- Division of Orthopedics, Department of Surgery; Far Eastern Memorial Hospital; Banciao New Taipei City 220 Taiwan Republic of China
- Graduate School of Biotechnology and Bioengineering; Yuan Ze University; Chungli Taoyuan 32003 Taiwan Republic of China
- Department of Orthopaedics Surgery; National Taiwan University Hospital; Taipei 100 Taiwan Republic of China
| | - Chia-Chun Chen
- Division of Orthopedics, Department of Surgery; Far Eastern Memorial Hospital; Banciao New Taipei City 220 Taiwan Republic of China
- Department of Chemical Engineering and Biotechnology, College of Engineering; National Taipei University of Technology; Taipei 10608 Taiwan Republic of China
| | - Cheng-Hao Liao
- Department of Chemical Engineering and Biotechnology, College of Engineering; National Taipei University of Technology; Taipei 10608 Taiwan Republic of China
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University; Taipei 10617 Taiwan Republic of China
- Division of Medical Engineering Research; National Health Research Institutes; Taiwan Republic of China
| | - Yuan-Ming Hsu
- Division of Orthopedics, Department of Surgery; Far Eastern Memorial Hospital; Banciao New Taipei City 220 Taiwan Republic of China
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, College of Engineering; National Taipei University of Technology; Taipei 10608 Taiwan Republic of China
- Division of Medical Engineering Research; National Health Research Institutes; Taiwan Republic of China
| |
Collapse
|
39
|
Simson JA, Strehin IA, Lu Q, Uy MO, Elisseeff JH. An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering. Biomacromolecules 2013; 14:637-43. [PMID: 23320412 DOI: 10.1021/bm301585e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality.
Collapse
Affiliation(s)
- Jacob A Simson
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
40
|
Shintani N, Siebenrock KA, Hunziker EB. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS One 2013; 8:e53086. [PMID: 23301025 PMCID: PMC3536810 DOI: 10.1371/journal.pone.0053086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/23/2012] [Indexed: 01/13/2023] Open
Abstract
Background Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. Methodology/Principal Findings Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. Conclusions/Significance TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.
Collapse
Affiliation(s)
- Nahoko Shintani
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
| | - Klaus A. Siebenrock
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
| | - Ernst B. Hunziker
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Ongaro A, Pellati A, Setti S, Masieri FF, Aquila G, Fini M, Caruso A, De Mattei M. Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med 2012; 9:E229-38. [PMID: 23255506 DOI: 10.1002/term.1671] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 09/05/2012] [Accepted: 11/05/2012] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a common joint disease associated with articular cartilage degeneration. To improve the therapeutic options of OA, tissue engineering based on the use of mesenchymal stem cells (MSCs) has emerged. However, the presence of inflammatory cytokines, such as interleukin-1β (IL-1β), during chondrogenesis reduces the efficacy of cartilage engineering repair procedures by preventing chondrogenic differentiation. Previous studies have shown that electromagnetic fields (EMFs) stimulate anabolic processes in OA cartilage and limit IL-1β catabolic effects. We investigated the role of EMFs during chondrogenic differentiation of MSCs, isolated from bovine synovial fluid, in the absence and presence of IL-1β. Pellets of MSCs were differentiated for 3 and 5 weeks with transforming growth factor-β3 (TGFβ3), in the absence and presence of IL-1β and exposed or unexposed to EMFs. Biochemical, quantitative real-time RT-PCR and histological results showed that EMFs alone or in the presence of TGFβ3 play a limited role in promoting chondrogenic differentiation. Notably, in the presence of IL-1β and TGFβ3 a recovery of proteoglycan (PG) synthesis, PG content and aggrecan and type II collagen mRNA expression in the EMF-exposed compared to unexposed pellets was observed. Also, histological and immunohistochemical results showed an increase in staining for alcian blue, type II collagen and aggrecan in EMF-exposed pellets. In conclusion, this study shows a significant role of EMFs in counteracting the IL-1β-induced inhibition of chondrogenesis, suggesting EMFs as a therapeutic strategy for improving the clinical outcome of cartilage engineering repair procedures, based on the use of MSCs.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Stefania Setti
- Laboratory of Clinical Biophysics, IGEA S.p.A, Carpi, Italy
| | | | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Research Institute Codivilla Putti, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Angelo Caruso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| |
Collapse
|
42
|
Qusous A, Kerrigan MJ. Quantification of Changes in Morphology, Mechanotransduction, and Gene Expression in Bovine Articular Chondrocytes in Response to 2-Dimensional Culture Indicates the Existence of a Novel Phenotype. Cartilage 2012; 3:222-34. [PMID: 26069635 PMCID: PMC4297122 DOI: 10.1177/1947603511427556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Matrix-induced autologous chondrocyte implantation (ACI) offers a potential solution for cartilage repair but is currently hindered by loss of the chondrocyte differentiated phenotype. To further our understanding of the mechanism of dedifferentiation, changes in the phenotype in relation to mechanotransduction were recorded in response to monolayer culture. METHODS Bovine cartilage explants were excised and chondrocytes cultured for 9 days (P1), 14 days (P2), and 21 (P3) days. Changes in morphology and regulatory volume increase (RVI; a mechanotransduction response) were determined by the expression of key genes by RT-PCR and confocal microscopy, respectively. RESULTS A loss of a differentiated phenotype was observed in P1 with a reduction in sphericity and an overall increase in cell volume from 474.7 ± 32.1 µm(3) to 725.2 ± 35.6 µm(3). Furthermore, the effect of 2-dimensional (2-D) culture-induced dedifferentiation on mechanotransduction was investigated, whereby RVI and Gd(3+)-sensitive REV5901-induced calcium rise were only observed in 2-D cultured chondrocytes. A significant up-regulation of types I and II collagens and Sox9 was observed in P1 chondrocytes and no further significant change in type I collagen but a return to baseline levels of type II collagen and Sox9 upon further culture. CONCLUSION These data indicated the presence of an intermediate, mesodifferentiated phenotype and highlight the importance of mechanotransduction as a marker of the chondrocytic cell type.
Collapse
Affiliation(s)
- Ala Qusous
- University of Westminster, London, UK,University of Dundee, Dundee, UK
| | | |
Collapse
|
43
|
Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A 2012; 18:1161-70. [PMID: 22429262 DOI: 10.1089/ten.tea.2011.0544] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Joint-derived stem cells are a promising alternative cell source for cartilage repair therapies that may overcome many of the problems associated with the use of primary chondrocytes (CCs). The objective of this study was to compare the in vitro functionality and in vivo phenotypic stability of cartilaginous tissues engineered using bone marrow-derived stem cells (BMSCs) and joint tissue-derived stem cells following encapsulation in agarose hydrogels. Culture-expanded BMSCs, fat pad-derived stem cells (FPSCs), and synovial membrane-derived stem cells (SDSCs) were encapsulated in agarose and maintained in a chondrogenic medium supplemented with transforming growth factor-β3. After 21 days of culture, constructs were either implanted subcutaneously into the back of nude mice for an additional 28 days or maintained for a similar period in vitro in either chondrogenic or hypertrophic media formulations. After 49 days of in vitro culture in chondrogenic media, SDSC constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG) (∼2.8% w/w) and collagen (∼1.8% w/w) and were mechanically stiffer than constructs engineered using other cell types. After subcutaneous implantation in nude mice, sGAG content significantly decreased for all stem cell-seeded constructs, while no significant change was observed in the control constructs engineered using primary CCs, indicating that the in vitro chondrocyte-like phenotype generated in all stem cell-seeded agarose constructs was transient. FPSCs and SDSCs appeared to undergo fibrous dedifferentiation or resorption, as evident from increased collagen type I staining and a dramatic loss in sGAG content. BMSCs followed a more endochondral pathway with increased type X collagen expression and mineralization of the engineered tissue. In conclusion, while joint tissue-derived stem cells possess a strong intrinsic chondrogenic capacity, further studies are needed to identify the factors that will lead to the generation of a more stable chondrogenic phenotype.
Collapse
Affiliation(s)
- Tatiana Vinardell
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | | | | | | |
Collapse
|
44
|
Fang HW. TRENDS AND CHALLENGES OF CARTILAGE TISSUE ENGINEERING. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237209001209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.
Collapse
Affiliation(s)
- Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
45
|
Fan J, Ren L, Liang R, Gong Y, Cai D, Wang DA. Chondrogenesis of Synovium-Derived Mesenchymal Stem Cells in Photopolymerizing Hydrogel Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1653-67. [DOI: 10.1163/092050609x12531835454314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiabing Fan
- a Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, P. R. China; Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore
| | - Li Ren
- b Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology, South China University of Technology, Ministry of Education, Guangzhou 510641, P. R. China
| | - Ruishan Liang
- c Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore
| | - Yihong Gong
- d Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore
| | - Daozhang Cai
- e Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Dong-An Wang
- f Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13 Singapore 637457, Republic of Singapore; Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology, South China University of Technology, Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
46
|
Qusous A, Kaneva M, Can VC, Getting SJ, Kerrigan MJP. The phenotypic characterization of A13/BACii, a novel bovine chondrocytic cell line with differentiation potential. Cells Tissues Organs 2012; 196:251-61. [PMID: 22398355 DOI: 10.1159/000332144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 11/19/2022] Open
Abstract
In cartilage research bovine articular cartilage is used as an alternative to human tissue. However, animal material is subject to availability and primary cultures undergo senescence, limiting their use. Here we report the immortalization of primary bovine chondrocytes, which could be used as a surrogate for freshly isolated chondrocytes. Chondrocytes were isolated from cartilage explants and immortalized using 1.0 µg/ml benzo[alpha]pyrene. For 3-dimensional culture, chondrocytes were resuspended in 0.5% low-melt agarose at high density (HD) and cultured for 24 h prior to determining changes in expression profile and morphology. A13/BACii chondrocytes acquired a 'flat' irregular morphology and a foetal-like cell volume (1,509.59 ± 182.04 µm(3)). The human cell line C-20/A4 showed a statistically similar volume and length to A13/BACii. Two-dimensional-cultured A13/BACii expressed elevated levels of type I collagen (col1), reduced levels of type II collagen (col2) compared to freshly isolated chondrocytes and an overall col2 to col1 expression ratio (col2:col1) of 0.11 ± 0.01. Upon 3-dimensional encapsulation, there was a significant rise in col2 expression in both A13/BACii and C-20/A4, suggesting a capacity for redifferentiation in both cell lines with a return of col2:col1 values of A13/BACii to values previously observed in primary chondrocytes. A13/BACii chondrocytes expressed aggrecan, matrix metalloproteinase (MMP)-3, MMP-9 and MMP-13, further supporting indications of the differentiated phenotype. Here we report the creation of a novel chondrocytic cell line and demonstrate its strong potential for redifferentiation upon HD 3-dimensional encapsulation, providing an alternative to conventional dedifferentiated cell lines and primary culture.
Collapse
Affiliation(s)
- Ala Qusous
- School of Life Sciences, University of Dundee, Dundee, UK.
| | | | | | | | | |
Collapse
|
47
|
Egli RJ, Wernike E, Grad S, Luginbühl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 289:37-87. [PMID: 21749898 DOI: 10.1016/b978-0-12-386039-2.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of cartilaginous tissues has been studied for many years, and tissue-engineered constructs are sought to be used clinically for treating articular cartilage defects. Even though there is a plethora of studies and data available, no breakthroughs have been achieved yet that allow for implanting in vivo cultured articular cartilaginous tissues in patients. A review of contributions to cartilage tissue engineering over the past decades emphasizes that most of the studies were performed under environmental conditions neglecting the physiological situation. This is specifically pronounced in the use of bioreactor systems which neither allow for application of near physiomechanical stimulations nor for controlling a hypoxic environment as it is experienced in synovial joints. It is suspected that the negligence of these important parameters has slowed down progress and prevented major breakthroughs in the field. This review focuses on the main aspects of cartilage tissue engineering with emphasis on the relation and understanding of employing physiological conditions.
Collapse
|
48
|
de Mara CS, Duarte ASS, Sartori-Cintra AR, Luzo ACM, Saad STO, Coimbra IB. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6. Rheumatol Int 2012; 33:121-8. [PMID: 22238025 DOI: 10.1007/s00296-011-2328-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/10/2011] [Indexed: 01/21/2023]
Abstract
Umbilical cord blood contains undifferentiated mesenchymal stem cells (MSCs) with chondrogenic potential that may be used for the repair of joint damage. The role of growth factors during the process of chondrogenesis is still not entirely understood. The objective of this study was to evaluate the formation of chondrocytes, cartilaginous matrix and type II collagen from human umbilical cord blood stem cells exposed to two different growth factors, BMP-6 and BMP-2, while being cultured as a micromass or a monolayer. Umbilical cord blood was obtained from full-term deliveries, and then, mononuclear cells were separated and cultured for expansion. Afterward, these cells were evaluated by flow cytometry using antibodies specific for MSCs and induced to chondrogenic differentiation in micromass and monolayer cultures supplemented with BMP-2 and BMP-6. Cellular phenotype was evaluated after 7, 14 and 21 days by RT-PCR and Western blot analysis to identify the type II collagen and aggrecan. The expanded cells displayed surface antigens characteristic of mesenchymal progenitor cells and were negative for hematopoietic differentiation antigens. Type II collagen and aggrecan mRNAs were expressed from day 14 in cells stimulated with BMP-2 or BMP-6. Type II collagen was demonstrated by Western blotting in both groups, and the greatest expression was observed 21 days after the cells were stimulated with BMP-2 cultured in micromass. BMP-2 in micromass culture was more efficient to induce the chondrogenesis.
Collapse
Affiliation(s)
- Cristiane Sampaio de Mara
- Laboratory of Molecular Biology of Cartilage, Division of Rheumatology, Department of Clinical Medicine, State University of Campinas, UNICAMP, R. Vital Brasil, 50, Prédio FCM 08, Campus Universitário Barão Geraldo, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Naveena N, Venugopal J, Rajeswari R, Sundarrajan S, Sridhar R, Shayanti M, Narayanan S, Ramakrishna S. Biomimetic composites and stem cells interaction for bone and cartilage tissue regeneration. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm14401d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Sanchez-Adams J, Athanasiou KA. Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering. Tissue Eng Part C Methods 2011; 18:235-43. [PMID: 22029490 DOI: 10.1089/ten.tec.2011.0383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An abundant cell source is the cornerstone of most tissue engineering strategies, but extracting cells from the knee meniscus is hindered by its dense fibrocartilaginous matrix. Identifying a method to efficiently isolate meniscus cells is important, as it can reduce the cost and effort required to perform meniscus engineering research. In this study, six enzymatic digestion regimens used for cartilaginous cell isolation were used to isolate cells from the outer, middle, and inner regions of the bovine knee meniscus. Each regimen in each region was assessed in terms of cell yield, impact on cell phenotype, and cytotoxicity. All digestion regimens caused an overall upregulation of cartilage-specific genes Sox9, collagen type I (Col 1), collagen type II (Col 2), cartilage oligomeric matrix protein, and aggrecan (AGC) in cells from all meniscus regions, but was highest for cells isolated using 1075 U/mL of collagenase for 3 h (high collagenase). In response to isolation, outer meniscus cells showed highest upregulation of Sox9 and Col 1 genes, whereas greatest upregulation for middle meniscus cells was seen in Col 1 expression, and Col 2 expression for inner cells. Cell yield was highest in all regions when subjected to 45 min of 61 U/mL pronase followed by 3 h of 1075 U/mL collagenase (pronase/collagenase [P/C]) digestion regimen (outer: 6.57±0.37, middle: 12.77±1.41, inner: 22.17±1.47×10(6) cells/g tissue). The second highest cell yield was achieved using the low collagenase (LC) digestion regimen that applied 433 U/mL of collagenase for 18 h (outer: 1.95±0.54, middle: 3.3±4.4, inner: 6.06±2.44×10(6) cells/g tissue). Cytotoxicity analysis showed higher cell death in the LC group compared with the P/C group. Self-assembled constructs formed from LC-isolated cells were less dense than constructs formed from P/C-isolated cells, and P/C constructs showed higher glycosaminoglycan content and compressive moduli than LC constructs. All isolation methods tested resulted in similar phenotypic changes in meniscus cells from each region. These results indicate that, compared with other common isolation protocols, the P/C isolation method is able to more efficiently isolate meniscus cells from all regions that can produce tissue engineered constructs.
Collapse
|