1
|
Tavasolian F, Lively S, Pastrello C, Tang M, Lim M, Pacheco A, Qaiyum Z, Yau E, Baskurt Z, Jurisica I, Kapoor M, Inman RD. Proteomic and genomic profiling of plasma exosomes from patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:1429-1443. [PMID: 37532285 DOI: 10.1136/ard-2022-223791] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zeynep Baskurt
- Department of Biostatistics, Princess Margaret Cancer Center, 610 University Ave, Toronto, Ontario, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery and Department of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
3
|
Gilmer G, Bean AC, Iijima H, Jackson N, Thurston RC, Ambrosio F. Uncovering the "riddle of femininity" in osteoarthritis: a systematic review and meta-analysis of menopausal animal models and mathematical modeling of estrogen treatment. Osteoarthritis Cartilage 2023; 31:447-457. [PMID: 36621591 PMCID: PMC10033429 DOI: 10.1016/j.joca.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Post-menopausal women are disproportionately affected by osteoarthritis (OA). As such, the purpose of this study was to (1) summarize the state-of-the-science aimed at understanding the effects of menopause on OA in animal models and (2) investigate how dosage and timing of initiation of estrogen treatment affect cartilage degeneration. DESIGN A systematic review identified articles studying menopausal effects on cartilage in preclinical models. A meta-analysis was performed using overlapping cartilage outcomes in conjunction with a rigor and reproducibility analysis. Ordinary differential equation models were used to determine if a relationship exists between cartilage degeneration and the timing of initiation or dosage of estrogen treatment. RESULTS Thirty-eight manuscripts were eligible for inclusion. The most common menopause model used was ovariectomy (92%), and most animals were young at the time of menopause induction (86%). Most studies did not report inclusion criteria, animal monitoring, protocol registration, or data accessibility. Cartilage outcomes were worse in post-menopausal animals compared to age-matched, non-menopausal animals, as evidenced by cartilage histological scoring [0.75, 1.72], cartilage thickness [-4.96, -0.96], type II collagen [-4.87, -0.56], and c-terminal cross-linked telopeptide of type II collagen (CTX-II) [2.43, 5.79] (95% CI of Effect Size (+greater in menopause, -greater in non-menopause)). Moreover, modeling suggests that cartilage health may be improved with early initiation and higher doses of estrogen treatment. CONCLUSIONS To improve translatability, animal models that consider aging and natural menopause should be utilized, and more attention to rigor and reproducibility is needed. Timing of initiation and dosage may be important factors modulating therapeutic effects of estrogen on cartilage.
Collapse
Affiliation(s)
- G Gilmer
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA; Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
| | - A C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - H Iijima
- Institute for Advanced Research, Nagoya University, Nagoya University, Nagoya, Japan.
| | - N Jackson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - R C Thurston
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - F Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Rehabilitation Hospital, Boston, MA, USA; Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α. Bone Res 2023; 11:13. [PMID: 36869045 PMCID: PMC9984452 DOI: 10.1038/s41413-023-00248-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 03/05/2023] Open
Abstract
In the synovial joint, mechanical force creates an important signal that influences chondrocyte behavior. The conversion of mechanical signals into biochemical cues relies on different elements in mechanotransduction pathways and culminates in changes in chondrocyte phenotype and extracellular matrix composition/structure. Recently, several mechanosensors, the first responders to mechanical force, have been discovered. However, we still have limited knowledge about the downstream molecules that enact alterations in the gene expression profile during mechanotransduction signaling. Recently, estrogen receptor α (ERα) has been shown to modulate the chondrocyte response to mechanical loading through a ligand-independent mechanism, in line with previous research showing that ERα exerts important mechanotransduction effects on other cell types, such as osteoblasts. In consideration of these recent discoveries, the goal of this review is to position ERα into the mechanotransduction pathways known to date. Specifically, we first summarize our most recent understanding of the mechanotransduction pathways in chondrocytes on the basis of three categories of actors, namely mechanosensors, mechanotransducers, and mechanoimpactors. Then, the specific roles played by ERα in mediating the chondrocyte response to mechanical loading are discussed, and the potential interactions of ERα with other molecules in mechanotransduction pathways are explored. Finally, we propose several future research directions that may advance our understanding of the roles played by ERα in mediating biomechanical cues under physiological and pathological conditions.
Collapse
|
5
|
Zhang X, Xiang S, Zhang Y, Liu S, Lei G, Hines S, Wang N, Lin H. In vitro study to identify ligand-independent function of estrogen receptor-α in suppressing DNA damage-induced chondrocyte senescence. FASEB J 2023; 37:e22746. [PMID: 36622202 PMCID: PMC10369926 DOI: 10.1096/fj.202201228r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
In osteoarthritis (OA), chondrocytes undergo many pathological alternations that are linked with cellular senescence. However, the exact pathways that lead to the generation of a senescence-like phenotype in OA chondrocytes are not clear. Previously, we found that loss of estrogen receptor-α (ERα) was associated with an increased senescence level in human chondrocytes. Since DNA damage is a common cause of cellular senescence, we aimed to study the relationship among ERα levels, DNA damage, and senescence in chondrocytes. We first examined the levels of ERα, representative markers of DNA damage and senescence in normal and OA cartilage harvested from male and female human donors, as well as from male mice. The influence of DNA damage on ERα levels was studied by treating human chondrocytes with doxorubicin (DOX), which is an often-used DNA-damaging agent. Next, we tested the potential of overexpressing ERα in reducing DNA damage and senescence levels. Lastly, we explored the interaction between ERα and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Results indicated that the OA chondrocytes contained DNA damage and displayed senescence features, which were accompanied by significantly reduced ERα levels. Overexpression of ERα reduced the levels of DNA damage and senescence in DOX-treated normal chondrocytes and OA chondrocytes. Moreover, DOX-induced the activation of NF-κB pathway, which was partially reversed by overexpressing ERα. Taken together, our results demonstrated the critical role of ERα in maintaining the health of chondrocytes by inhibiting DNA damage and senescence. This study also suggests that maintaining the ERα level may represent a new avenue to prevent and treat OA.
Collapse
Affiliation(s)
- Xiurui Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiqi Xiang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yiqian Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Guanghua Lei
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ning Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Lei L, Meng L, Changqing X, Chen Z, Gang Y, Shiyuan F. Effect of cell receptors in the pathogenesis of osteoarthritis: Current insights. Open Life Sci 2022; 17:695-709. [PMID: 35859614 PMCID: PMC9267313 DOI: 10.1515/biol-2022-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoarthritis (OA) is a chronic arthritic disease characterized by cartilage degradation, synovial inflammation, and subchondral bone lesions. The studies on the pathogenesis of OA are complex and diverse. The roles of receptors signaling in chondrocyte anabolism, inflammatory factors expression of synovial fibroblast, and angiogenesis in subchondral bone are particularly important for exploring the pathological mechanism of OA and clinical diagnosis and treatment. By reviewing the relevant literature, this article elaborates on the abnormal expression of receptors and the signaling transduction pathways from different pathological changes of OA anatomical components, aiming to provide new research ideas and clinical therapeutic value for OA pathogenesis.
Collapse
Affiliation(s)
- Li Lei
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Li Meng
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Xu Changqing
- Department of Orthopaedics, Dongxihu District People's Hospital Affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Yao Gang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| | - Fang Shiyuan
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui, China
| |
Collapse
|
7
|
Black AL, Clark AL. Sexual dimorphism in knee osteoarthritis: Biomechanical variances and biological influences. J Orthop 2022; 32:104-108. [DOI: 10.1016/j.jor.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
|
8
|
Wang N, Zhang X, Rothrauff BB, Fritch MR, Chang A, He Y, Yeung M, Liu S, Lipa KE, Lei G, Alexander PG, Lin H. Novel role of estrogen receptor-α on regulating chondrocyte phenotype and response to mechanical loading. Osteoarthritis Cartilage 2022; 30:302-314. [PMID: 34767957 DOI: 10.1016/j.joca.2021.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/09/2023]
Abstract
OBJECTIVE In knee cartilage from patients with osteoarthritis (OA), both preserved cartilage and damaged cartilage are observed. In this study, we aim to compare preserved with damaged cartilage to identify the molecule(s) that may be responsible for the mechanical loading-induced differences within cartilage degradation. METHODS Preserved and damaged cartilage were harvested from the same OA knee joint. RNA Sequencing was performed to examine the transcriptomic differences between preserved and damaged cartilage cells. Estrogen receptor-α (ERα) was identified, and its function of was tested through gene knockin and knockout. The role of ERα in mediating chondrocyte response to mechanical loading was examined via compression of chondrocyte-laded hydrogel in a strain-controlled manner. Findings from the studies on human samples were verified in animal models. RESULTS Level of estrogen receptor α (ERα) was significantly reduced in damaged cartilage compared to preserved cartilage, which were observed in both human and mice samples. Knockdown of ESR1, the gene encoding ERα, resulted in an upregulation of senescence- and OA-relevant markers in chondrocytes. Conversely, knockin of ESR1 partially reversed the osteoarthritic and senescent phenotype of OA chondrocytes. Using a three-dimensional (3D) culture model, we demonstrated that mechanical overload significantly suppressed ERα level in chondrocytes with concomitant upregulation of osteoarthritic phenotype. When ESR1 expression was suppressed, mechanical loading enhanced hypertrophic and osteogenic transition. CONCLUSION Our study demonstrates a new estrogen-independent role of ERα in mediating chondrocyte phenotype and its response to mechanical loading, and suggests that enhancing ERα level may represent a new method to treat osteoarthritis.
Collapse
Affiliation(s)
- N Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya Third Hospital, Central South University, Changsha, Hunan, China.
| | - X Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya Third Hospital, Central South University, Changsha, Hunan, China.
| | - B B Rothrauff
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - M R Fritch
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - A Chang
- Department of Bioinformatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Y He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya Third Hospital, Central South University, Changsha, Hunan, China.
| | - M Yeung
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 15219, USA.
| | - S Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - K E Lipa
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 15219, USA.
| | - G Lei
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - P G Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - H Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 15219, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
9
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
10
|
Dai C, Jia J, Kot A, Liu X, Liu L, Jiang M, Lane NE, Wise BL, Yao W. Selective inhibition of progesterone receptor in osteochondral progenitor cells, but not in mature chondrocytes, modulated subchondral bone structures. Bone 2020; 132:115196. [PMID: 31863959 PMCID: PMC7006606 DOI: 10.1016/j.bone.2019.115196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The presence or relative proportion of progesterone nuclear receptors (PR) in different tissues may contribute to sexual dimorphism in these tissues. PR is expressed in chondrocytes, but its function is mostly unknown. We hypothesized that the PR may regulate chondrocyte metabolism and affect subchondral bone structure. METHODS We utilized genetic fate mapping and immunohistochemistry to elucidate PR expression in and effect on cartilage. To define sex-dependent and chondrocyte-specific effects of the PR on subchondral bone, we selectively deleted PR in osteochondrogenic progenitor cells marked by Prx1 (Prx1; PRcKO) and Collagen 2 (Col2; PRcKO), or in matured chondrocytes marked by aggrecan (Acan; PRcKO) and evaluated subchondral bone structure at 4 months of age. Chondrocyte aging was monitored by anti-senescence marker p16INK4a, and MMP13, one of the Senescence-Associated Secretary Phenotype (SASP) components. RESULTS Compared to wild-type (WT) mice, the female Prx1; PRcKO and the Col2; PRcKO mice had greater total subchondral bone volume and greater subchondral cortical bone thickness, with increased estimated subchondral bone stiffness and failure load in both female and male Col2; PRcKO mice. Moreover, Col2; PRcKO mice from both sexes had greater bone formation and bone strength at the femurs. In contrast, we did not observe any subchondral bone changes in Acan; PRcKO mice other than higher work-to-failure observed in the male Acan; PRcKO mice. Despite no detected difference in articular cartilage between the WT and the PR; chondrocyte conditional deletion mice, there were greater numbers of senescent chondrocytes and increased MMP13 expression, especially in the male mutant mice. CONCLUSION These findings suggest that selective inhibition of PR in osteoprogenitor cells, but not in terminally differentiated chondrocytes, induced an increased subchondral bone phenotype and high estimated subchondral bone strength, which might be associated with the development of osteoarthritis in older age.
Collapse
Affiliation(s)
- Chenlin Dai
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Junjing Jia
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Xueping Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Lixian Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Min Jiang
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Barton L Wise
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA; Department of Orthopaedic Surgery, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
11
|
Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ, Jonason JH. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res 2019; 34:1676-1689. [PMID: 31189030 PMCID: PMC7047611 DOI: 10.1002/jbmr.3737] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Orthopedic Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Robinson JL, Gupta V, Soria P, Clanaman E, Gurbarg S, Xu M, Chen J, Wadhwa S. Estrogen receptor alpha mediates mandibular condylar cartilage growth in male mice. Orthod Craniofac Res 2018. [PMID: 28643917 DOI: 10.1111/ocr.12155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES In the appendicular skeleton, estrogen via ERα signalling has been shown to mediate endochondral growth plate fusion in both males and females. However, the role of ERα in mediating growth of the mandibular condylar cartilage is unknown. Thus, this study focuses on the characterization of the mandibular condylar cartilage phenotype in young and adult male ERαKO mice. SETTING Columbia University Medical Center. MATERIAL AND METHODS WT and ERαKO C57BL/6 male mice were sacrificed at 49 days or 9 months for phenotypic analysis. Changes to MCC thickness, cell number and cell density were measured using histomorphometric methods. Cartilage-specific gene expression and OARSI scores were investigated for 49-day and 9-month-old male ERαKO and WT mice. RESULTS In young mice, a significant increase in the number of mandibular condylar cartilage cells and a significant decrease in the expression of Col10, Runx2 and DMP1 were observed in the male ERαKO mice compared to WT. In 9-month-old mice, we found a similar increase in the number of cells but no change in osteoarthritic histological scoring in ERαKO mice compared to WT mice. CONCLUSION In summary, estrogen plays a role in mediating mandibular condylar maturation in young male mice. However, according to this study, it does not play a role in mediating long-term growth or age-related mandibular condylar cartilage degeneration in males.
Collapse
Affiliation(s)
- J L Robinson
- Division of Orthodontics, Columbia University, New York, NY, USA.,Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - V Gupta
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - P Soria
- Division of Orthodontics, Columbia University, New York, NY, USA
| | - E Clanaman
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - S Gurbarg
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - M Xu
- Division of Orthodontics, Columbia University, New York, NY, USA
| | - J Chen
- Division of Orthodontics, Columbia University, New York, NY, USA
| | - S Wadhwa
- Division of Orthodontics, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Son YO, Park S, Kwak JS, Won Y, Choi WS, Rhee J, Chun CH, Ryu JH, Kim DK, Choi HS, Chun JS. Estrogen-related receptor γ causes osteoarthritis by upregulating extracellular matrix-degrading enzymes. Nat Commun 2017; 8:2133. [PMID: 29247173 PMCID: PMC5732273 DOI: 10.1038/s41467-017-01868-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/20/2017] [Indexed: 01/23/2023] Open
Abstract
The estrogen-related receptor (ERR) family of orphan nuclear receptor is composed of ERRα, ERRβ, and ERRγ, which are known to regulate various isoform-specific functions under normal and pathophysiological conditions. Here, we investigate the involvement of ERRs in the pathogenesis of osteoarthritis (OA) in mice. Among ERR family members, ERRγ is markedly upregulated in cartilage from human OA patients and various mouse models of OA. Adenovirus-mediated overexpression of ERRγ in mouse knee joint or transgenic expression of ERRγ in cartilage leads to OA. ERRγ overexpression in chondrocytes directly upregulates matrix metalloproteinase (MMP)-3 and MMP13, which are known to play crucial roles in cartilage destruction in OA. In contrast, genetic ablation of Esrrg or shRNA-mediated downregulation of Esrrg in joint tissues abrogates experimental OA in mice. Our results collectively indicate that ERRγ is a novel catabolic regulator of OA pathogenesis. The pathogenesis of osteoarthritis is unclear. The authors show that estrogen-related receptor gamma is upregulated in cartilage from patients and mouse models, where it drives production of matrix-degrading MMPs in chondrocytes, and that its downregulation ameliorates pathology in mice.
Collapse
Affiliation(s)
- Young-Ok Son
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seulki Park
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ji-Sun Kwak
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yoonkyung Won
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Wan-Su Choi
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jinseol Rhee
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Je-Hwang Ryu
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
14
|
Zheng Z, Wang L, Pan J. Estradiol and proinflammatory cytokines stimulate ISG20 expression in synovial fibroblasts of patients with osteoarthritis. Intractable Rare Dis Res 2017; 6:269-273. [PMID: 29259855 PMCID: PMC5735280 DOI: 10.5582/irdr.2017.01062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon stimulated gene 20-kDa (ISG20) has been implicated in the pathology of osteoarthritis (OA) and it has been separately found to be responsive to estrogen stimulation. OA disproportionately affects women, and especially older women, suggesting some role of reproductive hormones in its pathology. The current study characterized the expression of ISG20 following stimulation with estradiol (E2) and proinflammatory cytokines in OA synovial fibroblasts (OASFs). E2 and the proinflammatory cytokines interleukin-6 (IL-6), lipopolysaccharide (LPS), and tumor necrosis factor α (TNF-α) were used to stimulate OASFs in vitro. The expression of ISG20 before and after stimulation was detected using quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting. E2 and proinflammatory cytokine (IL-6, LPS and TNF-α) stimulation significantly induced the expression of ISG20 both at the messenger RNA (mRNA) and protein level. Moreover, the induction was time- and dose-dependent. Small interfering RNA (siRNA) was transfected into OASFs, and expression of the inflammatory factors interleukin-1α (IL-1α), IL-6, and interleukin-10 (IL-10) was detected using RT-qPCR. Silencing ISG20 with siRNA inhibited the expression of IL-1α, IL-6, and IL-10. Thus, expression of ISG20 was regulated by estradiol and proinflammatory factors, while ISG20 in turn regulated the expression of other inflammatory factors. These data support the contention that ISG20 plays a role in the inflammatory process of OA.
Collapse
Affiliation(s)
- Zhiwei Zheng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- Address correspondence to: Dr. Jihong Pan, Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|
15
|
Dangguijihwang-tang and Dangguijakyak-san Prevent Menopausal Symptoms and Dangguijihwang-tang Prevents Articular Cartilage Deterioration in Ovariectomized Obese Rats with Monoiodoacetate-Induced Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5658681. [PMID: 29348767 PMCID: PMC5733984 DOI: 10.1155/2017/5658681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
Abstract
We investigated whether dangguijakyak-san (DJY) and dangguijihwang-tang (DJH), oriental medicines traditionally used for inflammatory diseases, could prevent and/or delay the progression of postmenopausal symptoms and osteoarthritis in osteoarthritis-induced estrogen-deficient rats. Treated ovariectomized (OVX) rats consumed either 1% DJY or 1% DJH in the diets. Positive-control rats were given 30 μg/kg bw 17β-estradiol and control rats were given 1% fat as were the normal-control rats. All rats received high-fat diets for 8 weeks. At the 9th week, OVX rats received articular injections of monoiodoacetate (MIA) or saline (normal control) into the right knee. At 3 weeks after MIA injection, DJY reduced visceral-fat mass and improved glucose metabolism by reducing insulin resistance, whereas DJH increased BMD and decreased insulin resistance. DJH improved weight distribution in the right knee and maximum running velocity on a treadmill at days 14 and 21 as much as those of the positive control. TNF-α, IL-1β, and IL-6 levels in articular cartilage were much higher in the control than the positive control, whereas both DJY and DJH reduced the levels to those of the positive control. The histological analysis assessed articular cartilage damage near the tidemark and proteoglycan loss in the control versus the positive control; DJY and DJH prevented this damage and proteoglycan loss. In conclusion, DJY may provide an effective treatment for improving glucose tolerance, and DJH may be appropriate for preventing osteoarthritis.
Collapse
|
16
|
Lu S, Sun C, Miao C, Zhao Z. ERβ compensates for the absence of ERα function to promote osteoblast viability by inhibition of SOST signaling. Exp Ther Med 2017; 14:3387-3392. [PMID: 29042923 PMCID: PMC5639354 DOI: 10.3892/etm.2017.5014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023] Open
Abstract
Estrogen receptors α and β (ERα and ERβ) serve key functions in bone development and maintenance, and in the metabolism of bone mineral. ERβ and ERα form heterodimers, and ERβ negatively regulates the transactivation of ERα. ERβ also inhibits recruitment of ERα to the estrogen-responsive promoters. However, the relationship of ERα and ERβ in the regulation of osteoblast viability and differentiation remains unclear. The present study aimed to investigate whether ERβ plays a role in balancing ERα activity in osteoblast cells. Downregulation of ERα by short hairpin RNA (shRNA) was found to significantly increase cell cycle arrest at G1 phase (P<0.01). In addition, this effect was found to be significantly enhanced by downregulation of ERβ (P<0.05). Inversely, ERα-knocked down osteoblasts were treated with ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) to activate ERβ. It was found that activation of ERβ significantly rescued the arrest of cell cycle induced by the downregulation of ERα (P<0.05). Furthermore, downregulation of ERα was found to significantly inhibit cell viability (P<0.01), and knockdown of ERβ was found to have a significant synergic effect with ERα downregulation on the inhibition of cell viability (P<0.01). Treatment with ERβ agonist DPN significantly rescued the effects of downregulation of ERα on cell viability (P<0.01). It was also demonstrated that the synergic effects of ERα and ERβ deletion was via upregulation of SOST gene expression, and the subsequent inhibition of OPG and Runx2 gene expression. Thus, ERβ may serve a function in balancing osteoblast viability and differentiation induced by ERα.
Collapse
Affiliation(s)
- Shijin Lu
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Changying Sun
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Congxiu Miao
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhongfu Zhao
- Department of Orthopedics, The Affiliated Peace Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
17
|
Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep 2017; 7:2029. [PMID: 28515465 PMCID: PMC5435729 DOI: 10.1038/s41598-017-01905-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of osteoarthritis (OA) is poorly understood, and therapeutic approaches are limited to preventing progression of the disease. Recent studies have shown that exosomes play a vital role in cell-to-cell communication, and pathogenesis of many age-related diseases. Molecular profiling of synovial fluid derived exosomal miRNAs may increase our understanding of OA progression and may lead to the discovery of novel biomarkers and therapeutic targets. In this article we report the first characterization of exosomes miRNAs from human synovial fluid. The synovial fluid exosomes share similar characteristics (size, surface marker, miRNA content) with previously described exosomes in other body fluids. MiRNA microarray analysis showed OA specific exosomal miRNA of male and female OA. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified gender-specific target genes/signaling pathways. These pathway analyses showed that female OA specific miRNAs are estrogen responsive and target TLR (toll-like receptor) signaling pathways. Furthermore, articular chondrocytes treated with OA derived extracellular vesicles had decreased expression of anabolic genes and elevated expression of catabolic and inflammatory genes. In conclusion, synovial fluid exosomal miRNA content is altered in patients with OA and these changes are gender specific.
Collapse
|
18
|
Li H, Zeng C, Wei J, Yang T, Gao SG, Li YS, Luo W, Xiao WF, Xiong YL, Lei GH. Relationship between soy milk intake and radiographic knee joint space narrowing and osteophytes. Rheumatol Int 2016; 36:1215-22. [PMID: 27193467 DOI: 10.1007/s00296-016-3491-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to examine the cross-sectional association between dietary soy milk intake and the prevalence of radiographic knee joint space narrowing (JSN) and osteophytes (OST). Soy milk intake was assessed using a validated semiquantitative food frequency questionnaire and classified into three categories: never, <once a day, and ≥once a day. JSN and OST were assessed individually based on the Osteoarthritis Research Society International atlas. Multivariable logistic models were used after adjusting for potentially confounding factors. A total of 5764 subjects were included. Both the models suggested a significant inverse association between soy milk intake and OST. In model 1 (adjusted for age, body mass index, and sex), the prevalence of OST decreased in "≥once a day" category (OR 0.52, 95 % CI 0.28-0.98, P = 0.042) and "<once a day" category (OR 0.78, 95 % CI 0.66-0.93, P = 0.005) comparing to "never" category of soy milk intake, and the P for trend was 0.001. The outcomes were similar in model 2 (adjusted based on model 1, with additional factors of total energy intake, activity level, smoking status, alcohol-drinking status, educational background, diabetes, hypertension, and other dairy product intake) ("≥once a day" category: OR 0.49, 95 % CI 0.26-0.92, P = 0.026; "<once a day" category: OR 0.79, 95 % CI 0.67-0.94, P = 0.009), and the P for trend was 0.001. However, the significant associations between soy milk intake and JSN in both the models were not observed. Dietary soy milk intake was found to be negatively associated with OST, but not JSN, independent of some major confounding factors.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jie Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, 410008, Hunan Province, China
| | - Tuo Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yi-Lin Xiong
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
19
|
Veronesi F, Della Bella E, Cepollaro S, Brogini S, Martini L, Fini M. Novel therapeutic targets in osteoarthritis: Narrative review on knock-out genes involved in disease development in mouse animal models. Cytotherapy 2016; 18:593-612. [DOI: 10.1016/j.jcyt.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/17/2023]
|
20
|
Villalvilla A, Gomez R, Lugo L, Lopez-Oliva F, Largo R, Herrero-Beaumont G. Aromatase expression in human chondrocytes: An induction due to culture. Maturitas 2015; 85:27-33. [PMID: 26857876 DOI: 10.1016/j.maturitas.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/03/2015] [Accepted: 12/02/2015] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Despite the high prevalence of osteoarthritis (OA) in postmenopausal women, a relationship between circulating estrogen levels and the development of OA has not been found. Therefore, the purpose of this study was to evaluate the expression and activity of aromatase, a key enzyme in local production of estrogens, in human OA cultured articular chondrocytes, and to determine the physiological relevance of this enzyme in cartilage. METHODS Human OA articular chondrocytes were isolated and cultured. Local production of estradiol was measured after incubation with 100 ng/ml testosterone for 8 and 24h. Furthermore, chondrocytes were culture for 2h, 48 h, 7 days or 15 days, or in alginate beads for 10 days. Aromatase, type II and X collagen, aggrecan, alkaline phosphatase, and Runx2 expression were evaluated in cartilage, freshly isolated chondrocytes and cultured chondrocytes. RESULTS Aromatase was expressed and active in cultured human chondrocytes. Human cartilage, freshly isolated chondrocytes, and chondrocytes cultured for 2h expressed an insignificant amount of aromatase; however, expression arose after 48 h of culture and remained increased thereafter. Aromatase expression was not related to estrogen deprivation and was inversely correlated with differentiation. Re-differentiation did not reduce its expression. CONCLUSIONS Aromatase presents an almost undetectable expression in human cartilage but is induced in cultured chondrocytes. Therefore, human cartilage might act as a mere target for estrogens rather than a producer, and researchers using cell expansion in culture for latter therapies should consider these changes in estrogen metabolism which may not be reverted after re-differentiation.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Bone and Joint Research Unit, IIS Fundación Jiménez Díaz, Madrid 28040, Spain.
| | - Rodolfo Gomez
- Bone and Joint Research Unit, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; Musculoskeletal Pathology Lab, Institute IDIS, Santiago de Compostela, 15706, Spain.
| | - Laura Lugo
- Bone and Joint Research Unit, IIS Fundación Jiménez Díaz, Madrid 28040, Spain.
| | - Felipe Lopez-Oliva
- Department of Orthopedic Surgery, IIS Fundación Jiménez Díaz, Madrid 28040, Spain.
| | - Raquel Largo
- Bone and Joint Research Unit, IIS Fundación Jiménez Díaz, Madrid 28040, Spain.
| | | |
Collapse
|
21
|
Lewis R, Barrett-Jolley R. Changes in Membrane Receptors and Ion Channels as Potential Biomarkers for Osteoarthritis. Front Physiol 2015; 6:357. [PMID: 26648874 PMCID: PMC4664663 DOI: 10.3389/fphys.2015.00357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis (OA), a degenerative joint condition, is currently difficult to detect early enough for any of the current treatment options to be completely successful. Early diagnosis of this disease could increase the numbers of patients who are able to slow its progression. There are now several diseases where membrane protein biomarkers are used for early diagnosis. The numbers of proteins in the membrane is vast and so it is a rich source of potential biomarkers for OA but we need more knowledge of these before they can be considered practical biomarkers. How are they best measured and are they selective to OA or even certain types of OA? The first step in this process is to identify membrane proteins that change in OA. Here, we summarize several ion channels and receptors that change in OA models and/or OA patients, and may thus be considered candidates as novel membrane biomarkers of OA.
Collapse
Affiliation(s)
- Rebecca Lewis
- Faculty of Health and Medical Sciences, School of Veterinary Medicine and Science, University of Surrey Guildford, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool Liverpool, UK
| |
Collapse
|
22
|
Postmenopausal Chinese women show accelerated lumbar disc degeneration compared with Chinese men. J Orthop Translat 2015; 3:205-211. [PMID: 30035059 PMCID: PMC5986995 DOI: 10.1016/j.jot.2015.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023] Open
Abstract
Background/Objective Postmenopausal women may have accelerated disc degeneration due to relative oestrogen deficiency. Two new studies supporting this concept were carried out. Methods Study I: The data were from the Osteoporotic Fractures in Men (Hong Kong) and Women (Hong Kong) studies. Both were population-based studies on bone health for elderly Chinese men and women (age ≥ 65 years, n = 2000 for men and n = 2000 for women). Based on lumbar spine radiographs, changes in L1/2-L4/5 disc space height were classified into four categories: 0 = normal; 1 = mild narrowing (< 30% reduction in disc height); 2 = moderate narrowing (30-60% reduction in disc height); and 3 = severe narrowing (> 60% reduction in disc height). Sums of the disc space narrowing scores of each participant were plotted against their age. Study II: 12 healthy individuals and 53 persons who had mild nonspecific low back pain (30 males and 35 females; mean age, 53.4 years; age range, 23-76 years) were recruited. Magnetic resonance imaging was performed on a 3-T system. A multiecho turbo spin echo pulse sequence was used for lumbar disc T2 mapping. Regions of interest were manually drawn over nucleus pulposus on the T2 map of the discs. The means of T2 relaxation times of discs L1/2-L4/5 of the participants were plotted against their age. Results Study I: Elderly women had a higher disc space narrowing score than elderly men, and the slope of the plot was steeper for females than for males. When the plots were extrapolated to younger age, they intersected at 59.67 years. Study II: An age-related reduction of T2 value in the nucleus pulposus was demonstrated, which was faster in females than in males. Although females tended to have initial higher T2 value before 50 years, this trend was reversed in elderly persons, with an intersection at 52.4 years. Conclusion Postmenopausal Chinese women show accelerated lumbar disc degeneration compared with Chinese men.
Collapse
|
23
|
Maneix L, Servent A, Porée B, Ollitrault D, Branly T, Bigot N, Boujrad N, Flouriot G, Demoor M, Boumediene K, Moslemi S, Galéra P. Up-regulation of type II collagen gene by 17β-estradiol in articular chondrocytes involves Sp1/3, Sox-9, and estrogen receptor α. J Mol Med (Berl) 2014; 92:1179-200. [PMID: 25081415 DOI: 10.1007/s00109-014-1195-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
UNLABELLED The existence of a link between estrogen deprivation and osteoarthritis (OA) in postmenopausal women suggests that 17β-estradiol (17β-E2) may be a modulator of cartilage homeostasis. Here, we demonstrate that 17β-E2 stimulates, via its receptor human estrogen receptor α 66 (hERα66), type II collagen expression in differentiated and dedifferentiated (reflecting the OA phenotype) articular chondrocytes. Transactivation of type II collagen gene (COL2A1) by ligand-independent transactivation domain (AF-1) of hERα66 was mediated by "GC" binding sites of the -266/-63-bp promoter, through physical interactions between ERα, Sp1/Sp3, Sox9, and p300, as demonstrated in chromatin immunoprecipitation (ChIP) and Re-Chromatin Immuno-Precipitation (Re-ChIP) assays in primary and dedifferentiated cells. 17β-E2 and hERα66 increased the DNA-binding activities of Sp1/Sp3 and Sox-9 to both COL2A1 promoter and enhancer regions. Besides, Sp1, Sp3, and Sox-9 small interfering RNAs (siRNAs) prevented hERα66-induced transactivation of COL2A1, suggesting that these factors and their respective cis-regions are required for hERα66-mediated COL2A1 up-regulation. Our results highlight the genomic pathway by which 17β-E2 and hERα66 modulate Sp1/Sp3 heteromer binding activity and simultaneously participate in the recruitment of the essential factors Sox-9 and p300 involved respectively in the chondrocyte-differentiated status and COL2A1 transcriptional activation. These novel findings could therefore be attractive for tissue engineering of cartilage in OA, by the fact that 17β-E2 could promote chondrocyte redifferentiation. KEY MESSAGES 17β-E2 up-regulates type II collagen gene expression in articular chondrocytes. An ERα66/Sp1/Sp3/Sox-9/p300 protein complex mediates this stimulatory effect. This heteromeric complex interacts and binds to Col2a1 promoter and enhancer in vivo. Our findings highlight a new regulatory mechanism for 17β-E2 action in chondrocytes. 17β-E2 might be an attractive candidate for cartilage engineering applications.
Collapse
Affiliation(s)
- Laure Maneix
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Aurélie Servent
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Benoît Porée
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - David Ollitrault
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Thomas Branly
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Nicolas Bigot
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Noureddine Boujrad
- Laboratoire Endocrinologie Moléculaire de la Reproduction, Equipe Récepteurs des Oestrogènes et Destinée Cellulaire, CNRS UMR 6026, Université de Rennes I, 35042, Rennes, France
| | - Gilles Flouriot
- Laboratoire Endocrinologie Moléculaire de la Reproduction, Equipe Récepteurs des Oestrogènes et Destinée Cellulaire, CNRS UMR 6026, Université de Rennes I, 35042, Rennes, France
| | - Magali Demoor
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Karim Boumediene
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Safa Moslemi
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Philippe Galéra
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France.
| |
Collapse
|
24
|
Age dependent changes in cartilage matrix, subchondral bone mass, and estradiol levels in blood serum, in naturally occurring osteoarthritis in Guinea pigs. Int J Mol Sci 2014; 15:13578-95. [PMID: 25100170 PMCID: PMC4159812 DOI: 10.3390/ijms150813578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
The Dunkin Hartley (DH) guinea pig is a widely used naturally occurring osteoarthritis model. The aim of this study was to provide detailed evidence of age-related changes in articular cartilage, subchondral bone mineral density, and estradiol levels. We studied the female Dunkin Hartley guinea pigs at 1, 3, 6, 9, and 12 months of age (eight animals in each group). Histological analysis were used to identify degenerative cartilage and electron microscopy was performed to further observe the ultrastructure. Estradiol expression levels in serum were assessed, and matrix metalloproteinase 3 and glycosaminoglycan expression in cartilage was performed by immunohistochemistry. Bone mineral density of the tibia subchondral bone was measured using dual X-ray absorptiometry. Histological analysis showed that the degeneration of articular cartilage grew more severe with increasing age starting at 3 months, coupled with the loss of normal cells and an increase in degenerated cells. Serum estradiol levels increased with age from 1 to 6 months and thereafter remained stable from 6 to 12 months. Matrix metalloproteinase 3 expression in cartilage increased with age, but no significant difference was found in glycosaminoglycan expression between 1- and 3-month old animals. The bone mineral density of the tibia subchondral bone increased with age before reaching a stable value at 9 months of age. Age-related articular cartilage degeneration occurred in Dunkin Hartley guinea pigs beginning at 3 months of age, while no directly positive or negative correlation between osteoarthritis progression and estradiol serum level or subchondral bone mineral density was discovered.
Collapse
|
25
|
Association of single nucleotide polymorphisms in estrogen receptor alpha gene with susceptibility to knee osteoarthritis: a case-control study in a Chinese Han population. BIOMED RESEARCH INTERNATIONAL 2014; 2014:151457. [PMID: 24772413 PMCID: PMC3977114 DOI: 10.1155/2014/151457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/07/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis and its multifactorial nature has been increasingly recognized. Genetic factors play an important role in OA etiology and estrogen receptor alpha (ESR1) gene polymorphisms may be involved. This study tried to explore whether the ESR1 gene single nucleotide polymorphisms (SNPs) were associated with primary knee OA in the Chinese Han population. Two SNPs, rs2234693 and rs9340799, were genotyped in 469 cases and 522 controls. Rs2234693 was associated with knee OA in the dominant genetic model (TT + TC versus CC) (P = 0.025) and a higher T allele frequency existed (P = 0.047) among females. The combined genotype (TT + TC) (P = 0.025) and T allele (P = 0.016) were related with mild knee OA only. For rs9340799, A allele was associated with knee OA in all subjects (P = 0.031) and females (P = 0.046). Statistical differences were detected in the dominant genetic model (AA + AG versus GG) among females (P = 0.030). The combined genotype (AA + AG) (P = 0.036) and A allele (P = 0.039) were merely correlated with mild knee OA. ESR1 gene is considerably associated with knee OA etiology in the Chinese Han population.
Collapse
|
26
|
Martín-Millán M, Castañeda S. Estrogens, osteoarthritis and inflammation. Joint Bone Spine 2013; 80:368-73. [PMID: 23352515 DOI: 10.1016/j.jbspin.2012.11.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
Estrogens participate in several biological processes through different molecular mechanisms. Their final actions consist of a combination of both direct and indirect effects on different organ and tissues. Estrogen may have pro- and anti-inflammatory properties depending on the situation and the involved tissue. In general, acute loss of estrogens increases the levels of reactive oxygen species and activates nuclear factor-κB and pro-inflammatory cytokine production, indicating their predominant anti-inflammatory properties. Furthermore, pro-inflammatory cytokine expression has been shown to be attenuated by estrogen replacement. Osteoarthritis and cardiovascular disease are two of the more prevalent diseases once menopause is established, which has suggested the link between estrogens and both processes. In addition, deletion of estrogen receptors in female mice results in cartilage damage, osteophytosis and changes in the subchondral bone of the joints suggesting that estrogens have a protective role on the maintenance of joint homeostasis. Furthermore, in spite of the negative effect of estrogen replacement reported in 2002 by the Women's Health Initiative study, several works published afterwards have explored the potential protective effect of estrogen supplementation in animal models and have postulated that these actions may justify a beneficial role of estrogens in different diseases where inflammation is the major feature. In this review, we will analyze the effects of estrogens on certain pathological situations such as osteoarthritis, some autoimmune diseases and coronary heart disease, especially in postmenopausal women.
Collapse
Affiliation(s)
- Marta Martín-Millán
- Department of Internal Medicine, IFIMAV, Hospital Universitario Marqués de Valdecilla, Avenida de Valdecilla s/n, 39008 Santander, Cantabria, Spain.
| | | |
Collapse
|
27
|
Funck-Brentano T, Lin H, Hay E, Ah Kioon MD, Schiltz C, Hannouche D, Nizard R, Lioté F, Orcel P, de Vernejoul MC, Cohen-Solal ME. Targeting bone alleviates osteoarthritis in osteopenic mice and modulates cartilage catabolism. PLoS One 2012; 7:e33543. [PMID: 22432033 PMCID: PMC3303845 DOI: 10.1371/journal.pone.0033543] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/11/2012] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Subchondral bone modifications occur early in the development of osteoarthritis (OA). The level of bone resorption might impact cartilage remodeling. We therefore assessed the in vivo and in vitro effects of targeting bone resorption in OA and cartilage metabolism. METHODS OA was induced by meniscectomy (MNX) in ovariectomized osteopenic mice (OP) treated with estradiol (E2), pamidronate (PAM), or phosphate buffered saline (PBS) for 6 weeks. We assessed the subchondral bone and cartilage structure and the expression of cartilage matrix proteases. To assess the involvement of bone soluble factors in cartilage metabolism, supernatant of human bone explants pre-treated with E2 or PAM were transferred to cartilage explants to assess proteoglycan release and aggrecan cleavage. OPG/RANKL mRNA expression was assessed in bone explants by real-time quantitative PCR. The role of osteoprotegerin (OPG) in the bone-cartilage crosstalk was tested using an OPG neutralizing antibody. RESULTS Bone mineral density of OP mice and osteoclast number were restored by E2 and PAM (p<0.05). In OP mice, E2 and PAM decreased ADAMTS-4 and -5 expression, while only PAM markedly reduced OA compared to PBS (2.0±0.63 vs 5.2±0.95; p<0.05). OPG/RANKL mRNA was increased in human bone explants treated with both drugs (2.2-3.7-fold). Moreover, supernatants from bone explants cultured with E2 or PAM reduced aggrecan cleavage and cartilage proteoglycan release (73±8.0% and 80±22% of control, respectively, p<0.05). This effect was reversed with osteoprotegerin blockade. CONCLUSION The inhibition of bone resorption by pamidronate in osteopenic mice alleviates the histological OA score with a reduction in the expression of aggrecanases. Bone soluble factors, such as osteoprotegerin, impact the cartilage response to catabolic factors. This study further highlights the importance of subchondral bone in the regulation of joint cartilage damage in OA.
Collapse
Affiliation(s)
- Thomas Funck-Brentano
- INSERM U606, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Hilène Lin
- INSERM U606, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Eric Hay
- INSERM U606, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Marie-Dominique Ah Kioon
- INSERM U606, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Corinne Schiltz
- INSERM U606, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Didier Hannouche
- Department of Orthopedics, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Rémy Nizard
- Department of Orthopedics, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Frédéric Lioté
- INSERM U606, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | - Philippe Orcel
- Department of Rheumatology, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| | | | - Martine Esther Cohen-Solal
- INSERM U606, Centre Viggo Petersen and Université Paris-Diderot Paris 7, Hôpital Lariboisière, Paris, France
| |
Collapse
|
28
|
de Vries-van Melle ML, Mandl EW, Kops N, Koevoet WJLM, Verhaar JAN, van Osch GJVM. An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 2011; 18:45-53. [PMID: 21875392 DOI: 10.1089/ten.tec.2011.0339] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although several treatments for cartilage repair have been developed and used in clinical practice the last 20 years, little is known about the mechanisms that are involved in the formation of repair tissue after these treatments. Often, these treatments result in the formation of fibrocartilaginous tissue rather than normal articular cartilage. Because the repair tissue is inferior to articular cartilage in terms of mechanical properties and zonal organization of the extracellular matrix, complaints of the patient may return. The biological and functional outcome of these treatments should thus be improved. For this purpose, an in vitro model allowing investigation of the involved repair mechanisms can be of great value. We present the development of such a model. We used bovine osteochondral biopsies and created a system in which cartilage defects of different depths can be studied. First, our biopsy model was characterized extensively: we studied the viability by means of lactate dehydrogenase (LDH) excretion over time and we investigated expression of cartilage-related genes in osteochondral biopsies and compared it with conventional cartilage-only explants. After 28 days of culture, LDH was detected at low levels and mRNA could be retrieved. The expression of cartilage-related genes decreased over time. This was more evident in cartilage-only explants, indicating that the biopsy model provided a more stable environment. We also characterized the subchondral bone: osteoclasts and osteoblasts were active after 28 days of culture, which was indicated by tartrate acid phosphatase staining and alkaline phosphatase measurements, respectively, and matrix deposition during culture was visualized using calcein labeling. Second, the applicability of the model was further studied by testing two distinct settings: (1) implantation of chondrocytes in defects of different depths; (2) two different seeding strategies of chondrocytes. Differences were observed in terms of volume and integration of newly formed tissue in both settings, suggesting that our model can be used to model distinct conditions or even to mimic clinical treatments. After extensive characterization and testing of our model, we present a representative and reproducible in vitro model that can be used to evaluate new cartilage repair treatments and study mechanisms in a controlled and standardized environment.
Collapse
|
29
|
Impact of sex hormones, insulin, growth factors and peptides on cartilage health and disease. ACTA ACUST UNITED AC 2011; 45:239-93. [DOI: 10.1016/j.proghi.2010.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 12/27/2022]
|
30
|
Zhang B, Li Y, Zhou Q, Ding Y. Estrogen Deficiency Leads to Impaired Osteogenic Differentiation of Periodontal Ligament Stem Cells in Rats. TOHOKU J EXP MED 2011; 223:177-86. [DOI: 10.1620/tjem.223.177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Bin Zhang
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University
| | - Ying Li
- Institute of Stomatology, General Hospital of Chinese PLA
| | - Qiang Zhou
- Department of General Dentistry and Emergency, School of Stomatology, The Fourth Military Medical University
| | - Yin Ding
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University
| |
Collapse
|
31
|
Oestrogen receptors are involved in the osteogenic differentiation of periodontal ligament stem cells. Biosci Rep 2010; 31:117-24. [DOI: 10.1042/bsr20100029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The existence of PDLSCs [PDL (periodontal ligament) stem cells] in PDL has been identified and such cells may function in periodontal reconstruction, including bone formation. Oestrogens/ERs (oestrogen receptors; ERα and ERβ) exert important effects in bone formation, however, the relationship between ERs and PDLSCs has not been established. In the present study, PDLSCs were isolated and assays for detecting stem-cell biomarkers and multipotential differentiation potential confirmed the validity of human PDLSCs. The results of RT–PCR (reverse transcription–PCR) and Western blotting showed that ERα and ERβ were expressed at higher levels in PDLSCs as compared with PDLCs (PDL cells), and 17β-oestradiol obviously induced the osteogenic differentiation of PDLSCs in vitro. Furthermore, a pan-ER inhibitor or lentivirus-mediated siRNA (small interfering RNA) targeting ERα or ERβ blocked the oestrogen-induced osteogenic differentiation of PDLSCs. The results indicate that both ERα and ERβ were involved in the process of osteogenic differentiation of PDLSCs.
Collapse
|
32
|
Kato M, Takaishi H, Yoda M, Tohmonda T, Takito J, Fujita N, Hosogane N, Horiuchi K, Kimura T, Okada Y, Saito T, Kawaguchi H, Kikuchi T, Matsumoto M, Toyama Y, Chiba K. GRIP1 enhances estrogen receptor alpha-dependent extracellular matrix gene expression in chondrogenic cells. Osteoarthritis Cartilage 2010; 18:934-41. [PMID: 20346402 DOI: 10.1016/j.joca.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/12/2010] [Accepted: 03/09/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The role of postmenopause on the pathogenesis of cartilage degeneration has been an open question. We assessed cartilage degeneration in estrogen receptor (ER)alpha null mice and examined the role of glucocorticoid receptor-interacting protein 1 (GRIP1) in the ERalpha-dependent transcription of a type II collagen gene (col2a1) with special reference to a crosstalk with the transforming growth factor (TGF)-beta signaling pathway. METHODS The vertebral cartilaginous endplate from female ERalpha null mice was subjected to histological analyses. Col2a1 expression of primary chondrocytes (PCs) obtained from ERalpha null mice after 17beta-estradiol (E(2)) and TGF-beta1 stimulation was examined by reverse transcription polymerase chain reaction (RT-PCR). Estrogen response element (ERE) or col2a1 promoter-enhancer luciferase reporter system was used to investigate the crosstalk among ERalpha, GRIP1, and MKK6. Col2a1 expression and glycosaminoglycan (GAG) content were measured in ATDC5 cells treated with GRIP1 small interfering RNA (siRNA). RESULTS ERalpha deficiency clearly accelerated impairment of the vertebral cartilaginous endplate. E(2) and TGF-beta1 stimulation increased col2a1 expression in PC from wild-type mice, but not that from ERalpha null mice. The same stimulation increased the col2a1 promoter-enhancer reporter activity, and the elevated activity was decreased by dominant-negative ERalpha and p38 mitogen-activated protein kinase (MAPK) inhibitor. GRIP1 increased the E(2)-dependent ERE activation in the presence of ERalpha and constitutive-active MKK6. GRIP1 siRNA repressed col2a1 expression and GAG production in ATDC5 cells. CONCLUSIONS Crosstalks between ERalpha/GRIP1 and TGF-beta/MKK6/p38 MAPK pathway have protective roles on cartilage metabolism via regulating the extracellular matrices expression. The finding may lead to the development of a novel therapeutic approach for cartilage degeneration.
Collapse
Affiliation(s)
- M Kato
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Common variations in estrogen-related genes are associated with severe large-joint osteoarthritis: a multicenter genetic and functional study. Osteoarthritis Cartilage 2010; 18:927-33. [PMID: 20417295 DOI: 10.1016/j.joca.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/15/2010] [Accepted: 04/14/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Several lines of evidence suggest that estrogens influence the development of osteoarthritis (OA). The aim of this study was to explore the association of two common polymorphisms within the aromatase (CYP19A1) and estrogen receptor (ER) alpha (ESR1) genes with severe OA of the lower limbs. METHODS The rs1062033 (CYP19A1) and rs2234693 (ESR1) single nucleotide polymorphisms were genotyped in 5528 individuals (3147 patients with severe hip or knee OA, and 2381 controls) from four centres in Spain and the United Kingdom. Gene expression was measured in femoral bone samples from a group of patients. RESULTS In the global analysis, both polymorphisms were associated with OA, but there was a significant sex interaction. The GG genotype at rs1062033 was associated with an increased risk of knee OA in women [odds ratio (OR) 1.23; P=0.04]. The CC genotype at rs2234693 tended to be associated with reduced OA risk in women (OR 0.76, P=0.028, for knee OA; OR=0.84, P=0.076 for hip OA), but with increased risk of hip OA in men (OR 1.28; P=0.029). Women with unfavourable genotypes at both loci had an OR of 1.61 for knee OA (P=0.006). The rs1062033 genotype associated with higher OA risk was also associated with reduced expression of the aromatase gene in bone. CONCLUSIONS Common genetic variations of the aromatase and ER genes are associated with the risk of severe OA of the large joints of the lower limb in a sex-specific manner. These results are consistent with the hypothesis that estrogen activity may influence the development of large-joint OA.
Collapse
|
34
|
Roman-Blas JA, Castañeda S, Largo R, Herrero-Beaumont G. Osteoarthritis associated with estrogen deficiency. Arthritis Res Ther 2009; 11:241. [PMID: 19804619 PMCID: PMC2787275 DOI: 10.1186/ar2791] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) affects all articular tissues and finally leads to joint failure. Although articular tissues have long been considered unresponsive to estrogens or their deficiency, there is now increasing evidence that estrogens influence the activity of joint tissues through complex molecular pathways that act at multiple levels. Indeed, we are only just beginning to understand the effects of estrogen deficiency on articular tissues during OA development and progression, as well as on the association between OA and osteoporosis. Estrogen replacement therapy and current selective estrogen receptor modulators have mixed effectiveness in preserving and/or restoring joint tissue in OA. Thus, a better understanding of how estrogen acts on joints and other tissues in OA will aid the development of specific and safe estrogen ligands as novel therapeutic agents targeting the OA joint as a whole organ.
Collapse
Affiliation(s)
- Jorge A Roman-Blas
- Bone and Joint Research Unit, Service of Rheumatology, Fundación Jiménez Díaz, Universidad Autónoma, Madrid 28040, Spain.
| | | | | | | |
Collapse
|