1
|
Sheng W, Liao S, Cao S, Wei Y, Zhao J, Yue Y, Qin H, Qi T, Qian J, Lin J, Weng J, Chen Y, Wang D, Yu F, Liu P, Zeng H. Reactive oxygen species-sensitive fenofibrate-loaded dextran nanoparticles in alleviation of osteoarthritis. Carbohydr Polym 2025; 347:122768. [PMID: 39486995 DOI: 10.1016/j.carbpol.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 11/04/2024]
Abstract
Osteoarthritis (OA) stands as a prevalent chronic joint pathology, emerging as a leading cause of disability on a global scale. However, the current therapeutic efficacy in OA treatment remains unsatisfactory. Chondrocyte ferroptosis has become to a critical target for OA treatment, while the fabrication of nanomedicines emerges as a promising strategy for OA treatment. Nevertheless, there exists a paucity of reported nanomedicine systems designed to combat chondrocyte ferroptosis for OA alleviation. In light of this, our study introduced a reactive oxygen species (ROS)-sensitive fenofibrate-loaded targeted nanoparticle (FN-CNPs) as a means of alleviating OA by suppressing chondrocyte ferroptosis. In vitro investigations demonstrated the FN-CNPs can achieve this through the reduction of lipid peroxidation and ROS levels, as well as the elevation of anti-ferroptosis markers (GPX4, FSP1, and ACSL3). Consequently, FN-CNPs exhibited significant anti-inflammatory effects and downregulated the expression of key catabolic mediators in vitro. Furthermore, in vivo studies underscored the ability of FN-CNPs to alleviate OA progression and protect cartilage. Collectively, these findings highlight the efficacy of FN-CNPs in mitigating OA progression by suppressing chondrocyte ferroptosis via regulating ROS levels, antioxidant systems and lipid metabolism of chondrocytes.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shuai Liao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Siyang Cao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Junyu Qian
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518035, China
| | - Jian Weng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
2
|
Mustonen AM, Malinen M, Paakinaho V, Lehenkari P, Palosaari S, Kärjä V, Nieminen P. RNA sequencing analysis reveals distinct gene expression patterns in infrapatellar fat pads of patients with end-stage osteoarthritis or rheumatoid arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2024:159576. [PMID: 39489461 DOI: 10.1016/j.bbalip.2024.159576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA) are inflammatory joint diseases that share partly similar symptoms but have different, inadequately understood pathogeneses. Adipose tissues, including intra-articular infrapatellar fat pad (IFP), may contribute to their development. Analysis of differentially expressed genes (DEGs) in IFPs could improve the diagnostics of these conditions and help to develop novel treatment strategies. The aim was to identify potentially crucial genes and pathways discriminating OA and RA IFPs using RNA sequencing analysis. We aimed to distinguish genetically distinct patient groups as a starting point for further translational studies with the eventual goal of personalized medicine. Samples were collected from arthritic knees during total knee arthroplasty of sex- and age-matched OA and seropositive RA patients (n = 5-6/group). Metabolic pathways of interest were investigated by whole transcriptome sequencing, and DEGs were analyzed with univariate tests, hierarchical clustering (HC), and pathway analyses. There was significant interindividual variation in mRNA expression patterns, but distinct subgroups of OA and RA patients emerged that reacted similarly to their disease states based on HC. Compared to OA, RA samples showed 703 genes to be upregulated and 691 genes to be downregulated. Signaling pathway analyses indicated that these DEGs had common pathways in lipid metabolism, fatty acid biosynthesis and degradation, adipocytokine and insulin signaling, inflammatory response, and extracellular matrix organization. The divergent mRNA expression profiles in RA and OA suggest contribution of IFP to the regulation of synovial inflammatory processes and articular cartilage degradation and could provide novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Paraatikenttä 7, FI-45100 Kouvola, Finland.
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029 OYS, Finland.
| | - Sanna Palosaari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio, Finland.
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
3
|
Wang J, Yang J, Fang Y, Lou C, Yu H, Li Y, Lv J, Chen H, Cai L, Zheng W. Vinpocetine protects against osteoarthritis by inhibiting ferroptosis and extracellular matrix degradation via activation of the Nrf2/GPX4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156115. [PMID: 39368343 DOI: 10.1016/j.phymed.2024.156115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a progressive joint condition marked by the slow degradation of articular cartilage. Vinpocetine (Vin), a synthetic derivative of vincamine derived from the vinca plant, exhibits anti-inflammatory and antioxidant properties. Nevertheless, the specific role and mechanism of Vin in the treatment of OA remain largely unexplored. OBJECTIVES The study is designed to uncover the impacts of Vin on tert‑butyl hydroperoxide (TBHP)-induced ferroptosis and to explore its potential role and underlying mechanisms in the treatment of OA. Concurrently, we established an OA mouse model through medial meniscal instability surgery to assess the therapeutic effects of Vin in vivo. METHODS Through network pharmacology analysis, we have identified the key targets and potential pathways of Vin. To simulate an oxidative stress-induced OA environment in vitro, we induced chondrocyte injury using TBHP. We tested how Vin affects chondrocytes under TBHP induction by DHE and DCFH-DA probes, BODIPY-C11 and FerroOrange staining, mitochondrial function assessment, Western blotting, co-immunoprecipitation, and immunofluorescence techniques. Simultaneously, we established an OA mouse model through medial meniscal instability surgery to assess the in vivo therapeutic effects of Vin. In this model, we used X-ray and micro-CT imaging, SO staining, TB staining, H&E staining, and immunohistochemistry to analyze the role of Vin in detail. RESULTS This study demonstrated that Vin effectively suppressed TBHP-induced ferroptosis and extracellular matrix (ECM) degradation and significantly lessened mitochondrial damage associated with ferroptosis. In the OA mouse model, Vin improved cartilage degeneration, subchondral remodeling, synovitis, and ECM degradation. Vin worked by activating the Nrf2/GPX4 pathway and inhibiting the Keap1-Nrf2 interaction. This study focused on the function of ferroptosis in OA and its influence on chondrocyte damage and disease progression, offering novel perspectives on potential treatments. CONCLUSION Vin activated the Nrf2/GPX4 pathway, thereby slowing OA progression, inhibiting ferroptosis, and preventing ECM degradation.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jin Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yangbo Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Leyi Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, PR China; The Second School of Medicine of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
4
|
Gaddala P, Choudhary S, Sethi S, Sainaga Jyothi VG, Katta C, Bahuguna D, Singh PK, Pandey M, Madan J. Etodolac utility in osteoarthritis: drug delivery challenges, topical nanotherapeutic strategies and potential synergies. Ther Deliv 2024:1-19. [PMID: 39345034 DOI: 10.1080/20415990.2024.2405456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoarthritis (OSA) is a prevalent joint disorder characterized by losing articular cartilage, primarily affecting the hip, knee and spine joints. The impact of OSA offers a major challenge to health systems globally. Therapeutic approaches encompass surgical interventions, non-pharmacological therapies (exercise, rehabilitation, behavioral interventions) and pharmacological treatments. Inflammatory processes within OSA joints are regulated by pro-inflammatory and anti-inflammatory cytokines. Etodolac, a COX-2-selective inhibitor, is the gold standard for OSA management and uniquely does not inhibit gastric prostaglandins. This comprehensive review offers insights into OSA's pathophysiology, genetic factors and biological determinants influencing disease progression. Emphasis is placed on the pivotal role of etodolac in OSA management, supported by both preclinical and clinical evidences in topical drug delivery. Notably, in-silico docking studies suggested potential synergies between etodolac and baicalein, considering ADAMTS-4, COX-2, MMP-3 and MMP-13 as essential therapeutic targets. Integration of artificial neural network (ANN) techniques with nanotechnology approaches emerges as a promising strategy for optimizing and personalizing topical etodolac delivery. Furthermore, the synergistic potential of etodolac and baicalein warrants in-depth exploration. Hence, by embracing cutting-edge technologies like ANN and nanomedicine, the optimization of topical etodolac delivery could guide a new era of OSA treatment.
Collapse
Affiliation(s)
- Pavani Gaddala
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Shalki Choudhary
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sheshank Sethi
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, India
| | - Vaskuri Gs Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Chantibabu Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Deepankar Bahuguna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana, 123031, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Huang J, Liao C, Yang J, Zhang L. The role of vascular and lymphatic networks in bone and joint homeostasis and pathology. Front Endocrinol (Lausanne) 2024; 15:1465816. [PMID: 39324127 PMCID: PMC11422228 DOI: 10.3389/fendo.2024.1465816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
The vascular and lymphatic systems are integral to maintaining skeletal homeostasis and responding to pathological conditions in bone and joint tissues. This review explores the interplay between blood vessels and lymphatic vessels in bones and joints, focusing on their roles in homeostasis, regeneration, and disease progression. Type H blood vessels, characterized by high expression of CD31 and endomucin, are crucial for coupling angiogenesis with osteogenesis, thus supporting bone homeostasis and repair. These vessels facilitate nutrient delivery and waste removal, and their dysfunction can lead to conditions such as ischemia and arthritis. Recent discoveries have highlighted the presence and significance of lymphatic vessels within bone tissue, challenging the traditional view that bones are devoid of lymphatics. Lymphatic vessels contribute to interstitial fluid regulation, immune cell trafficking, and tissue repair through lymphangiocrine signaling. The pathological alterations in these networks are closely linked to inflammatory joint diseases, emphasizing the need for further research into their co-regulatory mechanisms. This comprehensive review summarizes the current understanding of the structural and functional aspects of vascular and lymphatic networks in bone and joint tissues, their roles in homeostasis, and the implications of their dysfunction in disease. By elucidating the dynamic interactions between these systems, we aim to enhance the understanding of their contributions to skeletal health and disease, potentially informing the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingxiong Huang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Guizhou, Zunyi, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Kao SW, Chang YC, Lin FH, Huang TL, Chen TS, Lin SZ, Lin KH, Kuo WW, Ho TJ, Huang CY. Jing-Si Herbal Tea Suppresses H 2O 2-Instigated Inflammation and Apoptosis by Inhibiting Bax and Mitochondrial Cytochrome C Release in HIG-82 Synoviocytes. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39234996 DOI: 10.1002/tox.24406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Inflammation is an intrinsic protective mechanism against various forms of cellular injuries in humans; however, its undesired activation results in tissue damage and cell death. The onset of chronic inflammation and oxidative stress are the key characteristics of autoimmune inflammatory diseases such as rheumatoid arthritis (RA), for which an effective treatment is yet to be developed. Therefore, in this study, we investigated the protective effects and molecular mechanisms of a novel herbal preparation, Jing-Si herbal tea (JS), against H2O2-induced inflammation and cellular damage in HIG-82 synoviocytes. We found that JS did not show any significant alterations in cell viability at <188 μg/mL; however, a cytotoxic effect was observed at 188-1883 μg/mL concentrations tested. We found that expressions of inflammation associated extracellular matrix (ECM)-degrading proteases MMP-13, ADAMTS-2, -8, and -17 were abnormally enhanced under H2O2-induced pathological oxidative stress (ROS) in HIG-82 cells. Interestingly, JS treatment not only reduced the ROS levels but also significantly repressed the protein expressions of collagen degrading proteases in a dose-dependent manner. Treatment with JS showed enhanced cell viability against H2O2-induced toxic ROS levels. The expressions of cell protective aggrecan, Collagen II, and Bcl-2 were increased, whereas MMP-13, ADAMTS-2, Cytochrome C, and cleaved Caspase 3 were decreased by JS under inflammatory agents H2O2, MIA, LPS, and TNF-α treatment, respectively, in HIG-82 cells. Interestingly, the cytoprotective effect of JS treatment was attributed to a decreased mitochondrial localization of Bax and a reduction of Cytochrome C release into the cytoplasm of H2O2-treated HIG-82 cells. Collectively, our results suggest a novel protective mechanism of JS for RA treatment, which could be potentially applied as a complementary treatment or as an alternative therapeutic approach to mitigate inflammatory diseases.
Collapse
Affiliation(s)
- Shih-Wen Kao
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chun Chang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institute, Miaoli, Taiwan
| | - Tai-Lung Huang
- Department of Orthopedics, Chung-Kang Branch, Cheng Ching General Hospital, Taichung, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu chi University, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Fan Z, Zhao X, Ma J, Zhan H, Ma X. Suppression of YAP Ameliorates Cartilage Degeneration in Ankle Osteoarthritis via Modulation of the Wnt/β-Catenin Signaling Pathway. Calcif Tissue Int 2024; 115:283-297. [PMID: 38953964 DOI: 10.1007/s00223-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Ankle osteoarthritis is a relatively understudied condition and the molecular mechanisms involved in its development are not well understood. This investigation aimed to explore the role and underlying molecular mechanisms of Yes-associated protein (YAP) in rat ankle osteoarthritis. The results demonstrated that YAP expression levels were abnormally increased in the ankle osteoarthritis cartilage model. In addition, knockdown of YAP expression was shown to hinder the imbalance in ECM metabolism induced by IL-1β in chondrocytes, as demonstrated by the regulation of matrix metalloproteinase (MMP)-3, MMP-9, and MMP-13, a disintegrin, metalloprotease with thrombospondin motifs, aggrecan, and collagen II expression. Additional studies revealed that downregulation of YAP expression markedly inhibited the overexpression of β-catenin stimulated by IL-1β. Furthermore, inhibition of the Wnt/β-catenin signaling pathway reversed the ECM metabolism imbalance caused by YAP overexpression in chondrocytes. It is important to note that the YAP-specific inhibitor verteporfin (VP) significantly delayed the progression of ankle osteoarthritis. In conclusion, the findings highlighted the crucial role of YAP as a regulator in modulating the progression of ankle osteoarthritis via the Wnt/β-catenin signaling pathway. These findings suggest that pharmacological inhibition of YAP can be an effective and critical therapeutic target for alleviating ankle osteoarthritis.
Collapse
Affiliation(s)
- Zhengrui Fan
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Xingwen Zhao
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Jianxiong Ma
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China.
| | - Hongqi Zhan
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China
| | - Xinlong Ma
- The department of Orthopedics, Tianjin Hospital, Tianjin, 300070, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, China.
| |
Collapse
|
8
|
Zhang Z, Li B, Wu S, Yang Y, Wu B, Lai Q, Lai F, Mo F, Zhong Y, Wang S, Guo R, Zhang B. Bergenin protects against osteoarthritis by inhibiting STAT3, NF-κB and Jun pathways and suppressing osteoclastogenesis. Sci Rep 2024; 14:20292. [PMID: 39217193 PMCID: PMC11366014 DOI: 10.1038/s41598-024-71259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by articular cartilage destruction and subchondral bone reconstruction in the early stages. Bergenin (Ber) is a cytoprotective polyphenol found in many medicinal plants. It has been proven to have anti-inflammatory, antioxidant, and other biological activities, which may reveal its potential role in the treatment of OA. This study aimed to determine the potential efficacy of Ber in treating OA and explore the possible underlying mechanism through network pharmacology and validation experiments. The potential co-targets and processes of Ber and OA were predicted by using network pharmacology, including a Venn diagram for intersection targets, a protein‒protein interaction (PPI) network to obtain key potential targets, and GO and KEGG pathway enrichment to reveal the probable mechanism of action of Ber on OA. Subsequently, validation experiments were carried out to investigate the effects and mechanisms of Ber in treating OA in vitro and vivo. Ber suppressed IL-1β-induced chondrocyte apoptosis and extracellular matrix catabolism by inhibiting the STAT3, NF-κB and Jun signalling pathway in vitro. Furthermore, Ber suppressed the expression of osteoclast marker genes and RANKL-induced osteoclastogenesis. Ber alleviated the progression of OA in DMM-induced OA mice model. These results demonstrated the protective efficacy and potential mechanisms of Ber against OA, which suggested that Ber could be adopted as a potential therapeutic agent for treating OA.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Bo Li
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Shuqin Wu
- Faculty of Jiangxi Medical College, Donghu District, Nanchang University, No.461 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Yuxin Yang
- Faculty of Jiangxi Medical College, Donghu District, Nanchang University, No.461 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Binkang Wu
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Qi Lai
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Fuchong Lai
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Fengbo Mo
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yufei Zhong
- Faculty of Jiangxi Medical College, Donghu District, Nanchang University, No.461 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Song Wang
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Runsheng Guo
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Bin Zhang
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Huang LW, Huang TC, Hu YC, Hsieh BS, Lin JS, Hsu HY, Lee CC, Chang KL. The Oral Administration of Lactobacillus delbrueckii subsp. lactis 557 (LDL557) Ameliorates the Progression of Monosodium Iodoacetate-Induced Osteoarthritis. Curr Issues Mol Biol 2024; 46:8969-8980. [PMID: 39194747 DOI: 10.3390/cimb46080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Low-grade body inflammation is a major cause of osteoarthritis (OA), a common joint disease. Gut dysbiosis may lead to systemic inflammation which can be prevented by probiotic administration. The Lactobacillus delbrueckii subsp. lactis 557 (LDL557) has been demonstrated to have beneficial effects for anti-inflammation. This study investigated the effects of LDL557 on OA progress using monosodium iodoacetate (MIA)-induced OA of rats. Live or heat-killed (HK)-LDL557 of a low or high dose was administrated for two weeks before MIA-induced OA, and then continuously administrated for another six weeks. After taking supplements for eight weeks, OA progress was analyzed. Results showed that MIA induced knee joint swelling, chondrocyte damage, and cartilage degradation, and supplementation with a high dose of LDL557 reduced MIA-induced knee joint swelling, chondrocyte damage, and cartilage degradation. Additionally, MIA increased serum levels of the matrix-degrading enzyme MMP-13, while a high dose of HK-LDL557 decreased it for the controls. Simultaneously, bone turnover markers and inflammatory cytokines of serum were assayed, but no significant differences were found except for a TNF-α decrease from a low dose of live LDL557. These results demonstrated that supplementation with high doses of live LDL557 or HK-LDL557 can reduce the progression of MIA-induced OA in rats.
Collapse
Affiliation(s)
- Li-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tzu-Ching Huang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yu-Chen Hu
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Bau-Shan Hsieh
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 821011, Taiwan
| | - Han-Yin Hsu
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 821011, Taiwan
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 821011, Taiwan
| | - Kee-Lung Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
10
|
Hao X, Wu X. SP1‑mediated ADAMTS5 transcription promotes IL‑1β‑induced chondrocyte injury via Wnt/β‑catenin pathway in osteoarthritis. Mol Med Rep 2024; 30:149. [PMID: 38940327 PMCID: PMC11228694 DOI: 10.3892/mmr.2024.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease that involves chondrocyte injury. ADAMTS5 has been confirmed to mediate chondrocyte injury and thus regulate OA progression, but its underlying molecular mechanisms remain unclear. In the present study, interleukin‑1β (IL‑1β)‑induced chondrocytes were used to mimic OA in vitro. Cell proliferation and apoptosis were assessed by MTT assay, EdU assay and flow cytometry, and protein levels of ADAMTS5, specificity protein 1 (SP1), matrix‑related markers and Wnt/β‑catenin pathway‑related markers were examined using western blotting. In addition, ELISA was performed to measure the concentrations of inflammation factors, and oxidative stress was evaluated by detecting SOD activity and MDA levels. The mRNA expression levels of ADAMTS5 and SP1 were determined by reverse transcription‑quantitative PCR, and the interaction between SP1 and ADAMTS5 was analyzed using a dual‑luciferase reporter assay and chromatin immunoprecipitation assay. IL‑1β suppressed proliferation, but promoted apoptosis, extracellular matrix degradation, inflammation and oxidative stress in chondrocytes. ADAMTS5 was upregulated in IL‑1β‑induced chondrocytes, and its knockdown alleviated IL‑1β‑induced chondrocyte injury. SP1 could bind to the ADAMTS5 promoter region to promote its transcription, and SP1 knockdown relieved IL‑1β‑induced chondrocyte injury by reducing ADAMTS5 expression. The SP1/ADAMTS5 axis activated the Wnt/β‑catenin pathway, and the Wnt/β‑catenin pathway agonist, SKL2001, reversed the protective effect of ADAMTS5 knockdown on chondrocyte injury induced by IL‑1β. To the best of our knowledge, the present study was the first to reveal the interaction between SP1 and ADAMTS5 in OA progression and indicated that the SP1/ADAMTS5 axis mediates OA progression by regulating the Wnt/β‑catenin pathway.
Collapse
Affiliation(s)
- Xiaoting Hao
- Department of Teaching Administration, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
- Graduate School and Open Learning College, Cavite State University, Indang, Cavite 4122 Philippines
| | - Xiaxia Wu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
11
|
Szala D, Kopańska M, Trojniak J, Jabłoński J, Hanf-Osetek D, Snela S, Zawlik I. The Role of MicroRNAs in the Pathophysiology of Osteoarthritis. Int J Mol Sci 2024; 25:6352. [PMID: 38928059 PMCID: PMC11204066 DOI: 10.3390/ijms25126352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Worldwide, osteoarthritis (OA) is the most common cause of joint pain in older people. Many factors contribute to osteoarthritis' development and progression, including secondary osteoarthritis' underlying causes. It is important to note that osteoarthritis affects all four tissues: cartilage, bone, joint capsule, and articular apparatus. An increasingly prominent area of research in osteoarthritis regulation is microRNAs (miRNAs), a small, single-stranded RNA molecule that controls gene expression in eukaryotes. We aimed to assess and summarize current knowledge about the mechanisms of the action of miRNAs and their clinical significance. Osteoarthritis (OA) is affected by the interaction between miRNAs and inflammatory processes, as well as cartilage metabolism. MiRNAs also influence cartilage cell apoptosis, contributing to the degradation of the cartilage in OA. Studies have shown that miRNAs may have both an inhibitory and promoting effect on osteoporosis progression through their influence on molecular mechanisms. By identifying these regulators, targeted treatments for osteoarthritis may be developed. In addition, microRNA may also serve as a biomarker for osteoarthritis. By using these biomarkers, the disease could be detected faster, and early intervention can be instituted to prevent mobility loss and slow deterioration.
Collapse
Affiliation(s)
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Julia Trojniak
- Student Research Club “Reh-Tech”, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Jarosław Jabłoński
- Faculty of Orthopaedic and Reumatology, Institute of Medical Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (J.J.); (D.H.-O.); (S.S.)
- Orthopaedics and Traumatology Clinic, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Dorota Hanf-Osetek
- Faculty of Orthopaedic and Reumatology, Institute of Medical Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (J.J.); (D.H.-O.); (S.S.)
- Orthopaedics and Traumatology Clinic, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Sławomir Snela
- Faculty of Orthopaedic and Reumatology, Institute of Medical Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (J.J.); (D.H.-O.); (S.S.)
- Orthopaedics and Traumatology Clinic, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Izabela Zawlik
- Department of General Genetics, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| |
Collapse
|
12
|
Anastasio AT, Adams SB. Cartilage Injuries: Basic Science Update. Foot Ankle Clin 2024; 29:357-369. [PMID: 38679445 DOI: 10.1016/j.fcl.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The last several decades have brought about substantial development in our understanding of the biomolecular pathways associated with chondral disease and progression to arthritis. Within domains relevant to foot and ankle, genetic modification of stem cells, augmentation of bone marrow stimulation techniques, and improvement on existing scaffolds for delivery of orthobiologic agents hold promise in improving treatment of chondral injuries. This review summarizes novel developments in the understanding of the molecular pathways underlying chondral damage and some of the recent advancements within related therapeutics.
Collapse
Affiliation(s)
- Albert T Anastasio
- Division of Foot and Ankle Surgery, Department of Orthopaedic Surgery, Duke University Health System, 311 Trent Drive, Durham, NC 27710, USA
| | - Samuel B Adams
- Division of Foot and Ankle Surgery, Department of Orthopaedic Surgery, Duke University Health System, 311 Trent Drive, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Klimak M, Cimino A, Lenz K, Springer L, Collins K, Harasymowicz N, Xu N, Pham C, Guilak F. Engineered Self-Regulating Macrophages for Targeted Anti-inflammatory Drug Delivery. RESEARCH SQUARE 2024:rs.3.rs-4385938. [PMID: 38854124 PMCID: PMC11160898 DOI: 10.21203/rs.3.rs-4385938/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by increased levels of inflammation that primarily manifests in the joints. Macrophages act as key drivers for the progression of RA, contributing to the perpetuation of chronic inflammation and dysregulation of pro-inflammatory cytokines such as interleukin 1 (IL-1). The goal of this study was to develop a macrophage-based cell therapy for biologic drug delivery in an autoregulated manner. Methods For proof-of-concept, we developed "smart" macrophages to mitigate the effects of IL-1 by delivering its inhibitor, IL-1 receptor antagonist (IL-1Ra). Bone marrow-derived macrophages were lentivirally transduced with a synthetic gene circuit that uses an NF-κB inducible promoter upstream of either the Il1rn or firefly luciferase transgenes. Two types of joint like cells were utilized to examine therapeutic protection in vitro, miPSCs derived cartilage and isolated primary mouse synovial fibroblasts while the K/BxN mouse model of RA was utilized to examine in vivo therapeutic protection. Results These engineered macrophages were able to repeatably produce therapeutic levels of IL-1Ra that could successfully mitigate inflammatory activation in co-culture with both tissue engineered cartilage constructs and synovial fibroblasts. Following injection in vivo, macrophages homed to sites of inflammation and mitigated disease severity in the K/BxN mouse model of RA. Conclusion These findings demonstrate the successful development of engineered macrophages that possess the ability for controlled, autoregulated production of IL-1 based on inflammatory signaling such as the NF-κB pathway to mitigate the effects of this cytokine for applications in RA or other inflammatory diseases. This system provides proof of concept for applications in other immune cell types as self-regulating delivery systems for therapeutic applications in a range of diseases.
Collapse
|
14
|
Juma SN, Liao J, Huang Y, Vlashi R, Wang Q, Wu B, Wang D, Wu M, Chen G. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis 2024; 11:100986. [PMID: 38292181 PMCID: PMC10825447 DOI: 10.1016/j.gendis.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/15/2023] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis and psoriasis arthritis are two degenerative forms of arthritis that share similar yet also different manifestations at the histological, cellular, and clinical levels. Rheumatologists have marked them as two entirely distinct arthropathies. Given recent discoveries in disease initiation and progression, potential mechanisms, cellular signaling pathways, and ongoing clinical therapeutics, there are now more opportunities for discovering osteoarthritis drugs. This review summarized the osteoarthritis and psoriasis arthritis signaling pathways, crosstalk between BMP, WNT, TGF-β, VEGF, TLR, and FGF signaling pathways, biomarkers, and anatomical pathologies. Through bench research, we demonstrated that regenerative medicine is a promising alternative for treating osteoarthritis by highlighting significant scientific discoveries on entheses, multiple signaling blockers, and novel molecules such as immunoglobulin new antigen receptors targeted for potential drug evaluation. Furthermore, we offered valuable therapeutic approaches with a multidisciplinary strategy to treat patients with osteoarthritis or psoriasis arthritis in the coming future in the clinic.
Collapse
Affiliation(s)
- Salma Nassor Juma
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qingwan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bocong Wu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
15
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
16
|
Teunissen van Manen IJ, van Kooten NJT, Di Ceglie I, Theeuwes WF, Jimenez-Royo P, Cleveland M, van Lent PLEM, van der Kraan PM, Blom AB, van den Bosch MHJ. Identification of CD64 as a marker for the destructive potential of synovitis in osteoarthritis. Rheumatology (Oxford) 2024; 63:1180-1188. [PMID: 37341635 PMCID: PMC10986803 DOI: 10.1093/rheumatology/kead314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES OA is characterized by cartilage degeneration and persistent pain. The majority of OA patients present with synovitis, which is associated with increased cartilage damage. Activated synovial macrophages are key contributors to joint destruction. Therefore, a marker that reflects the activation of these cells could be a valuable tool to characterize the destructive potential of synovitis and benefit monitoring of OA. Here, we aimed to investigate the use of CD64 (FcγRI) as a marker to characterize the damaging potential of synovitis in OA. METHODS Synovial biopsies were obtained from end-stage OA patients that underwent joint replacement surgery. CD64 protein expression and localization was evaluated using immunohistochemistry and immunofluorescence and quantified using flow cytometry. qPCR was performed to measure the expression of FCGR1 and OA-related genes in synovial biopsies, and in primary chondrocytes and primary fibroblasts stimulated with OA conditioned medium (OAS-CM). RESULTS Our data exposed a wide range of CD64 expression in OA synovium and showed positive correlations between FCGR1 and S100A8, S100A9, IL1B, IL6 and MMP1/2/3/9/13 expression. CD64 protein correlated with MMP1, MMP3, MMP9, MMP13 and S100A9. Furthermore, we observed that synovial CD64 protein levels in source tissue for OAS-CM significantly associated with the OAS-CM-induced expression of MMP1, MMP3 and especially ADAMTS4 in cultured fibroblasts, but not chondrocytes. CONCLUSION Together, these results indicate that synovial CD64 expression is associated with the expression of proteolytic enzymes and inflammatory markers related to structural damage in OA. CD64 therefore holds promise as marker to characterize the damaging potential of synovitis.
Collapse
Affiliation(s)
| | - Nienke J T van Kooten
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Orthopaedics, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Irene Di Ceglie
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wessel F Theeuwes
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Peter L E M van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn H J van den Bosch
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Liu HZ, Song XQ, Zhang H. Sugar-coated bullets: Unveiling the enigmatic mystery 'sweet arsenal' in osteoarthritis. Heliyon 2024; 10:e27624. [PMID: 38496870 PMCID: PMC10944269 DOI: 10.1016/j.heliyon.2024.e27624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Glycosylation is a crucial post-translational modification process where sugar molecules (glycans) are covalently linked to proteins, lipids, or other biomolecules. In this highly regulated and complex process, a series of enzymes are involved in adding, modifying, or removing sugar residues. This process plays a pivotal role in various biological functions, influencing the structure, stability, and functionality of the modified molecules. Glycosylation is essential in numerous biological processes, including cell adhesion, signal transduction, immune response, and biomolecular recognition. Dysregulation of glycosylation is associated with various diseases. Glycation, a post-translational modification characterized by the non-enzymatic attachment of sugar molecules to proteins, has also emerged as a crucial factor in various diseases. This review comprehensively explores the multifaceted role of glycation in disease pathogenesis, with a specific focus on its implications in osteoarthritis (OA). Glycosylation and glycation alterations wield a profound influence on OA pathogenesis, intertwining with disease onset and progression. Diverse studies underscore the multifaceted role of aberrant glycosylation in OA, particularly emphasizing its intricate relationship with joint tissue degradation and inflammatory cascades. Distinct glycosylation patterns, including N-glycans and O-glycans, showcase correlations with inflammatory cytokines, matrix metalloproteinases, and cellular senescence pathways, amplifying the degenerative processes within cartilage. Furthermore, the impact of advanced glycation end-products (AGEs) formation in OA pathophysiology unveils critical insights into glycosylation-driven chondrocyte behavior and extracellular matrix remodeling. These findings illuminate potential therapeutic targets and diagnostic markers, signaling a promising avenue for targeted interventions in OA management. In this comprehensive review, we aim to thoroughly examine the significant impact of glycosylation or AGEs in OA and explore its varied effects on other related conditions, such as liver-related diseases, immune system disorders, and cancers, among others. By emphasizing glycosylation's role beyond OA and its implications in other diseases, we uncover insights that extend beyond the immediate focus on OA, potentially revealing novel perspectives for diagnosing and treating OA.
Collapse
Affiliation(s)
- Hong-zhi Liu
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-qiu Song
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hongmei Zhang
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Walton BL, Shattuck-Brandt R, Hamann CA, Tung VW, Colazo JM, Brand DD, Hasty KA, Duvall CL, Brunger JM. A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578281. [PMID: 38352576 PMCID: PMC10862827 DOI: 10.1101/2024.01.31.578281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Objective Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites characterized by cartilage degeneration. Methods An scFv specific for type II collagen (CII) was used to produce a synthetic Notch (synNotch) receptor that enables "CII-synNotch" mesenchymal stromal cells (MSCs) to recognize CII fibers exposed in damaged cartilage. Engineered cell activation by both CII-treated culture surfaces and on primary tissue samples was measured via inducible reporter transgene expression. TGFβ3-expressing cells were assessed for cartilage anabolic gene expression via qRT-PCR. In a co-culture with CII-synNotch MSCs engineered to express IL-1Ra, ATDC5 chondrocytes were stimulated with IL-1α, and inflammatory responses of ATDC5s were profiled via qRT-PCR and an NF-κB reporter assay. Results CII-synNotch MSCs are highly responsive to CII, displaying activation ranges over 40-fold in response to physiologic CII inputs. CII-synNotch cells exhibit the capacity to distinguish between healthy and damaged cartilage tissue and constrain transgene expression to regions of exposed CII fibers. Receptor-regulated TGFβ3 expression resulted in upregulation of Acan and Col2a1 in MSCs, and inducible IL-1Ra expression by engineered CII-synNotch MSCs reduced pro-inflammatory gene expression in chondrocytes. Conclusion This work demonstrates proof-of-concept that the synNotch platform guides MSCs for spatially regulated, disease-dependent delivery of OA-relevant biologic drugs.
Collapse
Affiliation(s)
- Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | | | - Catherine A Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Victoria W Tung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - David D Brand
- Research Service, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis VA Medical Center, Memphis, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
19
|
Liu Z, Lu T, Ma L, Zhang Y, Li D. DNA demethylation of promoter region orchestrates SPI-1-induced ADAMTS-5 expression in articular cartilage of osteoarthritis mice. J Cell Physiol 2024; 239:e31170. [PMID: 38149721 DOI: 10.1002/jcp.31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent joint diseases in aged people and characterized by articular cartilage degeneration, synovial inflammation, and abnormal bone remodeling. Recent advances in OA research have clearly shown that OA development is associated with aberrant DNA methylation status of many OA-related genes. As one of most important cartilage degrading proteases in OA, a disintegrin and metalloproteinase with thrombospondin motifs subtype 5 (ADAMTS-5) is activated to mediate cartilage degradation in human OA and experimental murine OA models. The pathological factors and signaling pathways mediating ADAMTS-5 activation during OA development are not well defined and have been a focus of intense research. ADAMTS-5 promoter is featured by CpG islands. So far there have been no reports concerning the DNA methylation status in ADAMTS-5 promoter during OA development. In this study, we sought to investigate DNA methylation status in ADAMTS-5 promoter, the role of DNA methylation in ADAMTS-5 activation in OA, and the underlying mechanisms. The potential for anti-OA intervention therapy which is based on modulating DNA methylation is also explored. Our results showed that DNA methyltransferases 1 (Dnmt1) downregulation-associated ADAMTS-5 promoter demethylation played an important role in ADAMTS-5 activation in OA, which facilitated SPI-1 binding on ADAMTS-5 promoter to activate ADAMTS-5 expression. More importantly, OA pathological phenotype of mice was alleviated in response to Dnmt1-induced DNA methylation of ADAMTS-5 promoter. Our study will benefit not only for deeper insights into the functional role and regulation mechanisms of ADAMTS-5 in OA, but also for the discovery of disease-modifying OA drugs on the basis of ADAMTS-5 via modulating DNA methylation status.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Tongxin Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Deqiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Zhou S, Zhao G, Chen R, Li Y, Huang J, Kuang L, Zhang D, Li Z, Xu H, Xiang W, Xie Y, Chen L, Ni Z. Lymphatic vessels: roles and potential therapeutic intervention in rheumatoid arthritis and osteoarthritis. Theranostics 2024; 14:265-282. [PMID: 38164153 PMCID: PMC10750203 DOI: 10.7150/thno.90940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Lymphatic vessel networks are a main part of the vertebrate cardiovascular system, which participate in various physiological and pathological processes via regulation of fluid transport and immunosurveillance. Targeting lymphatic vessels has become a potent strategy for treating various human diseases. The presence of varying degrees of inflammation in joints of rheumatoid arthritis (RA) and osteoarthritis (OA), characterized by heightened infiltration of inflammatory cells, increased levels of inflammatory factors, and activation of inflammatory signaling pathways, significantly contributes to the disruption of cartilage and bone homeostasis in arthritic conditions. Increasing evidence has demonstrated the pivotal role of lymphatic vessels in maintaining joint homeostasis, with their pathological alterations closely associated with the initiation and progression of inflammatory joint diseases. In this review, we provide a comprehensive overview of the evolving knowledge regarding the structural and functional aspects of lymphatic vessels in the pathogenesis of RA and OA. In addition, we summarized the potential regulatory mechanisms underlying the modulation of lymphatic function in maintaining joint homeostasis during inflammatory conditions, and further discuss the distinctions between RA and OA. Moreover, we describe therapeutic strategies for inflammatory arthritis based on lymphatic vessels, including the promotion of lymphangiogenesis, restoration of proper lymphatic vessel function through anti-inflammatory approaches, enhancement of lymphatic contractility and drainage, and alleviation of congestion within the lymphatic system through the elimination of inflammatory cells. At last, we envisage potential research perspectives and strategies to target lymphatic vessels in treating these inflammatory joint diseases.
Collapse
Affiliation(s)
- Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Guangyu Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Yang Li
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Junlan Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110015, People's Republic of China
| | - Zhijun Li
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Haofeng Xu
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Wei Xiang
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Zhenhong Ni
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
21
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
22
|
Wang X, Gao F, Cheng C, Zhang Y. Knockdown of ADAMDEC1 ameliorates ox-LDL-induced endothelial cell injury and atherosclerosis progression. Funct Integr Genomics 2023; 24:1. [PMID: 38063920 DOI: 10.1007/s10142-023-01278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
This study was designed to investigate the role of a disintegrin and metalloproteinase domain-like protein decysin 1 (ADAMDEC-1) in atherosclerosis (AS). The Gene Expression Omnibus (GEO) database was utilized to identify differentially expressed genes (DEGs) between carotid atheroma plaque and carotid tissue adjacent atheroma plaque obtained from AS patients. Gene functional enrichment analysis was conducted on DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). QRT-PCR was employed to quantify mRNAs expression. AS animal model was established using ApoE-/- mice; serum triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were detected. Aortic sinus atherosclerotic lesions were observed using H&E staining and Oil Red O staining. ADAMDEC-1 was silenced using small interfering RNAs (siRNAs) in human vascular smooth muscle cells (HVSMCs). Cell proliferation, migration, and cell cycle progression were detected by cell count kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU), wound scratch healing assay, transwell assay, and flow cytometry, respectively. Western blot was used to evaluate various protein expression levels. Our results showed that ADAMDEC-1 was highly expressed in the serum of AS patients, consistent with the in silico results. The elevated TG, LDL-C, and HDL-C levels along with H&E and Oil Red O staining confirmed the successful establishment of the AS mouse model. ADAMDEC-1 expression was also elevated in AS mice. ADAMDEC-1 knockdown in HVSMCs suppressed cell proliferation, inhibited the expression of proliferating cell nuclear antigen (PCNA), and reduced the levels of matrix metalloproteinases (MMP2 and MMP9) proteins. Protein-protein interaction (PPI) analysis indicated that ADAMDEC-1 was associated with CXCL9, CCR5, TNF-α, TNFR1, and NF-κB-p50. The expression levels of CXCL9, CCR5, TNF-α, TNFR1, and NF-κB-p50 increased, while ADAMDEC-1 knockdown attenuated the expression of these proteins. Our study findings substantiate that ADAMDEC-1 may represent a novel target for AS.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Cardiovascular, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei, 230601, Anhui, China.
| | - Feng Gao
- Department of Cardiovascular, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Cheng Cheng
- Department of Cardiovascular, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Yanmei Zhang
- Department of Cardiovascular, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| |
Collapse
|
23
|
He Y, Carver JJ, Erickson T, Le Pabic P, Zhu Y. Dynamic and broad expression of adamts9 in developing and adult zebrafish. Dev Dyn 2023; 252:1449-1461. [PMID: 37436116 PMCID: PMC10784420 DOI: 10.1002/dvdy.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Previous studies showed that Adamts9 is involved in multiple functions including ovulation, spine formation, primordial germ cell migration, and development of primary ovarian follicles in animals. However, systemic examination and high-resolution analyses of adamts9 expression are missing due to lack of a sensitive reporter assay. RESULTS In the present study, we created a new transgenic zebrafish reporter line Tg(adamts9:EGFP) and assayed its expression in various tissues and cells during development and in adults at high-resolution using confocal imaging. Reporter expression was validated with real-time quantitative PCR, whole mount in situ hybridization, and immunohistochemistry for endogenous adamts9. Strong expression of the adamts9:EGFP transgene was found in a wide range of adult and embryonic zebrafish tissues/cells including ovaries, testes, brains, eyes, pectoral fins, intestine, skin, gill, muscle, and heart; while lower expression was observed in the liver and growing ovarian follicles (stages II and III). CONCLUSIONS Our results of a broad and dynamic expression pattern for this evolutionary conserved metalloprotease suggest involvement of adamts9 in the development and physiological functions of various tissues in animals.
Collapse
Affiliation(s)
- Yuanfa He
- College of Fisheries, Southwest University, No. 2 TianSheng Road, Beibei District, Chongqing, P.R. China
- Department of Biology, East Carolina University, 101 E. 10 St., Greenville, NC 27858, USA
| | - Jonathan J Carver
- Department of Biology, East Carolina University, 101 E. 10 St., Greenville, NC 27858, USA
| | - Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, 101 E. 10 St., Greenville, NC 27858, USA
| |
Collapse
|
24
|
Hollander JM, Goraltchouk A, Rawal M, Liu J, Luppino F, Zeng L, Seregin A. Adeno-Associated Virus-Delivered Fibroblast Growth Factor 18 Gene Therapy Promotes Cartilage Anabolism. Cartilage 2023; 14:492-505. [PMID: 36879540 PMCID: PMC10807742 DOI: 10.1177/19476035231158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE To determine the characterization of chondrogenic properties of adeno-associated virus type 2 (AAV2)-delivered hFGF18, via analysis of effects on primary human chondrocyte proliferation, gene expression, and in vivo cartilage thickness changes in the tibia and meniscus. DESIGN Chondrogenic properties of AAV2-FGF18 were compared with recombinant human FGF18 (rhFGF18) in vitro relative to phosphate-buffered saline (PBS) and AAV2-GFP negative controls. Transcriptome analysis was performed using RNA-seq on primary human chondrocytes treated with rhFGF18 and AAV2-FGF18, relative to PBS. Durability of gene expression was assessed using AAV2-nLuc and in vivo imaging. Chondrogenesis was evaluated by measuring weight-normalized thickness in the tibial plateau and the white zone of the anterior horn of the medial meniscus in Sprague-Dawley rats. RESULTS AAV2-FGF18 elicits chondrogenesis by promoting proliferation and upregulation of hyaline cartilage-associated genes, including COL2A1 and HAS2, while downregulating fibrocartilage-associated COL1A1. This activity translates to statistically significant, dose-dependent increases in cartilage thickness in vivo within the area of the tibial plateau, following a single intra-articular injection of the AAV2-FGF18 or a regimen of 6 twice-weekly injections of rhFGF18 protein relative to AAV2-GFP. In addition, we observed AAV2-FGF18-induced and rhFGF18-induced increases in cartilage thickness of the anterior horn of the medial meniscus. Finally, the single-injection AAV2-delivered hFGF18 offers a potential safety advantage over the multi-injection protein treatment as evidenced by reduced joint swelling over the study period. CONCLUSION AAV2-delivered hFGF18 represents a promising strategy for the restoration of hyaline cartilage by promoting extracellular matrix production, chondrocyte proliferation, and increasing articular and meniscal cartilage thickness in vivo after a single intra-articular injection.
Collapse
Affiliation(s)
- Judith M. Hollander
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Miraj Rawal
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
25
|
Tran NT, Jeon SH, Moon YJ, Lee KB. Continuous detrimental activity of intra-articular fibrous scar tissue in correlation with posttraumatic ankle osteoarthritis. Sci Rep 2023; 13:20058. [PMID: 37973826 PMCID: PMC10654697 DOI: 10.1038/s41598-023-47498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Posttraumatic osteoarthritis is primarily characterized by articular cartilage destruction secondary to trauma or fracture events. Even while intra-articular scar tissue can be observed following ankle fractures, little is known about its nature and molecular events linking its biological activity and cartilage deterioration. Here, we investigated scar tissue's histological and molecular characteristics, and its relationship with localized articular cartilage alterations consistent with early osteoarthritic degeneration. Intra-articular scar tissues from sixty-two patients who underwent open reduction internal fixation for ankle fracture were obtained at hardware removal time (6-44 months after fracture). Histological analysis demonstrated that scar tissue has the nature of fibrosis with fibrous tissue hyperplasia, fibroblast proliferation, and chondrometaplasia. These fibrous scar tissues showed overexpressed pro-inflammatory cytokines and high mRNA expression levels of osteoarthritis-related markers (cytokines, chemokines, and enzymes) compared to the normal synovium. Furthermore, those transcriptional levels were significantly correlated with the grade of talar chondral degeneration. Our findings suggest that following an ankle fracture, the intra-articular fibrous scar tissue exhibits high catabolic and inflammatory activity, which has a long-lasting negative impact correlated to cartilage deterioration in the development of posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Nhat Tien Tran
- Department of Surgery, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Sang-Hyeon Jeon
- Department of Orthopaedic Surgery, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, 634-18, Keumam-Dong, Jeonju-Shi, Chonbuk, Republic of Korea
| | - Young Jae Moon
- Department of Orthopaedic Surgery and Biochemistry, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kwang-Bok Lee
- Department of Orthopaedic Surgery, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, 634-18, Keumam-Dong, Jeonju-Shi, Chonbuk, Republic of Korea.
| |
Collapse
|
26
|
Chen J, Xu W, Dai T, Jiao S, Xue X, Jiang J, Li S, Meng Q. Pioglitazone-Loaded Cartilage-Targeted Nanomicelles (Pio@C-HA-DOs) for Osteoarthritis Treatment. Int J Nanomedicine 2023; 18:5871-5890. [PMID: 37873552 PMCID: PMC10590558 DOI: 10.2147/ijn.s428938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023] Open
Abstract
Background Hyaluronic acid (HA) is a popular biological material for osteoarthritis (OA) treatment. Pioglitazone, a PPAR-γ agonist, has been found to inhibit OA, but its use is limited because achieving the desired local drug concentration after administration is challenging. Purpose Herein, we constructed HA-based cartilage-targeted nanomicelles (C-HA-DOs) to deliver pioglitazone in a sustained manner and evaluated their efficacy in vitro and in vivo. Methods C-HA-DOs were chemically synthesized with HA and the WYRGRL peptide and dodecylamine. The products were characterized by FT-IR, 1H NMR, zeta potential and TEM. The drug loading rate and cumulative, sustained drug release from Pio@C-HA-DOs were determined, and their biocompatibility and effect on oxidative stress in chondrocytes were evaluated. The uptake of C-HA-DOs by chondrocytes and their effect on OA-related genes were examined in vitro. The nanomicelle distribution in the joint cavity was observed by in vivo small animal fluorescence imaging (IVIS). The therapeutic effects of C-HA-DOs and Pio@C-HA-DOs in OA rats were analysed histologically. Results The C-HA-DOs had a particle size of 198.4±2.431 nm, a surface charge of -8.290±0.308 mV, and a critical micelle concentration of 25.66 mg/Land were stable in solution. The cumulative drug release from the Pio@C-HA-DOs was approximately 40% at pH 7.4 over 24 hours and approximately 50% at pH 6.4 over 4 hours. Chondrocytes rapidly take up C-HA-DOs, and the uptake efficiency is higher under oxidative stress. In chondrocytes, C-HA-DOs, and Pio@C-HA-DOs inhibited H2O2-induced death, reduced intracellular ROS levels, and restored the mitochondrial membrane potential. The IVIS images confirmed that the micelles target cartilage. Pio@C-HA-DOs reduced the degradation of collagen II and proteoglycans by inhibiting the expression of MMP and ADAMTS, ultimately delaying OA progression in vitro and in vivo. Conclusion Herein, C-HA-DOs provided targeted drug delivery to articular cartilage and improved the role of pioglitazone in the treatment of OA.
Collapse
Affiliation(s)
- Junyan Chen
- Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Wuyan Xu
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Songsong Jiao
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Xiang Xue
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Jiayang Jiang
- Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Siming Li
- Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Qingqi Meng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| |
Collapse
|
27
|
Zou Z, Li H, Yu K, Ma K, Wang Q, Tang J, Liu G, Lim K, Hooper G, Woodfield T, Cui X, Zhang W, Tian K. The potential role of synovial cells in the progression and treatment of osteoarthritis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220132. [PMID: 37933282 PMCID: PMC10582617 DOI: 10.1002/exp.20220132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/15/2023] [Indexed: 11/08/2023]
Abstract
Osteoarthritis (OA), the commonest arthritis, is characterized by the progressive destruction of cartilage, leading to disability. The Current early clinical treatment strategy for OA often centers on anti-inflammatory or analgesia medication, weight loss, improved muscular function and articular cartilage repair. Although these treatments can relieve symptoms, OA tends to be progressive, and most patients require arthroplasty at the terminal stages of OA. Recent studies have shown a close correlation between joint pain, inflammation, cartilage destruction and synovial cells. Consequently, understanding the potential mechanisms associated with the action of synovial cells in OA could be beneficial for the clinical management of OA. Therefore, this review comprehensively describes the biological functions of synovial cells, the synovium, together with the pathological changes of synovial cells in OA, and the interaction between the cartilage and synovium, which is lacking in the present literature. Additionally, therapeutic approaches based on synovial cells for OA treatment are further discussed from a clinical perspective, highlighting a new direction in the treatment of OA.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Han Li
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Kai Yu
- Department of Bone and JointCentral Hospital of Zhuang He CityDalianLiaoningChina
| | - Ke Ma
- Department of Clinical MedicineChina Medical UniversityShenyangLiaoningChina
| | - Qiguang Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuanChina
| | - Junnan Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Guozhen Liu
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Xiaolin Cui
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Weiguo Zhang
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| | - Kang Tian
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| |
Collapse
|
28
|
Chen J, Huang L, Liao X. Protective effects of ginseng and ginsenosides in the development of osteoarthritis (Review). Exp Ther Med 2023; 26:465. [PMID: 37664679 PMCID: PMC10468808 DOI: 10.3892/etm.2023.12164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint disease. Traditional chinese medicine provides a resource for drug screening for OA treatment. Ginseng and the associated bioactive compound, ginsenosides, may reduce inflammation, which is considered a risk factor for the development of OA. Specifically, ginsenosides may exhibit anti-inflammatory and anti-oxidative stress activities, and inhibit extracellular matrix degradation by suppressing the NF-κB and MAPK signaling pathways. Notably, specific ginsenosides, such as compound K and Rk1, may physically interact with IκB kinase and inhibit the associated phosphorylation. Thus, ginsenosides exhibit potential as therapeutic candidates in the management of OA. However, the low water solubility limits the clinical applications of ginsenosides. Numerous effective strategies have been explored to improve bioavailability; however, further investigations are still required.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lin Huang
- Department of Internal Medicine, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
29
|
Matsuoka K, Bakiri L, Bilban M, Toegel S, Haschemi A, Yuan H, Kasper M, Windhager R, Wagner EF. Metabolic rewiring controlled by c-Fos governs cartilage integrity in osteoarthritis. Ann Rheum Dis 2023; 82:1227-1239. [PMID: 37344157 PMCID: PMC10423482 DOI: 10.1136/ard-2023-224002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES The activator protein-1 (AP-1) transcription factor component c-Fos regulates chondrocyte proliferation and differentiation, but its involvement in osteoarthritis (OA) has not been functionally assessed. METHODS c-Fos expression was evaluated by immunohistochemistry on articular cartilage sections from patients with OA and mice subjected to the destabilisation of the medial meniscus (DMM) model of OA. Cartilage-specific c-Fos knockout (c-FosΔCh) mice were generated by crossing c-fosfl/fl to Col2a1-CreERT mice. Articular cartilage was evaluated by histology, immunohistochemistry, RNA sequencing (RNA-seq), quantitative reverse transcription PCR (qRT-PCR) and in situ metabolic enzyme assays. The effect of dichloroacetic acid (DCA), an inhibitor of pyruvate dehydrogenase kinase (Pdk), was assessed in c-FosΔCh mice subjected to DMM. RESULTS FOS-positive chondrocytes were increased in human and murine OA cartilage during disease progression. Compared with c-FosWT mice, c-FosΔCh mice exhibited exacerbated DMM-induced cartilage destruction. Chondrocytes lacking c-Fos proliferate less, have shorter collagen fibres and reduced cartilage matrix. Comparative RNA-seq revealed a prominent anaerobic glycolysis gene expression signature. Consistently decreased pyruvate dehydrogenase (Pdh) and elevated lactate dehydrogenase (Ldh) enzymatic activities were measured in situ, which are likely due to higher expression of hypoxia-inducible factor-1α, Ldha, and Pdk1 in chondrocytes. In vivo treatment of c-FosΔCh mice with DCA restored Pdh/Ldh activity, chondrocyte proliferation, collagen biosynthesis and decreased cartilage damage after DMM, thereby reverting the deleterious effects of c-Fos inactivation. CONCLUSIONS c-Fos modulates cellular bioenergetics in chondrocytes by balancing pyruvate flux between anaerobic glycolysis and the tricarboxylic acid cycle in response to OA signals. We identify a novel metabolic adaptation of chondrocytes controlled by c-Fos-containing AP-1 dimers that could be therapeutically relevant.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Genes and Disease group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Cellular and Molecular Tumor biology, Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Latifa Bakiri
- Genes and Disease group, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hao Yuan
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Genes and Disease group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Genes and Disease group, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Lee HK, Jung NH, Lee DE, Lee H, Yang J, Kim YS, Han SS, Han N, Kim IW, Oh JM. Discovery of Biomarkers Related to Interstitial Fibrosis and Tubular Atrophy among Kidney Transplant Recipients by mRNA-Sequencing. J Pers Med 2023; 13:1242. [PMID: 37623492 PMCID: PMC10455123 DOI: 10.3390/jpm13081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Interstitial fibrosis and tubular atrophy (IF/TA) after kidney transplantation causes a chronic deterioration of graft function. IF/TA can be diagnosed by means of a graft biopsy, which is a necessity as non-invasive diagnostic methods are unavailable. In this study, we identified IF/TA-related differentially expressed genes (DEGs) through next-generation sequencing using peripheral blood mononuclear cells. Blood samples from kidney transplant recipients undergoing standard immunosuppressive therapy (tacrolimus/mycophenolate mofetil or mycophenolate sodium/steroid) and diagnosed as IF/TA (n = 41) or normal (controls; n = 41) at their one-year protocol biopsy were recruited between January of 2020 and August of 2020. DEGs were derived through mRNA sequencing and validated by means of a quantitative real-time polymerase chain reaction. We identified 34 DEGs related to IF/TA. ADAMTS2, PLIN5, CLDN9, and KCNJ15 demonstrated a log2(fold change) of >1.5 and an area under the receiver operating characteristic curve (AUC) value of >0.6, with ADAMTS2 showing the largest AUC value and expression levels, which were 3.5-fold higher in the IF/TA group relative to that observed in the control group. We identified and validated DEGs related to IF/TA progression at one-year post-transplantation. Specifically, we identified ADAMTS2 as a potential IF/TA biomarker.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Na Hyun Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Da Eun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Seok Han
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| |
Collapse
|
31
|
Klück V, Boahen CK, Kischkel B, Dos Santos JC, Matzaraki V, Boer CG, van Meurs JBJ, Schraa K, Lemmers H, Dijkstra H, Leask MP, Merriman TR, Crişan TO, McCarthy GM, Kumar V, Joosten LAB. A functional genomics approach reveals suggestive quantitative trait loci associated with combined TLR4 and BCP crystal-induced inflammation and osteoarthritis. Osteoarthritis Cartilage 2023; 31:1022-1034. [PMID: 37105395 DOI: 10.1016/j.joca.2023.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Basic calcium phosphate (BCP) crystals can activate the NLRP3 inflammasome and are potentially involved in the pathogenesis of osteoarthritis (OA). In order to elucidate relevant inflammatory mechanisms in OA, we used a functional genomics approach to assess genetic variation influencing BCP crystal-induced cytokine production. METHOD Peripheral blood mononuclear cells (PBMCs) were isolated from healthy volunteers who were previously genotyped and stimulated with BCP crystals and/or lipopolysaccharide (LPS) after which cytokines release was assessed. Cytokine quantitative trait locus (cQTL) mapping was performed. For in vitro validation of the cQTL located in anoctamin 3 (ANO3), PBMCs were incubated with Tamoxifen and Benzbromarone prior to stimulation. Additionally, we performed co-localisation analysis of our top cQTLs with the most recent OA meta-analysis of genome-wide association studies (GWAS). RESULTS We observed that BCP crystals and LPS synergistically induce IL-1β in human PBMCs. cQTL analysis revealed several suggestive loci influencing cytokine release upon stimulation, among which are quantitative trait locus annotated to ANO3 and GLIS3. As functional validation, anoctamin inhibitors reduced IL-1β release in PBMCs after stimulation. Co-localisation analysis showed that the GLIS3 locus was shared between LPS/BCP crystal-induced IL-1β and genetic association with Knee OA. CONCLUSIONS We identified and functionally validated a new locus, ANO3, associated with LPS/BCP crystal-induced inflammation in PBMCs. Moreover, the cQTL in the GLIS3 locus co-localises with the previously found locus associated with Knee OA, suggesting that this Knee OA locus might be explained through an inflammatory mechanism. These results form a basis for further exploration of inflammatory mechanisms in OA.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Collins K Boahen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cindy G Boer
- Department of Internal Medicine and Orthopaedics & Sports Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine and Orthopaedics & Sports Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kiki Schraa
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Megan P Leask
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, AL, United States
| | - Tony R Merriman
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, AL, United States
| | - Tania O Crişan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Geraldine M McCarthy
- Department of Rheumatology, Mater Misericordiae University Hospital, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Vinod Kumar
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Centre for Science Education and Research (NUCSER), NITTE University, Mangalore, Karnataka, India
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
32
|
Liu B, Wang C, Weng Z, Yang Y, Zhao H, Zhang Y, Fei Q, Shi Y, Zhang C. Glycolytic enzyme PKM2 regulates cell senescence but not inflammation in the process of osteoarthritis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1425-1433. [PMID: 37525533 PMCID: PMC10520488 DOI: 10.3724/abbs.2023062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
Chondrocyte senescence is an important mechanism underlying osteoarthritis in the senile population and is characterized by reduced expressions of the extracellular matrix proteins. The involvement of glycolysis and the tricarboxylic acid cycle in the development of osteoarthritis is inclusive. The present study aims to investigate the role of the glycolytic enzyme M2 isoform of pyruvate kinase (PKM2) in chondrocytes in senescence and inflammation. Primary chondrocytes are isolated from the knee joints of neonatal mice. Small interfering RNAs (siRNAs) against PKM2 are transfected using lipofectamine. RNA sequencing is conducted in primary chondrocytes with the PKM2 gene deleted. Cell apoptosis, autophagy, reactive oxygen species measurement, and senescent conditions are examined. The glycolytic rate in cells is measured by Seahorse examination. Interleukin 1-β (IL-1β) increases the protein expressions of matrix metallopeptidases (MMP)13 and PKM2 and reduces the protein expression of collagen type II (COL2A1) in primary chondrocytes. Silencing of PKM2 alters the protein expressions of MMP13, PKM2, and COL2A1 in the same pattern in quiescent and stimulated chondrocytes. RNA sequencing analysis reveals that PKM2 silencing reduces senescent biomarker p16 INK4a expression. Compared with low-passage chondrocytes, high-passage chondrocytes exhibit increased expression of p16 INK4a and reduced expression of COL2A1. Silencing of PKM2 reduces SA-β-Gal signals and increases COL2A1 expression in high-passage chondrocytes. Seahorse assay reveals that PKM2 deletion favors the tricarboxylic acid cycle in mitochondria in low- but not in high-passage chondrocytes. In summary, the glycolytic enzyme PMK2 modulates chondrocyte senescence but does not participate in the regulation of inflammation.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Chenzhong Wang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyu Weng
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yi Yang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hong Zhao
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yueqi Zhang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qinming Fei
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yi Shi
- Biomedical Research CentreZhongshan HospitalFudan UniversityShanghai200032China
| | - Chi Zhang
- Department of Orthopedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
33
|
Lv X, Lin Y, Zhang Z, Li B, Zeng Z, Jiang X, Zhao Q, Li W, Wang Z, Yang C, Yan H, Wang Q, Huang R, Hu X, Gao L. Investigating the association between serum ADAM/ADAMTS levels and bone mineral density by mendelian randomization study. BMC Genomics 2023; 24:406. [PMID: 37468870 DOI: 10.1186/s12864-023-09449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) have been reported potentially involved in bone metabolism and related to bone mineral density. This Mendelian Randomization (MR) analysis was performed to determine whether there are causal associations of serum ADAM/ADAMTS with BMD in rid of confounders. METHODS The genome-wide summary statistics of four site-specific BMD measurements were obtained from studies in individuals of European ancestry, including forearm (n = 8,143), femoral neck (n = 32,735), lumbar spine (n = 28,498) and heel (n = 426,824). The genetic instrumental variables for circulating levels of ADAM12, ADAM19, ADAM23, ADAMTS5 and ADAMTS6 were retrieved from the latest genome-wide association study of European ancestry (n = 5336 ~ 5367). The estimated causal effect was given by the Wald ratio for each variant, the inverse-variance weighted model was used as the primary approach to combine estimates from multiple instruments, and sensitivity analyses were conducted to assess the robustness of MR results. The Bonferroni-corrected significance was set at P < 0.0025 to account for multiple testing, and a lenient threshold P < 0.05 was considered to suggest a causal relationship. RESULTS The causal effects of genetically predicted serum ADAM/ADAMTS levels on BMD measurements at forearm, femoral neck and lumbar spine were not statistically supported by MR analyses. Although causal effect of ADAMTS5 on heel BMD given by the primary MR analysis (β = -0.006, -0.010 to 0.002, P = 0.004) failed to reach Bonferroni-corrected significance, additional MR approaches and sensitivity analyses indicated a robust causal relationship. CONCLUSION Our study provided suggestive evidence for the causal effect of higher serum levels of ADAMTS5 on decreased heel BMD, while there was no supportive evidence for the associations of ADAM12, ADAM19, ADAM23, and ADAMTS6 with BMD at forearm, femoral neck and lumbar spine in Europeans.
Collapse
Affiliation(s)
- Xin Lv
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuhong Lin
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ziliang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xu Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiancheng Zhao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenpeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zheyu Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Canchun Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Haolin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiwei Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Renyuan Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xumin Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
34
|
Yang K, Xie Q, Liao J, Zhao N, Liang J, Liu B, Chen J, Cheng W, Bai X, Zhang P, Liu Q, Song B, Wang JD, Zheng F, Hu C, Liu L, Chen L, Wang Y. Shang-Ke-Huang-Shui and coptisine alleviate osteoarthritis in the knee of monosodium iodoacetate-induced rats through inhibiting CXCR4 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116476. [PMID: 37031825 DOI: 10.1016/j.jep.2023.116476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shang-Ke-Huang-Shui (SKHS) is a classic traditional Chinese medicine formula originally from the southern China city of Foshan. It has been widely used in the treatment of osteoarthritis (OA) but underlying molecular mechanisms remain unclear. AIM OF STUDY Recently, activation of C-X-C chemokine receptor type 4 (CXCR4) signaling has been reported to induce cartilage degradation in OA patients; therefore, inhibition of CXCR4 signaling has becoming a promising approach for OA treatment. The aim of this study was to validate the cartilage protective effect of SKHS and test whether the anti-OA effects of SKHS depend on its inhibition on CXCR4 signaling. Additionally, CXCR4 antagonist in SKHS should be identified and its anti-OA activity should also be tested in vitro and in vivo. METHODS The anti-OA effects of SKHS and the newly identified CXCR4 antagonist was evaluated by monosodium iodoacetate (MIA)-induced rats. The articular cartilage surface was examined by hematoxylin and eosin (H&E) staining and Safranin O-Fast Green (S-F) staining whereas the subchondral bone was examined by micro-CT. CXCR4 antagonist screenings were conducted by molecular docking and calcium response assay. The CXCR4 antagonist was characterized by UPLC/MS/MS. The bulk RNA-Seq was conducted to identify CXCR4-mediated signaling pathway. The expression of ADAMTS4,5 was tested by qPCR and Western blot. RESULTS SKHS protected rats from MIA-induced cartilage degradation and subchondral bone damage. SKHS also inhibited CXCL12-indcued ADAMTS4,5 overexpression in chondrocytes through inhibiting Akt pathway. Coptisine has been identified as the most potent CXCR4 antagonist in SKHS. Coptisine reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes. Furthermore, in MIA-induced OA model, the repaired cartilage and subchondral bone were observed in the coptisine-treated rats. CONCLUSION We first report here that the traditional Chinese medicine formula SKHS and its predominate phytochemical coptisine significantly alleviated cartilage degradation as well as subchondral bone damage through inhibiting CXCR4-mediated ADAMTS4,5 overexpression. Together, our work has provided an important insight of the molecular mechanism of SKHS and coptisine for their treatment of OA.
Collapse
Affiliation(s)
- Kuangyang Yang
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Qian Xie
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaxin Liao
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, China
| | - Na Zhao
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Jianhui Liang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ben Liu
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianhai Chen
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xueling Bai
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qian Liu
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Song
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | | | - Fanghao Zheng
- Pharmaceutical Preparation Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lichu Liu
- Institute of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Kouroupis D, Kaplan LD, Huard J, Best TM. CD10-Bound Human Mesenchymal Stem/Stromal Cell-Derived Small Extracellular Vesicles Possess Immunomodulatory Cargo and Maintain Cartilage Homeostasis under Inflammatory Conditions. Cells 2023; 12:1824. [PMID: 37508489 PMCID: PMC10377825 DOI: 10.3390/cells12141824] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA;
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| |
Collapse
|
36
|
Yang S, Zhou X, Jia Z, Zhang M, Yuan M, Zhou Y, Wang J, Xia D. Epigenetic regulatory mechanism of ADAMTS12 expression in osteoarthritis. Mol Med 2023; 29:86. [PMID: 37400752 DOI: 10.1186/s10020-023-00661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1β) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1β-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1β-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Xuanping Zhou
- Department of Orthopedics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, People's Republic of China
| | - Zhen Jia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Mali Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Minghao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Jing Wang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| | - Duo Xia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
37
|
Xu K, Wang H, Wu Z. Genkwanin suppresses mitochondrial dysfunction to alleviate IL-1β-elicited inflammation, apoptosis, and degradation of extracellular matrix in chondrocytes through upregulating DUSP1. CHINESE J PHYSIOL 2023; 66:284-293. [PMID: 37635488 DOI: 10.4103/cjop.cjop-d-23-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Osteoarthritis (OA) is a form of chronic degenerative disease contributing to elevated disability rate among the elderly. Genkwanin is an active component extracted from Daphne genkwa possessing pharmacologic effects. Here, this study is designed to expound the specific role of genkwanin in OA and elaborate the probable downstream mechanism. First, the viability of chondrocytes in the presence or absence of interleukin-1 beta (IL-1β) treatment was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to assess cell apoptosis. Inflammatory response was estimated through enzyme-linked immunosorbent assay and Western blot. In addition, immunofluorescence staining and Western blot were utilized to measure the expression of extracellular matrix (ECM)-associated proteins. Dual-specificity protein phosphatase-1 (DUSP1) expression was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. Following DUSP1 elevation in genkwanin-treated chondrocytes exposed to IL-1β, inflammatory response and ECM-associated factors were evaluated as forementioned. In addition, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide staining was to assess the mitochondrial membrane potential. Adenosine triphosphate (ATP) level was examined with ATP assay kit, and RT-qPCR was used to test mitochondrial DNA expression. Results indicated that genkwanin administration enhanced the viability while ameliorated the apoptosis, inflammatory response, and ECM degradation in IL-1β-induced chondrocytes. Besides, genkwanin treatment fortified DUSP1 expression in IL-1β-exposed chondrocytes. DUSP1 interference further offsets the impacts of genkwanin on the inflammation, ECM degradation, and mitochondrial dysfunction in IL-1β-challenged chondrocytes. In short, genkwanin enhanced DUSP1 expression to mitigate mitochondrial dysfunction, thus ameliorating IL-1β-elicited inflammation, apoptosis, and degradation of ECM in chondrocytes.
Collapse
Affiliation(s)
- Kanna Xu
- Emergency Department, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Haoran Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China
| | - Zhongqing Wu
- Department of Orthopedics, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| |
Collapse
|
38
|
Wei W, Mu H, Cui Q, Yu P, Liu T, Wang T, Sheng L. CircTBX5 knockdown modulates the miR-558/MyD88 axis to alleviate IL-1β-induced inflammation, apoptosis and extracellular matrix degradation in chondrocytes via inactivating the NF-κB signaling. J Orthop Surg Res 2023; 18:477. [PMID: 37393232 DOI: 10.1186/s13018-023-03949-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND It has been widely shared that the dysregulation of circular RNA (circRNA) may contribute to the progression of osteoarthritis (OA). OA is characterized by persistent chondrocyte injury. We aimed to clarify the role of circTBX5 in IL-1β-induced chondrocyte injury. METHODS The expression of circTBX5, miR-558 and MyD88 mRNA was measured using quantitative real-time PCR (qPCR). Cell viability, proliferation and apoptosis were assessed by CCK-8, EdU or flow cytometry assay. The protein levels of extracellular matrix (ECM)-associated markers, MyD88, IkBα, p65 and phosphorylated IkBα were measured by western blot. The release of inflammatory factors was assessed by ELISA. The targets of circTBX5 were screened by RIP and pull-down assay. The putative binding between miR-558 and circTBX5 or MyD88 was validated by dual-luciferase reporter assay. RESULTS CircTBX5 and MyD88 were enhanced, while miR-558 was downregulated in OA cartilage tissues and IL-1β-treated C28/I2 cells. IL-1β induced C28/I2 cell injury by impairing cell viability and proliferation and promoting cell apoptosis, ECM degradation and inflammatory response, while circTBX5 knockdown alleviated IL-1β induced injury. CircTBX5 bound to miR-558 to regulate IL-1β induced cell injury. In addition, MyD88 was a target of miR-558, and circTBX5 targeted miR-558 to positively regulate MyD88 expression. MiR-558 enrichment attenuated IL-1β induced injury by sequestering MyD88 expression. Moreover, circTBX5 knockdown weakened the activity of NF-κB signaling, while miR-558 inhibition or MyD88 overexpression recovered the activity of NF-κB signaling. CONCLUSION CircTBX5 knockdown modulated the miR-558/MyD88 axis to alleviate IL-1β induced chondrocyte apoptosis, ECM degradation and inflammation via inactivating the NF-кB signaling pathway.
Collapse
Affiliation(s)
- Wei Wei
- Department of Rehabilitation Medicine, Yantaishan Hospital, Yantai, China
| | - Hongjie Mu
- Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Qiaoyi Cui
- Department of Rehabilitation Medicine, Yantaishan Hospital, Yantai, China
| | - Peng Yu
- Department of Rehabilitation Medicine, Yantaishan Hospital, Yantai, China
| | - Tong Liu
- Foot and Ankle Surgery, Yantaishan Hospital, Yantai, China
| | - Tao Wang
- Department of Rehabilitation Medicine, Yantaishan Hospital, Yantai, China
| | - Lin Sheng
- Department of Medicine, Yantai City Yu Huangding Hospital, No. 20 Yuhuang East Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
39
|
Zhu C, Liu G, Cui W, Yu Z, Chen W, Qin Y, Liu J, Lu Y, Fan W, Liang W. Astaxanthin prevents osteoarthritis by blocking Rspo2-mediated Wnt/β-catenin signaling in chondrocytes and abolishing Rspo2-related inflammatory factors in macrophages. Aging (Albany NY) 2023; 15:5775-5797. [PMID: 37354487 PMCID: PMC10333078 DOI: 10.18632/aging.204837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Chondrocyte degeneration and classically activated macrophage (AM)-related inflammation play critical roles in osteoarthritis (OA). Here, we explored the effects of astaxanthin and Rspo2 on OA in vitro and in vivo. We observed that the Rspo2 gene was markedly elevated in synovial tissues of OA patients compared with healthy controls. In 2D cultures, Rspo2 and inflammatory factors were enhanced in AMs compared with nonactivated macrophages (NMs), and the protein expression levels of Rspo2, β-catenin, and inflammatory factors were increased, and anabolic markers were reduced in osteoarthritic chondrocytes (OACs) compared to normal chondrocytes (NCs). Astaxanthin reversed these changes in AMs and OACs. Furthermore, Rspo2 shRNA significantly abolished inflammatory factors and elevated anabolic markers in OACs. In NCs cocultured with AM, and in OACs cocultured with AMs or NMs, astaxanthin reversed these changes in these coculture systems and promoted secretion of Rspo2, β-catenin and inflammatory factors and suppressed anabolic markers compared to NCs or OACs cultured alone. In AMs, coculture with NCs resulted in a slight elevation of Rspo2 and AM-related genes, but not protein expression, compared to culture alone, but when cocultured with OACs, these inflammatory mediators were significantly enhanced at both the gene and protein levels. Astaxanthin reversed these changes in all the groups. In vivo, we observed a deterioration in cartilage quality after intra-articular injection of Rspo2 associated with medial meniscus (DMM)-induced instability in the OA group, and astaxanthin was protective in these groups. Our results collectively revealed that astaxanthin attenuated the process of OA by abolishing Rspo2 both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunhui Zhu
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gang Liu
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Weiding Cui
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjie Yu
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Wei Chen
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yao Qin
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiuxiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yaojun Lu
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenwei Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
40
|
Yu H, Li M, Shu J, Dang L, Wu X, Wang Y, Wang X, Chang X, Bao X, Zhu B, Ren X, Chen W, Li Y. Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods. Arthritis Res Ther 2023; 25:102. [PMID: 37308935 PMCID: PMC10258941 DOI: 10.1186/s13075-023-03084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis, affecting millions of aging people. Investigation of abnormal glycosylation is essential for the understanding of pathological mechanisms of OA. METHODS The total protein was isolated from OA (n = 13) and control (n = 11) cartilages. Subsequently, glycosylation alterations of glycoproteins in OA cartilage were investigated by lectin microarrays and intact glycopeptides analysis. Finally, the expression of glycosyltransferases involved in the synthesis of altered glycosylation was assessed by qPCR and GEO database. RESULTS Our findings revealed that several glycopatterns, such as α-1,3/6 fucosylation and high-mannose type of N-glycans were altered in OA cartilages. Notably, over 27% of identified glycopeptides (109 glycopeptides derived from 47 glycoproteins mainly located in the extracellular region) disappeared or decreased in OA cartilages, which is related to the cartilage matrix degradation. Interestingly, the microheterogeneity of N-glycans on fibronectin and aggrecan core protein was observed in OA cartilage. Our results combined with GEO data indicated that the pro-inflammatory cytokines altered the expression of glycosyltransferases (ALG3, ALG5, MGAT4C, and MGAT5) which may contribute to the alterations in glycosylation. CONCLUSION Our study revealed the abnormal glycopatterns and heterogeneities of site-specific glycosylation associated with OA. To our knowledge, it is the first time that the heterogeneity of site-specific N-glycans was reported in OA cartilage. The results of gene expression analysis suggested that the expression of glycosyltransferases was impacted by pro-inflammatory cytokines, which may facilitate the degradation of protein and accelerate the process of OA. Our findings provide valuable information for the understanding of molecular mechanisms in the pathogenesis of OA.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Mingxiu Li
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, 710054, Shaanxi Province, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xin Wu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuzi Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xuan Wang
- The Second Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xin Chang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, 710054, Shaanxi Province, China
| | - Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, 710054, Shaanxi Province, China.
| |
Collapse
|
41
|
Jiang Q, Zhang S. Stimulus-Responsive Drug Delivery Nanoplatforms for Osteoarthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206929. [PMID: 36905239 DOI: 10.1002/smll.202206929] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related degenerative diseases. With an increasingly aging global population, greater numbers of OA patients are providing clear economic and societal burdens. Surgical and pharmacological treatments are the most common and conventional therapeutic strategies for OA, but often fall considerably short of desired or optimal outcomes. With the development of stimulus-responsive nanoplatforms has come the potential for improved therapeutic strategies for OA. Enhanced control, longer retention time, higher loading rates, and increased sensitivity are among the potential benefits. This review summarizes the advanced application of stimulus-responsive drug delivery nanoplatforms for OA, categorized by either those that depend on endogenous stimulus (reactive oxygen species, pH, enzyme, and temperature), or those that depend on exogenous stimulus (near-infrared ray, ultrasound, magnetic fields). The opportunities, restrictions, and limitations related to these various drug delivery systems, or their combinations, are discussed in areas such as multi-functionality, image guidance, and multi-stimulus response. The remaining constraints and potential solutions that are represented by the clinical application of stimulus-responsive drug delivery nanoplatforms are finally summarized.
Collapse
Affiliation(s)
- Qi Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
42
|
Zhang Z, Wang S, Liu X, Yang Y, Zhang Y, Li B, Guo F, Liang J, Hong X, Guo R, Zhang B. Secoisolariciresinol diglucoside Ameliorates Osteoarthritis via Nuclear factor-erythroid 2-related factor-2/ nuclear factor kappa B Pathway: In vitro and in vivo experiments. Biomed Pharmacother 2023; 164:114964. [PMID: 37269815 DOI: 10.1016/j.biopha.2023.114964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease in which inflammation and extracellular matrix (ECM) degradation play a crucial role in the destruction of articular cartilage. Secoisolariciresinol diglucoside (SDG), the main lignan in wholegrain flaxseed, which has been reported to remarkably suppress inflammation and oxidative stress, may have potential therapeutic value in OA. In this study, the effect and mechanism of SDG against cartilage degeneration were verified in the destabilization of the medial meniscus (DMM) and collagen-induced (CIA) arthritis models and interleukin-1β (IL-1β)-stimulated osteoarthritis chondrocyte models. From our experiments, SDG treatment downregulated the expression of pro-inflammatory factors induced by IL-1β in vitro, including inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6). Additionally, SDG promoted the expression of collagen II (COL2A1) and SRY-related high-mobility-group-box gene 9(SOX9), while suppressing the expression of a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5) and matrix metalloproteinases 13(MMP13), which leads to catabolism. Consistently, in vivo, SDG has been identified to have chondroprotective effects in DMM-induced and collagen-induced arthritis models. Mechanistically, SDG exerted its anti-inflammation and anti-ECM degradation effects by activating the Nrf2/HO-1 pathway and inhibiting the nuclear factor kappa B (NF-κB) pathway. In conclusion, SDG ameliorates the progression of OA via the Nrf2/NF-κB pathway, which indicates that SDG may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Yuxin Yang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Yiqin Zhang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Bo Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Fengfen Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Jianhui Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Runsheng Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
43
|
Xiong B, Chen L, Huang Y, Lu G, Chen C, Nong J, Pan H. ZBTB16 eases lipopolysaccharide‑elicited inflammation, apoptosis and degradation of extracellular matrix in chondrocytes during osteoarthritis by suppressing GRK2 transcription. Exp Ther Med 2023; 25:276. [PMID: 37206562 PMCID: PMC10189728 DOI: 10.3892/etm.2023.11975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/23/2023] [Indexed: 05/21/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease of the bone that is a major contributor of disability in the elderly population. Zinc finger and BTB domain-containing 16 (ZBTB16) is a transcription factor that has been previously revealed to be impaired in human OA tissues. The present study was designed to elaborate the potential impact of ZBTB16 on OA and to possibly assess any latent regulatory mechanism. ZBTB16 expression in human OA tissues was examined using the Gene Expression Series (GSE) database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169077) whereas ZBTB16 expression in chondrocytes was examined using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Cell viability was examined using a Cell Counting Kit-8 assay. A TUNEL assay and western blotting were used to assess cell apoptosis and apoptosis-related markers, including Bcl-2, Bax and cleaved caspase-3. The levels and expression of inflammatory factors, including TNF-α, IL-1β and IL-6, were determined by ELISA and western blotting. RT-qPCR and western blotting were also used to analyze the expression levels of extracellular matrix (ECM)-degrading enzymes, including MMP-13, a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs-5, aggrecan and collagen type II α1. After the potential binding of ZBTB16 with the G protein coupled receptor kinase type 2 (GRK2) promoter was predicted using the Cistrome DB database, GRK2 expression was confirmed by RT-qPCR and western blotting. Chromatin immunoprecipitation and luciferase reporter assays were then used to determine the potential interaction between ZBTB16 and the GRK2 promoter. Following GRK2 overexpression in ZBTB16-overexpressing chondrocytes by co-transfection of GRK2 and ZBTB16 overexpression plasmids, the aforementioned functional experiments were performed again. ZBTB16 expression was found to be reduced in human OA tissues compared with in normal cartilage tissues and lipopolysaccharide (LPS)-stimulated chondrocytes. ZBTB16 overexpression increased cell viability whilst decreasing apoptosis, inflammation and ECM degradation by LPS-treated chondrocytes. In addition, GRK2 expression was found to be increased in LPS-stimulated chondrocytes. ZBTB16 successfully bound to the GRK2 promoter, which negatively modulated GRK2 expression. GRK2 upregulation reversed the effects of ZBTB16 overexpression on the viability, apoptosis, inflammation and ECM degradation by LPS-challenged chondrocytes. In conclusion, these data suggest that ZBTB16 may inhibit the development of OA through the transcriptional inactivation of GRK2.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Orthopaedics and Traumatology, First Affiliated Hospital of The Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Lihua Chen
- Department of Orthopaedics and Traumatology, First Affiliated Hospital of The Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Yue Huang
- Department of Orthopaedics and Traumatology, First Affiliated Hospital of The Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Guanyu Lu
- Department of Orthopaedics and Traumatology, First Affiliated Hospital of The Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Cai Chen
- Department of Orthopaedics and Traumatology, First Affiliated Hospital of The Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Jiao Nong
- Teaching Department, First Affiliated Hospital of The Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Haida Pan
- Department of Orthopaedics and Traumatology, Yongjia County Traditional Chinese Medicine Hospital, Wenzhou, Zhejiang 325100, P.R. China
- Correspondence to: Dr Haida Pan, Department of Orthopaedics and Traumatology, Yongjia County Traditional Chinese Medicine Hospital, 6 Park Road, Jiangbei Street, Yongjia, Wenzhou, Zhejiang 325100, P.R. China
| |
Collapse
|
44
|
Li Y, Zhu S, Luo J, Tong Y, Zheng Y, Ji L, He Z, Jing Q, Huang J, Zhang Y, Bi Q. The Protective Effect of Selenium Nanoparticles in Osteoarthritis: In vitro and in vivo Studies. Drug Des Devel Ther 2023; 17:1515-1529. [PMID: 37249927 PMCID: PMC10216853 DOI: 10.2147/dddt.s407122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration. OA usually manifests as joint pain, limited mobility, and joint effusion. Currently, the primary OA treatment is non-steroidal anti-inflammatory drugs (NSAIDs). Although they can alleviate the disease's clinical symptoms and signs, the drugs have some side effects. Selenium nanoparticles (SeNPs) may be an alternative to relieve OA symptoms. Materials and Results We confirmed the anti-inflammatory effect of selenium nanoparticles (SeNPs) in vitro and in vivo experiments for OA disease in this study. In vitro experiments, we found that SeNPs could significantly reduce the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the major inflammatory factors, and had significant anti-inflammatory and anti-arthritic effects. SeNPs can inhibit reactive oxygen species (ROS) production and increased glutathione peroxidase (GPx) activity in interleukin-1beta (IL-1β)-stimulated cells. Additionally, SeNPs down-regulated matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) expressions, while up-regulated type II collagen (COL-2) and aggrecan (ACAN) expressions stimulated by IL-1β. The findings also indicated that SeNPs may exert their effects through suppressing the NF-κB p65 and p38/MAPK pathways. In vivo experiments, the prevention of OA development brought on by SeNPs was demonstrated using a DMM model. Discussion Our results suggest that SeNPs may be a potential anti-inflammatory agent for treating OA.
Collapse
Affiliation(s)
- Yong Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Senbo Zhu
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Junchao Luo
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yu Tong
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yixuan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Lichen Ji
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Zeju He
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Qiangan Jing
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Jiaqing Huang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yinjun Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Qing Bi
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| |
Collapse
|
45
|
Wu A, Pathak JL, Li X, Cao W, Zhong W, Zhu M, Wu Q, Chen W, Han Q, Jiang S, Hei Y, Zhang Z, Wu G, Zhang Q. Human Salivary Histatin-1 Attenuates Osteoarthritis through Promoting M1/M2 Macrophage Transition. Pharmaceutics 2023; 15:pharmaceutics15041272. [PMID: 37111757 PMCID: PMC10147060 DOI: 10.3390/pharmaceutics15041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoarthritis (OA) is an inflammation-driven degenerative joint disease. Human salivary peptide histatin-1 (Hst1) shows pro-healing and immunomodulatory properties. but its role in OA treatment is not fully understood. In this study, we investigated the efficacy of Hst1 in the inflammation modulation-mediated attenuation of bone and cartilage damage in OA. Hst1 was intra-articularly injected into a rat knee joint in a monosodium iodoacetate (MIA)-induced OA model. Micro-CT, histological, and immunohistochemical analyses showed that Hst1 significantly attenuates cartilage and bone deconstruction as well as macrophage infiltration. In the lipopolysaccharide-induced air pouch model, Hst1 significantly reduced inflammatory cell infiltration and inflammation. Enzyme-linked immunosorbent assay (ELISA), RT-qPCR, Western blot, immunofluorescence staining, flow cytometry (FCM), metabolic energy analysis, and high-throughput gene sequencing showed that Hst1 significantly triggers M1-to-M2 macrophage phenotype switching, during which it significantly downregulated nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathways. Furthermore, cell migration assay, Alcian blue, Safranin O staining, RT-qPCR, Western blot, and FCM showed that Hst1 not only attenuates M1-macrophage-CM-induced apoptosis and matrix metalloproteinase expression in chondrogenic cells, but it also restores their metabolic activity, migration, and chondrogenic differentiation. These findings show the promising potential of Hst1 in treating OA.
Collapse
Affiliation(s)
- Antong Wu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Janak Lal Pathak
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xingyang Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qiuyu Wu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wanyi Chen
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qiao Han
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Siqing Jiang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuzhuo Hei
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Ziyi Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), 1081 LA Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
46
|
Xia H, Hu Q, Yang Y, Yuan H, Cai Y, Liu Z, Xu Z, Xiong Y, Zhou J, Ye Q, Zhong Z. Effect of Matrix Metalloproteinase 23 Accelerating Wound Healing Induced by Hydroxybutyl Chitosan. ACS APPLIED BIO MATERIALS 2023; 6:1460-1470. [PMID: 36921248 DOI: 10.1021/acsabm.2c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Skin wounds may cause severe financial and social burden due to the difficulties in wound healing. Original inert dressings cannot meet multiple needs in the process of wound healing. Therefore, the development of materials to accelerate healing progress is essential and urgent. In the previous study, we found that the homogeneously synthesized hydroxybutyl chitosan (HBCS) had an effective performance in promoting wound healing. Proteomic analysis of the same specimen suggested that matrix metalloproteinase 23 (MMP23) may play a key role in HBCS expediting the progress of wound healing. In this work, we aim to reveal the underlying mechanism of MMP23 in the dynamic process of cutaneous proliferation and repair period. In order to regulate the expression level of MMP23 in the local wound area, we leaded in adeno-associated virus (AAV) to specifically decreased expression quantity of MMP23 in rat skin. In contrast to the negative control groups, we found that the wound closed faster and the collagen fibers and neovascularization were significantly increased in AAV groups. These findings highlighted that MMP23 was involved in wound healing after traumatic injury, and managing the expression of MMP23 could be a potential intervention target to accelerate wound healing.
Collapse
Affiliation(s)
- Haoyang Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Qianchao Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Haoran Yuan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yan Cai
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Zhigao Xu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Jinping Zhou
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China.,Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| |
Collapse
|
47
|
Tejpal Singh HS, Aminuddin AA, Pang KL, Ekeuku SO, Chin KY. The Role of Tocotrienol in Arthritis Management—A Scoping Review of Literature. Pharmaceuticals (Basel) 2023; 16:ph16030385. [PMID: 36986484 PMCID: PMC10052945 DOI: 10.3390/ph16030385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arthritis is a cluster of diseases impacting joint health and causing immobility and morbidity in the elderly. Among the various forms of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA) are the most common. Currently, satisfying disease-modifying agents for arthritis are not available. Given the pro-inflammatory and oxidative stress components in the pathogenesis of arthritis, tocotrienol, a family of vitamin E with both anti-inflammatory and antioxidant properties, could be joint-protective agents. This scoping review aims to provide an overview of the effects of tocotrienol on arthritis derived from the existing scientific literature. A literature search using PubMed, Scopus and Web of Science databases was conducted to identify relevant studies. Only cell culture, animal and clinical studies with primary data that align with the objective of this review were considered. The literature search uncovered eight studies investigating the effects of tocotrienol on OA (n = 4) and RA (n = 4). Most of the studies were preclinical and revealed the positive effects of tocotrienol in preserving joint structure (cartilage and bone) in models of arthritis. In particular, tocotrienol activates the self-repair mechanism of chondrocytes exposed to assaults and attenuates osteoclastogenesis associated with RA. Tocotrienol also demonstrated strong anti-inflammatory effects in RA models. The single clinical trial available in the literature showcases that palm tocotrienol could improve joint function among patients with OA. In conclusion, tocotrienol could be a potential anti-arthritic agent pending more results from clinical studies.
Collapse
Affiliation(s)
- Hashwin Singh Tejpal Singh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Alya Aqilah Aminuddin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-391459573
| |
Collapse
|
48
|
You B, Zhou C, Yang Y. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis. Ageing Res Rev 2023; 85:101864. [PMID: 36707035 DOI: 10.1016/j.arr.2023.101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Osteoarthritis (OA), a common cause of chronic articular cartilage degeneration, is the main cause of disability in older adults and severely affects quality of life. Multiple factors are involved in the pathogenesis of OA, resulting in imbalance in the homeostasis of the joint cavity microenvironment, which exacerbates the disease. Because of the deficiency of blood vessels and nerves in cartilage, existing therapies to promote cartilage healing are relatively ineffective. Mesenchymal stem cell (MSC)-related therapies have achieved positive outcomes for the treatment of OA, and these beneficial effects have been confirmed to be largely mediated by extracellular vesicles (EVs). MSC-derived EVs (MSC-EVs) have been demonstrated to participate in the regulation of chondrocyte function, to have anti-inflammatory and immunomodulatory effects, and to alleviate metabolic disorders of the extracellular matrix, thereby slowing the progression of OA. In addition, engineered MSC-EVs can enrich therapeutic molecules and optimize administration to enhance their therapeutic effects on OA. A thorough understanding of the endogenous properties of EVs and related engineering strategies could help researchers develop more precise control therapy for OA.
Collapse
Affiliation(s)
- Benshuai You
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
49
|
Semenistaja S, Skuja S, Kadisa A, Groma V. Healthy and Osteoarthritis-Affected Joints Facing the Cellular Crosstalk. Int J Mol Sci 2023; 24:4120. [PMID: 36835530 PMCID: PMC9964755 DOI: 10.3390/ijms24044120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, severely debilitating, and multifactorial joint disease that is recognized as the most common type of arthritis. During the last decade, it shows an incremental global rise in prevalence and incidence. The interaction between etiologic factors that mediate joint degradation has been explored in numerous studies. However, the underlying processes that induce OA remain obscure, largely due to the variety and complexity of these mechanisms. During synovial joint dysfunction, the osteochondral unit undergoes cellular phenotypic and functional alterations. At the cellular level, the synovial membrane is influenced by cartilage and subchondral bone cleavage fragments and extracellular matrix (ECM) degradation products from apoptotic and necrotic cells. These "foreign bodies" serve as danger-associated molecular patterns (DAMPs) that trigger innate immunity, eliciting and sustaining low-grade inflammation in the synovium. In this review, we explore the cellular and molecular communication networks established between the major joint compartments-the synovial membrane, cartilage, and subchondral bone of normal and OA-affected joints.
Collapse
Affiliation(s)
- Sofija Semenistaja
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Kadisa
- Department of Internal Diseases, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
50
|
Lambova SN. Pleiotropic Effects of Metformin in Osteoarthritis. Life (Basel) 2023; 13:life13020437. [PMID: 36836794 PMCID: PMC9960992 DOI: 10.3390/life13020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
The involvement of the knee joint is the most common localization of the pathological process in osteoarthritis (OA), which is associated with obesity in over 50% of the patients and is mediated by mechanical, inflammatory, and metabolic mechanisms. Obesity and the associated conditions (hyperglycemia, dyslipidemia, and hypertension) have been found to be risk factors for the development of knee OA, which has led to the emerging concept of the existence of a distinct phenotype, i.e., metabolic knee OA. Combined assessment of markers derived from dysfunctional adipose tissue, markers of bone and cartilage metabolism, as well as high-sensitivity inflammatory markers and imaging, might reveal prognostic signs for metabolic knee OA. Interestingly, it has been suggested that drugs used for the treatment of other components of the metabolic syndrome may also affect the clinical course and retard the progression of metabolic-associated knee OA. In this regard, significant amounts of new data are accumulating about the role of metformin-a drug, commonly used in clinical practice with suggested multiple pleiotropic effects. The aim of the current review is to analyze the current views about the potential pleiotropic effects of metformin in OA. Upon the analysis of the different effects of metformin, major mechanisms that might be involved in OA are the influence of inflammation, oxidative stress, autophagy, adipokine levels, and microbiome modulation. There is an increasing amount of evidence from in vitro studies, animal models, and clinical trials that metformin can slow OA progression by modulating inflammatory and metabolic factors that are summarized in the current up-to-date review. Considering the contemporary concept about the existence of metabolic type knee OA, in which the accompanying obesity and systemic low-grade inflammation are suggested to influence disease course, metformin could be considered as a useful and safe component of the personalized therapeutic approach in knee OA patients with accompanying type II diabetes or obesity.
Collapse
Affiliation(s)
- Sevdalina Nikolova Lambova
- Department of Propaedeutics of Internal Diseases “Prof Dr Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department in Rheumatology, MHAT “Sveti Mina”, 4002 Plovdiv, Bulgaria
| |
Collapse
|