1
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Xue Q, Li J, Qin R, Li M, Li Y, Zhang J, Wang R, Goltzman D, Miao D, Yang R. Nrf2 activation by pyrroloquinoline quinone inhibits natural aging-related intervertebral disk degeneration in mice. Aging Cell 2024; 23:e14202. [PMID: 38780001 PMCID: PMC11320358 DOI: 10.1111/acel.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Age-related intervertebral disk degeneration (IVDD) involves increased oxidative damage, cellular senescence, and matrix degradation. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound with strong anti-oxidant capacity. The goal of this study was to determine whether PQQ can prevent aging-related IVDD, and the underlying mechanism. Here, we found that dietary PQQ supplementation for 12 months alleviated IVDD phenotypes in aged mice, including increased disk height index and reduced histological scores and cell loss, without toxicity. Mechanistically, PQQ inhibited oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the nucleus pulposus and annulus fibrosus of aged mice. Similarly, PQQ protected against interleukin-1β-induced matrix degradation, reactive oxygen species accumulation, and senescence in human nucleus pulposus cells (NPCs) in vitro. Molecular docking predicted and biochemical assays validated that PQQ interacts with specific residues to dissociate the Keap1-Nrf2 complex, thereby increasing nuclear Nrf2 translocation and activation of Nrf2-ARE signaling. RNA sequencing and luciferase assays revealed Nrf2 can transcriptionally upregulate Wnt5a by binding to its promoter, while Wnt5a knockdown prevented PQQ inhibition of matrix metalloproteinase-13 in NPCs. Notably, PQQ supplementation failed to alleviate aging-associated IVDD phenotypes and oxidative stress in aged Nrf2 knockout mice, indicating Nrf2 is indispensable for PQQ bioactivities. Collectively, this study demonstrates Nrf2 activation by PQQ inhibits aging-induced IVDD by attenuating cellular senescence and matrix degradation. This study clarifies Keap1-Nrf2-Wnt5a axis as the novel signaling underlying the protective effects of PQQ against aging-related IVDD, and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced IVDD.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Jie Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Ran Qin
- Department of OrthopaedicsNanjing First HospitalNanjingChina
| | - Mingying Li
- Shenzhen Key Laboratory for Systemic Aging and InterventionShenzhen UniversityShenzhenChina
| | - Yiping Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Jing Zhang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Rong Wang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of MedicineMcGill UniversityMontrealQuebecCanada
| | - Dengshun Miao
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Renlei Yang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Sun R, Wang F, Zhong C, Shi H, Peng X, Gao JW, Wu XT. The regulatory mechanism of cyclic GMP-AMP synthase on inflammatory senescence of nucleus pulposus cell. J Orthop Surg Res 2024; 19:421. [PMID: 39034400 PMCID: PMC11265083 DOI: 10.1186/s13018-024-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1β for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1β. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-β-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1β for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1β. CONCLUSION cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.
Collapse
Affiliation(s)
- Rui Sun
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Feng Wang
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Cong Zhong
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Hang Shi
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Xin Peng
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Jia-Wei Gao
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Xiao-Tao Wu
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China.
| |
Collapse
|
4
|
Wang X, Zeng Q, Ge Q, Hu S, Jin H, Wang PE, Li J. Protective effects of Shensuitongzhi formula on intervertebral disc degeneration via downregulation of NF-κB signaling pathway and inflammatory response. J Orthop Surg Res 2024; 19:80. [PMID: 38243334 PMCID: PMC10799454 DOI: 10.1186/s13018-023-04391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 01/21/2024] Open
Abstract
Low back pain (LBP) is a common orthopedic disease over the world. Lumbar intervertebral disc degeneration (IDD) is regarded as an important cause of LBP. Shensuitongzhi formula (SSTZF) is a drug used in clinical treatment for orthopedic diseases. It has been found that SSTZF can have a good treatment for IDD. But the exact mechanism has not been clarified. The results showed that SSTZF protects against LSI-induced degeneration of cartilage endplates and intervertebral discs. Meanwhile, SSTZF treatment dramatically reduces the expression of inflammatory factor as well as the expression of catabolism protein and upregulates the expression of anabolism protein in LSI-induced mice. In addition, SSTZF delayed the progression of LSI-induced IDD via downregulation the level of NF-κB signaling key gene RELA and phosphorylation of key protein P65 in endplate chondrocytes. Our study has illustrated the treatment as well as the latent mechanism of SSTZF in IDD.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinghe Zeng
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinwen Ge
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Songfeng Hu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Ping-Er Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| | - Ju Li
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Chen F, Lei L, Chen S, Zhao Z, Huang Y, Jiang G, Guo X, Li Z, Zheng Z, Wang J. Serglycin secreted by late-stage nucleus pulposus cells is a biomarker of intervertebral disc degeneration. Nat Commun 2024; 15:47. [PMID: 38167807 PMCID: PMC10761730 DOI: 10.1038/s41467-023-44313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Intervertebral disc degeneration is a natural process during aging and a leading cause of lower back pain. Here, we generate a comprehensive atlas of nucleus pulposus cells using single-cell RNA-seq analysis of human nucleus pulposus tissues (three males and four females, age 41.14 ± 18.01 years). We identify fibrotic late-stage nucleus pulposus cells characterized by upregulation of serglycin expression which facilitate the local inflammatory response by promoting the infiltration of inflammatory cytokines and macrophages. Finally, we discover that daphnetin, a potential serglycin ligand, substantially mitigates the local inflammatory response by downregulating serglycin expression in an in vivo mouse model, thus alleviating intervertebral disc degeneration. Taken together, we identify late-stage nucleus pulposus cells and confirm the potential mechanism by which serglycin regulates intervertebral disc degeneration. Our findings indicate that serglycin is a latent biomarker of intervertebral disc degeneration and may contribute to development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Fan Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Linchuan Lei
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shunlun Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Zhuoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Huang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Guowei Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Guo
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China.
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China.
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, P.R. China.
| |
Collapse
|
6
|
Fang X, Sun D, Li Y, Han X, Gan Y, Jiao J, Jiang M, Gong H, Qi Y, Zhao J. Macrophages in the process of osseointegration around the implant and their regulatory strategies. Connect Tissue Res 2024; 65:1-15. [PMID: 38166507 DOI: 10.1080/03008207.2023.2300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE/AIM OF THE STUDY To summarize and discuss macrophage properties and their roles and mechanisms in the process of osseointegration in a comprehensive manner, and to provide theoretical support and research direction for future implant surface modification efforts. MATERIALS AND METHODS Based on relevant high-quality articles, this article reviews the role of macrophages in various stages of osseointegration and methods of implant modification. RESULTS AND CONCLUSIONS Macrophages not only promote osseointegration through immunomodulation, but also secrete a variety of cytokines, which play a key role in the angiogenic and osteogenic phases of osseointegration. There is no "good" or "bad" difference between the M1 and M2 phenotypes of macrophages, but their timely presence and sequential switching play a crucial role in implant osseointegration. In the implant surface modification strategy, the induction of sequential activation of the M1 and M2 phenotypes of macrophages is a brighter prospect for implant surface modification than inducing the polarization of macrophages to the M1 or M2 phenotypes individually, which is a promising pathway to enhance the effect of osseointegration and increase the success rate of implant surgery.
Collapse
Affiliation(s)
- Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Duo Sun
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Heyi Gong
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
- Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Zhao W, Li Y, Cheng X, Wei H, Li P, Fan L, Liu K, Zhang S, Wang H. The antioxidant Glycitin protects against intervertebral disc degeneration through antagonizing inflammation and oxidative stress in nucleus pulposus cells. Aging (Albany NY) 2023; 15:13693-13709. [PMID: 38019477 PMCID: PMC10756108 DOI: 10.18632/aging.205251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a kind of typical degenerative disorder of the skeletal muscle system caused by many factors including aging, abnormal mechanical stress and inflammatory responses. Glycitin is a natural isoflavone extracted from legumes. Previous studies have found that it is anti-inflammatory and promotes wound repair. However, the role of Glycitin in IVDD has not been elucidated. In the present research, we were surprised that Glycitin antagonized the NF-κB pathway activity. In addition, we also found that Glycitin alleviated TNF-α-induced metabolic disorders, extracellular matrix degradation, oxidative stress, inflammation responses, and mitochondrial damage. Furthermore, in in vivo experimental study, we discovered Glycitin attenuated IVDD. The results revealed that Glycitin alleviated the degenerative phenotype of IVDD. According to this research, Glycitin has anti-inflammatory properties that might exert a protective function in IVDD, suggesting a prospective therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yanpei Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Xiang Cheng
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Peng Li
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Lixia Fan
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Kaiwen Liu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Shuai Zhang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Hao Wang
- Department of Trauma Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
8
|
Zeng Q, Sun Q, Xu H, Chen J, Ling H, Ge Q, Zou K, Wang X, Jin H, Li J, Jin M. Amygdalin Delays Cartilage Endplate Degeneration and Improves Intervertebral Disc Degeneration by Inhibiting NF-κB Signaling Pathway and Inflammatory Response. J Inflamm Res 2023; 16:3455-3468. [PMID: 37600226 PMCID: PMC10438437 DOI: 10.2147/jir.s415527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a major cause of lower back pain (LBP), in which inflammatory is frequently involved. Amygdalin (AMD) is a naturally occurring compound that exerts anti-fibrotic, anti-inflammatory, analgesic, and immunomodulatory effects in various diseases. The purpose of this study was to investigate the therapeutic effects and molecular mechanisms of AMD on Lumbar spine instability (LSI)-induced IDD in mice. Methods In this study, we first explored the effects of AMD in vivo, and then further explored the mechanism of its effects both in vivo and in vitro. Ten-week-old male C57BL/6J mice were administrated with AMD. At 10 weeks after LSI, spinal were collected for tissue analyses, including histology, micro-CT, and immunohistochemistry for Col2, Mmp-13, TNF-α, and p-P65. Additionally, we also evaluated the mRNA and protein expression level of p-P65 and p-IKBα after being treated with AMD in vitro. Results Histological staining, micro-CT and immunohistochemical analysis showed that AMD treatment significantly inhibited the expression of TNF-α and Mmp-13, increased the expression of Col2 as well as attenuated the calcification of cartilage endplates, eventually to delayed the progression of IDD. Meanwhile, in vivo and in vitro fluorescence imaging revealed that AMD markedly inhibited the AMD significantly inhibited the LSI-induced increase in TNF-α expression and P65and IKBα phosphorylation. Discussion Our findings suggest that AMD partly inhibits the activation of NF-κB signaling pathway to reduce the release of inflammatory mediators and delay the degeneration of cartilage endplate in IDD model mice. Therefore, AMD may be a potential candidate for the treatment of IDD.
Collapse
Affiliation(s)
- Qinghe Zeng
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huihui Xu
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Houfu Ling
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Qinwen Ge
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Kaiao Zou
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xu Wang
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ju Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Minwei Jin
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Pan H, Li H, Guo S, Wang C, Long L, Wang X, Shi H, Zhang K, Chen H, Li S. The mechanisms and functions of TNF-α in intervertebral disc degeneration. Exp Gerontol 2023; 174:112119. [PMID: 36758650 DOI: 10.1016/j.exger.2023.112119] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Low back pain (LBP) is one of the most common health problems in people's lives, which brings a massive burden to clinicians, and the leading cause of LBP is intervertebral disc degeneration (IDD). IDD is mainly caused by factors such as aging, mechanical stress, and lack of nutrition. The pathological mechanism of IDD is very complex, involving inflammatory response, cell metabolism disorder, and so on. Unfortunately, in the current treatment of IDD, only relieving symptoms as the primary means of relieving a patient's pain cannot effectively inhibit or reverse the progression of IDD. Tumor necrosis factor-α (TNF-α) is a multifunctional pro-inflammatory factor involved in many diseases' pathological processes. With the in-depth study of the pathological mechanism of IDD, more and more evidence has shown that TNF-α is an essential activator of IDD, which is related to the metabolic disorder, inflammatory responses, apoptosis, and other pathological processes of extracellular dissociation in the intervertebral disc. Therefore, anti-TNF-α therapy is an effective therapeutic target for alleviating IDD, especially in inhibiting extracellular matrix degradation and reducing inflammatory responses. This article reviews the pathological role of TNF-α in IDD and the latest research progress of TNF-α inhibitors in treating IDD.
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaiquan Zhang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
Shnayder NA, Ashhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Vaiman EE, Petrova MM, Nasyrova RF. Cytokine Imbalance as a Biomarker of Intervertebral Disk Degeneration. Int J Mol Sci 2023; 24:ijms24032360. [PMID: 36768679 PMCID: PMC9917299 DOI: 10.3390/ijms24032360] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Zaitun A. Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Elena E. Vaiman
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| |
Collapse
|
11
|
Liu Z, Zhu J, Liu H, Fu C. Natural products can modulate inflammation in intervertebral disc degeneration. Front Pharmacol 2023; 14:1150835. [PMID: 36874009 PMCID: PMC9978229 DOI: 10.3389/fphar.2023.1150835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Intervertebral discs (IVDs) play a crucial role in maintaining normal vertebral anatomy as well as mobile function. Intervertebral disc degeneration (IDD) is a common clinical symptom and is an important cause of low back pain (LBP). IDD is initially considered to be associated with aging and abnormal mechanical loads. However, over recent years, researchers have discovered that IDD is caused by a variety of mechanisms, including persistent inflammation, functional cell loss, accelerated extracellular matrix decomposition, the imbalance of functional components, and genetic metabolic disorders. Of these, inflammation is thought to interact with other mechanisms and is closely associated with the production of pain. Considering the key role of inflammation in IDD, the modulation of inflammation provides us with new options for mitigating the progression of degeneration and may even cause reversal. Many natural substances possess anti-inflammatory functions. Due to the wide availability of such substances, it is important that we screen and identify natural agents that are capable of regulating IVD inflammation. In fact, many studies have demonstrated the potential clinical application of natural substances for the regulation of inflammation in IDD; some of these have been proven to have excellent biosafety. In this review, we summarize the mechanisms and interactions that are responsible for inflammation in IDD and review the application of natural products for the modulation of degenerative disc inflammation.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Haiyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration. Bioact Mater 2022; 23:247-260. [PMID: 36439087 PMCID: PMC9676151 DOI: 10.1016/j.bioactmat.2022.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration (IVDD). However, the elevation of oxidative stress in the degenerated region impairs the efficiency of mesenchymal stem cells (BMSCs) transplantation treatment via exaggeration of mitochondrial ROS and promotion of BMSCs apoptosis. Herein, we applied an emulsion-confined assembly method to encapsulate Coenzyme Q10 (Co-Q10), a promising hydrophobic antioxidant which targets mitochondria ROS, into the lecithin micelles, which renders the insoluble Co-Q10 dispersible in water as stable colloids. These micelles are injectable, which displayed efficient ability to facilitate Co-Q10 to get into BMSCs in vitro, and exhibited prolonged release of Co-Q10 in intervertebral disc tissue of animal models. Compared to mere use of Co-Q10, the Co-Q10 loaded micelle possessed better bioactivities, which elevated the viability, restored mitochondrial structure as well as function, and enhanced production of ECM components in rat BMSCs. Moreover, it is demonstrated that the injection of this micelle with BMSCs retained disc height and alleviated IVDD in a rat needle puncture model. Therefore, these Co-Q10 loaded micelles play a protective role in cell survival and differentiation through antagonizing mitochondrial ROS, and might be a potential therapeutic agent for IVDD.
Collapse
|
13
|
Uchiyama K, Takagi T, Mizushima K, Asaeda K, Kajiwara M, Kashiwagi S, Minagawa Y, Hotta Y, Tanaka M, Inoue K, Dohi O, Okayama T, Yoshida N, Katada K, Kamada K, Ishikawa T, Yasuda H, Konishi H, Kishimoto M, Naito Y, Itoh Y. Investigation on the Inhibitory Effect of Wnt-5a on Colonic Mucosal Inflammation in Patients with Ulcerative Colitis. Dig Dis Sci 2022; 67:4760-4769. [PMID: 35590045 DOI: 10.1007/s10620-022-07537-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recent progress in ulcerative colitis (UC) treatment has been remarkable, and various medications have been applied. However, some patients with UC are refractory to treatment and convert to surgery. AIM To investigate the role of colonic mucosal Wnt-5a expression in the pathogenesis of UC and the effect of bioactive Wnt-5a peptide on colitis in mice. METHODS Wnt-5a peptide was intraperitoneally administered to mice every day from the beginning of dextran sulfate sodium (DSS) treatment. The severity of colitis was evaluated based on body weight change, colonic length, and histological scores. Colonic mucosal TNF-α and KC mRNA expression levels were measured. This study included 70 patients with UC in clinical remission. Wnt-5a, TNFα, and IL-8 mRNA expression in the rectal mucosa were measured by quantitative real-time polymerase chain reaction using biopsy materials. Wnt-5a mRNA expression levels were compared between patients who relapsed and those in remission. We examined the correlation of Wnt-5a expression with TNF-α and IL-8 expression. RESULTS Wnt-5a peptide significantly attenuated the severity of DSS-induced colitis. Moreover, mucosal TNF-α and KC mRNA expression were significantly suppressed by Wnt-5a peptide treatment. Wnt-5a mRNA levels were significantly lower in patients with subsequent relapse than in those who remained in remission. Mucosal Wnt-5a was inversely correlated with TNF α and IL-8 expression. CONCLUSION Wnt-5a peptide suppressed colitis in mice, and decreased Wnt-5a expression was strongly associated with relapse in patients with UC. Wnt-5a may have an inhibitory effect on mucosal inflammation in UC, and Wnt-5a peptide could be a new therapeutic strategy.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan.
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kohei Asaeda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mariko Kajiwara
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Minagawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuma Hotta
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Makoto Tanaka
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroaki Yasuda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Surgical Pathology, Kyoto City Hospital, Kyoto, 604-8845, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho Hirokoji Kawaramachi Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
14
|
Specific PFKFB3 Inhibitor Memorably Ameliorates Intervertebral Disc Degeneration via Inhibiting NF-κB and MAPK Signaling Pathway and Reprogramming of Energy Metabolism of Nucleus Pulposus Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7548145. [PMID: 36187335 PMCID: PMC9519352 DOI: 10.1155/2022/7548145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is a characteristic of the dominating pathological processes of nucleus pulposus (NP) cell senescence, abnormal synthesis and irregular distribution of extracellular matrix (ECM), and tumor necrosis factor-α (TNF-α) induced inflammation. Nowadays, IVD acid environment variation which accelerates the pathological processes mentioned above arouses researchers' attention. KAN0438757 (KAN) is an effective inhibitor of selective metabolic kinase phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) that has both energy metabolism reprogramming and anti-inflammatory effects. Therefore, a potential therapeutic benefit of KAN lies in its ability to inhibit the development of IVDD. This study examined in vitro KAN toxicity in NP primary cells (NPPs). Moreover, KAN influenced tumor necrosis factor-α (TNF-α) induced ECM anabolism and catabolism; the inflammatory signaling pathway activation and the energy metabolism phenotype were also examined in NPPs. Furthermore, KAN's therapeutic effect was investigated in vivo using the rat tail disc puncture model. Phenotypically speaking, the KAN treatment partially rescued the ECM degradation and glycolysis energy metabolism phenotypes of NPPs induced by TNF-α. In terms of mechanism, KAN inhibited the activation of MAPK and NF-κB inflammatory signaling pathways induced by TNF-α and reprogramed the energy metabolism. For the therapeutic aspect, the rat tail disc puncture model demonstrated that KAN has a significant ameliorated effect on the progression of IVDD. To sum up, our research successfully authenticated the potential therapeutic effect of KAN on IVDD and declaimed its mechanisms of both novel energy metabolism reprogramming and conventional anti-inflammation effect.
Collapse
|
15
|
Chen C, Luo L, Xu C, Yang X, Liu T, Luo J, Shi W, Yang L, Zheng Y, Yang J. Tumor specificity of WNT ligands and receptors reveals universal squamous cell carcinoma oncogenes. BMC Cancer 2022; 22:790. [PMID: 35850748 PMCID: PMC9295300 DOI: 10.1186/s12885-022-09898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background The WNT signal pathway has myriad family members, which are broadly involved in embryonic development and human cancer. Over-activation of WNT-β-Catenin signaling promotes cancer cell proliferation and survival. However, how diverse components of WNT signaling specifically engaged in distinct tumor types remains incompletely understood. Methods We analyzed the transcriptomic profiling of WNT ligands and receptors/co-receptors among 26 different tumor types to identify their expression pattern, and further verified these results using clinical oral squamous cell carcinoma (OSCC) and lung squamous cell carcinoma (LUSC) samples. At the same time, we also detected WNT7B expression in oral inflammation and carcinoma, and constructed stable WNT7B knockdown OSCC cell lines to study the effects of WNT7B on the cell migration and invasion ability. Results We found a group of tumor-specific WNT members, including a panel of squamous cell carcinomas (SCCs) specific upregulated WNT ligands and receptors, WNT5A, WNT7B, FZD7 and GPC1. We further revealed a significant correlation between these protein expression characteristics and clinical outcomes of OSCC and LUSC patients. Moreover, WNT7B was demonstrated to contribute to the development of oral chronic inflammation and OSCC, partly due to promoting the invasion ability of tumor cells. Conclusions These results demonstrate that the function of WNT ligands and receptors in specific tumors depends on the origination of tumor tissue type. Collectively, they support the use of WNT components as a highly specific target for pan-tissue-type originated tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09898-2.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lunan Luo
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Changling Xu
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xia Yang
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ting Liu
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jingyue Luo
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wen Shi
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100191, China
| | - Lu Yang
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yi Zheng
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Jing Yang
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
16
|
Sun J, Wang Z, Liu P, Hu Y, Li T, Yang J, Gao P, Xu Q. Exosomes Derived From Human Gingival Mesenchymal Stem Cells Attenuate the Inflammatory Response in Periodontal Ligament Stem Cells. Front Chem 2022; 10:863364. [PMID: 35464198 PMCID: PMC9019468 DOI: 10.3389/fchem.2022.863364] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022] Open
Abstract
This study aimed to explore the effects of exosomes derived from human gingival mesenchymal stem cells (GMSC-Exo) on the inflammatory response of periodontal ligament stem cells (PDLSCs) in an inflammatory microenvironment in order to restore the regenerative potential of PDLSCs, which promotes periodontal tissue regeneration in patients with periodontitis. Periodontitis is a chronic infectious disease characterized by periodontal tissue inflammation and alveolar bone destruction. PDLSCs are regarded as promising seed cells for restoring periodontal tissue defects because of their ability to regenerate cementum/PDL-like tissue and alveolar bone. However, PDLSCs in the inflammatory environment show significantly attenuated regenerative potential. GMSC-Exo have been reported to have anti-inflammatory and immunosuppressive properties. In this study, we investigated the effects of GMSC-Exo on the inflammatory response of PDLSCs induced by lipopolysaccharides (LPS). LPS was used to simulate the inflammatory microenvironment of periodontitis in vitro. GMSC-Exo were extracted from the culture supernatant of GMSCs by ultracentrifugation. We found that GMSC-Exo attenuated the inflammatory response of PDLSCs induced by LPS. Furthermore, compared to treatment with LPS, treatment with GMSC-Exo attenuated the expression of NF-κB signaling and Wnt5a in LPS-induced PDLSCs. In conclusion, we confirmed that GMSC-Exo could suppress the inflammatory response of PDLSCs by regulating the expression of NF-κB signaling and Wnt5a, which paves the way for the establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Jiayao Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Zhiguo Wang
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Quanchen Xu, ; Zhiguo Wang,
| | - Peng Liu
- Department of Surgery, Qingdao West Coast New Area People’s Hospital, Qingdao, China
| | - Yingzhe Hu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Tingting Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianbo Yang
- Department of Stomatology, Weihai Stomatological Hospital, Weihai, China
| | - Pengyu Gao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Quanchen Xu, ; Zhiguo Wang,
| |
Collapse
|
17
|
Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation. Exp Mol Med 2022; 54:518-530. [PMID: 35440754 PMCID: PMC9076866 DOI: 10.1038/s12276-022-00753-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain, and inflammatory factors play key roles in its pathogenesis. Gremlin-1 (Grem1) was reported to induce an inflammatory response in other fields. This study aimed to investigate the mechanisms of Grem1 in the degenerative process of intervertebral discs. Dysregulated genes were determined by analyzing microarray profiles. The expression of Grem1 in 17 human disc samples (male:female = 9:8) and rat models (n = 5 each group) was measured by western blotting (WB), real-time quantitative PCR (RT-qPCR), and immunohistochemistry (IHC). The regulatory effects of Grem1 on apoptosis were examined using siRNAs, flow cytometry, immunofluorescence (IF), and WB. The therapeutic effect was evaluated by locally injecting specific Grem1 siRNA into IVDD rats. The expression of Grem1 was significantly increased in human degenerative intervertebral discs; furthermore, the expression of Grem1 positively correlated with the level of intervertebral disc degeneration. Grem1 was significantly overexpressed in tumor necrosis factor (TNF)-α-induced degenerative NP cells. Apoptosis in degenerative NP cells transfected with siRNA targeting Grem1 was significantly lower than that in the control group. Specific Grem1 siRNA markedly repressed the development of IVDD in surgery-induced IVDD rats. These results indicated that the expression of Grem1 was positively correlated with the severity of intervertebral disc degeneration, and Grem1 siRNA could inhibit Grem1-induced apoptosis and extracellular matrix alterations by mediating the TGF-β/Smad signaling pathway. This study may provide a therapeutic strategy for alleviating inflammation-induced apoptosis associated with intervertebral disc degeneration.
Collapse
|
18
|
Ye F, Lyu F, Wang H, Zheng Z. The involvement of immune system in intervertebral disc herniation and degeneration. JOR Spine 2022; 5:e1196. [PMID: 35386754 PMCID: PMC8966871 DOI: 10.1002/jsp2.1196] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration contributes significantly to low back pain (LBP), of which the molecular pathogenesis is not fully understood. Disc herniation may cause LBP and radicular pain, but not all LBP patients have disc herniation. Degenerated discs could be the source of pain, but not all degenerated discs are symptomatic. We previously found that disc degeneration and herniation accompanied by inflammation. We further found that anti-inflammatory molecules blocked immune responses, alleviated IVD degeneration and pain. Based on our recent findings and the work of others, we hypothesize that immune system may play a prominent role in the production of disc herniation or disc degeneration associated pain. While the nucleus pulposus (NP) is an immune-privileged organ, the damage of the physical barrier between NP and systemic circulation, or the innervation and vascularization of the degenerated NP, on one hand exposes NP as a foreign antigen to immune system, and on the other hand presents compression on the nerve root or dorsal root ganglion (DRG), which both elicit immune responses induced by immune cells and their mediators. The inflammation can remain for a long time at remote distance, with various types of cytokines and immune cells involved in this pain-inducing process. In this review, we aim to revisit the autoimmunity of the NP, immune cell infiltration after break of physical barrier, the inflammatory activities in the DRG and the generation of pain. We also summarize the involvement of immune system, including immune cells and cytokines, in degenerated or herniated IVDs and affected DRG.
Collapse
Affiliation(s)
- Fubiao Ye
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Orthopaedics, Fujian Provincial HospitalProvincial Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Feng‐Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Pain Research CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
20
|
Yuan X, Li T, Shi L, Miao J, Guo Y, Chen Y. Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3. Mol Med 2021; 27:91. [PMID: 34412584 PMCID: PMC8375162 DOI: 10.1186/s10020-021-00355-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is the breakdown of the discs supporting the vertebrae. It is one of the most frequent causes of back pain worldwide. Currently, the clinical interventions for IVDD are mainly focused on symptom releases. Thus, new therapeutic options are needed. Methods Nucleus pulposus (NP) samples were obtained from 20 patients experiencing IVDD and 10 healthy volunteers compared for mRNA N6-methyladenosine (m6A) mRNA modification as well as methyltransferase (METT) like METTL3, METTL14, and Wilms’ tumor 1-associated protein mRNA and protein abundance following exosomes exposure from mesenchymal stem cells. In addition, microRNA expressions were also compared. The correlation between the NLR family pyrin domain containing 3 (NLRP3) and METTL14 was measured by luciferase reporter assay. Cytokines were evaluated using an enzyme-linked immunosorbent assay. METTL14, NLRP3, and insulin-like growth factor 2 mRNA-binding protein 2 mRNAs were measured via a quantitative reverse transcription-polymerase chain reaction. Protein was assayed using western blots. Cell death was assessed by propidium iodide staining, lactate dehydrogenase release, gasdermin-N domain abundance, and caspase-1 activation. Results The human umbilical cord mesenchymal stem cell (hucMSC) exosomes were found to effectively improve the viability of NP cells and protect them from pyroptosis through targeting METTL14, with a methyltransferase catalyzing m6A modification. METTL14 was highly present in NP cells from IVDD patients, which stabilize NLRP3 mRNA in an IGFBP2-dependent manner. The elevated NLRP3 levels result in the increase of interleukin 1β (IL-1β) and IL-18 levels and trigger pyroptotic NP cell death. Such pathogenic axis could be blocked by hucMSC exosomes, which directly degrade METTL14 through exosomal miR-26a-5p. Conclusions The results of the current study revealed the beneficial effects of hucMSC exosomes on NP cells and determined a potential mechanism inducing IVDD. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00355-7.
Collapse
Affiliation(s)
- Xiaoqiu Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, No 415 Fengyang Road, Shanghai, 200003, China
| | - Tiefeng Li
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, No 415 Fengyang Road, Shanghai, 200003, China
| | - Lei Shi
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, No 415 Fengyang Road, Shanghai, 200003, China
| | - Jinhao Miao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, No 415 Fengyang Road, Shanghai, 200003, China
| | - Yongfei Guo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, No 415 Fengyang Road, Shanghai, 200003, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, No 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
21
|
Kobayashi N, Shinagawa S, Nagata T, Tagai K, Shimada K, Ishii A, Oka N, Shigeta M, Kondo K. Blood DNA Methylation Levels in the WNT5A Gene Promoter Region: A Potential Biomarker for Agitation in Subjects with Dementia. J Alzheimers Dis 2021; 81:1601-1611. [PMID: 33967051 PMCID: PMC8293647 DOI: 10.3233/jad-210078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Behavioral and psychological symptoms of dementia (BPSD) cause a heavy burden for both patient and caregivers. These symptoms are diverse, and their mechanism is still unclear. Agitation is the most common and difficult to treat among BPSD. In recent years, while changes in DNA methylation levels have been receiving attention as a biomarker of aging and dementia, associations with BPSD have not been examined. Objective: Focusing on agitation, the objective of the present study was to identify a region where changes in DNA methylation levels are associated with agitation. Methods: Using genome-wide DNA methylation analysis data for 7 dementia subjects with agitation, 5 dementia subjects without agitation, and 4 normal elderly controls, we determined a signaling pathway in the WNT5A gene promoter region to be associated with agitation. Based on this result, we measured DNA methylation levels in this region for 26 dementia subjects with agitation and 82 dementia subjects without agitation by means of methylation-sensitive high-resolution melting (MS-HRM) analysis. Results: The WNT5A DNA methylation level in dementia subjects with agitation was significantly lower than in those without agitation (p = 0.001). Changes in WNT5A DNA methylation levels were not influenced by age, sex, body mass index, APOE ɛ4, medication, or inflammatory cytokines. Conclusion: Our results suggested an association of agitation with Wnt signaling, in particular with changes in WNT5A DNA methylation levels, which could be a potentially useful biomarker for predicting the appearance of agitation. It may contribute to the elucidation of the mechanism of BPSD.
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Tomoyuki Nagata
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenji Tagai
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Azusa Ishii
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Shigeta
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Qi Y, Tang R, Shi Z, Feng G, Zhang W. Wnt5a/Platelet-rich plasma synergistically inhibits IL-1β-induced inflammatory activity through NF-κB signaling pathway and prevents cartilage damage and promotes meniscus regeneration. J Tissue Eng Regen Med 2021; 15:612-624. [PMID: 33843153 DOI: 10.1002/term.3198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/30/2020] [Accepted: 04/06/2021] [Indexed: 12/25/2022]
Abstract
Noncanonical Wnt5a is a particularly attractive growth factor to maintain chondrogenesis. Platelet-rich plasma (PRP) is an autologous blood-derived product and a source of bioactive growth factors involved in tissue regeneration. The present study aimed to investigate the effect and inflammation reaction of Wnt5a/PRP on meniscus cells, and evaluate meniscus regeneration and osteoarthritis (OA) prevention by the application of Wnt5a/PRP gel in a rabbit model of massive meniscal defect. In vitro, the proliferation, migration, differentiation, and interleukin-1 beta (IL-1β) IL-1β-induced inflammation reaction of meniscus cells treated by Wnt5a and PRP was assessed. In vivo, the anterior half of the medial meniscus of 18 New Zealand rabbits was excised and implanted with PRP gel, Wnt5a/PRP gel or untreated. After 6 and 12 weeks, the regenerated meniscus were evaluated. Wnt5a can promote the migration of meniscus cells. PRP and Wnt5a had synergistic effect in promoting the proliferation and chondrogenic differentiation of meniscus cells. The IL-1β-induced meniscus cells study showed that PRP and Wnt5a had the anti-inflammatory actions through nuclear factor kB (NF-κB) signaling pathway. PRP and Wnt5a/PRP significantly inhibited the increase of the p-p65/p65 and p-IκB-α/IκB-α ratios. In vivo transplantation of Wnt5a/PRP gel was demonstrated to promote meniscus regeneration, while reducing OA of knee joint. Wnt5a with PRP had the anti-inflammatory activity in an IL-1β-induced inflammatory model. They can synergistically improve the chondorgenic differentiation of meniscus cells. Wnt5a/PRP gel treatment could potentially be developed into a new method for meniscus regeneration and the prevention of OA.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruofu Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zuobing Shi
- Department of Orthopedic Surgery, Liangzhu Hospital, Hangzhou, Zhejiang, China
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Wu ZL, Xie QQ, Liu TC, Yang X, Zhang GZ, Zhang HH. Role of the Wnt pathway in the formation, development, and degeneration of intervertebral discs. Pathol Res Pract 2021; 220:153366. [PMID: 33647863 DOI: 10.1016/j.prp.2021.153366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IVDD) is an age-related degenerative disease that is the main cause of low back pain. It seriously affects the quality of life of patients and places a heavy economic burden on families and society. The Wnt pathway plays an important role in the growth, development, and degeneration of intervertebral discs (IVDs). In the embryonic stage, the Wnt pathway participates in the growth and development of IVD by promoting the transformation of progenitor cells into notochord cells and the extension of the notochord. However, the activation of the Wnt pathway after birth promotes IVD cell senescence, apoptosis, and degradation of the extracellular matrix and induces the production of inflammatory factors, thereby accelerating the IVDD process. This article reviews the relationship between the Wnt pathway and IVD, emphasizing its influence on IVD growth, development, and degeneration. Targeting this pathway may become an effective strategy for the treatment of IVDD.
Collapse
Affiliation(s)
- Zuo-Long Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Tai-Cong Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Xing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China.
| |
Collapse
|
24
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Huang JF, Zheng XQ, Lin JL, Zhang K, Tian HJ, Zhou WX, Wang H, Gao Z, Jin HM, Wu AM. Sinapic Acid Inhibits IL-1β-Induced Apoptosis and Catabolism in Nucleus Pulposus Cells and Ameliorates Intervertebral Disk Degeneration. J Inflamm Res 2020; 13:883-895. [PMID: 33209047 PMCID: PMC7667918 DOI: 10.2147/jir.s278556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Low back pain (LBP) is a very common condition and leads to serious pain, disability, and price tag all over the world. Intervertebral disk degeneration (IDD) is one of the major reasons that contributed to LBP. The levels of interleukin 1 beta (IL-1β) increase significantly in degenerative disks. IL-1β also accelerates IDD. Sinapic acid (SA) has the effect of anti‐inflammatory, antioxidant and antimicrobial. However, the effect of SA on IDD has never been studied. Therefore, the aim of this study was to figure out whether SA has protective effect on nucleus pulposus (NP) cells and further explore the possible underlying mechanism. Methods The nucleus pulposus (NP) tissues of rats were collected and cultured into NP cells. The NP cells were stimulated by IL-1β and treated with SA. In vitro treatment effects were evaluated by ELISA, Western blot assay, immunofluorescence, TUNEL method and real-time PCR. We conducted percutaneous needle puncture in the rat tail to build intervertebral disk degeneration model and treated rats with SA. In vivo treatment effects were evaluated by hematoxylin and eosin (HE) and safranin O (SO) staining and magnetic resonance imaging (MRI) method. Results Our results showed that SA not only inhibited apoptosis but also suppressed inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS) interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in IL-1β-stimulated NP cells. As to extracellular matrix (ECM), SA could increase collagen II and aggrecan levels and reduce the expression of MMP13 and ADAMTS5 during the stimulation of IL-1β. Furthermore, SA could activate nuclear factor‐erythroid 2‐related factor‐2 (Nrf2) to inhibit nuclear factor κB (NF‐κB) induced by IL‐1β. Nrf2 knockdown partly reduced the protective effect of SA on NP cells. Correspondingly, SA ameliorated IDD by promoting Nrf2 expression. In vivo results also showed that SA could delay the progression of IDD. Conclusion In conclusion, we demonstrated that SA could protect the degeneration of NP cells and revealed the underlying mechanism of SA on Nrf2 activation in NP cells.
Collapse
Affiliation(s)
- Jin-Feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, People's Republic of China
| | - Hai-Jun Tian
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, People's Republic of China
| | - Wen-Xian Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ze Gao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hai-Ming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
26
|
Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, Presciutti SM, Gibson G, Drissi H. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep 2020; 10:15263. [PMID: 32943704 PMCID: PMC7499307 DOI: 10.1038/s41598-020-72261-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Intervertebral disc (IVD) disease (IDD) is a complex, multifactorial disease. While various aspects of IDD progression have been reported, the underlying molecular pathways and transcriptional networks that govern the maintenance of healthy nucleus pulposus (NP) and annulus fibrosus (AF) have not been fully elucidated. We defined the transcriptome map of healthy human IVD by performing single-cell RNA-sequencing (scRNA-seq) in primary AF and NP cells isolated from non-degenerated lumbar disc. Our systematic and comprehensive analyses revealed distinct genetic architecture of human NP and AF compartments and identified 2,196 differentially expressed genes. Gene enrichment analysis showed that SFRP1, BIRC5, CYTL1, ESM1 and CCNB2 genes were highly expressed in the AF cells; whereas, COL2A1, DSC3, COL9A3, COL11A1, and ANGPTL7 were mostly expressed in the NP cells. Further, functional annotation clustering analysis revealed the enrichment of receptor signaling pathways genes in AF cells, while NP cells showed high expression of genes related to the protein synthesis machinery. Subsequent interaction network analysis revealed a structured network of extracellular matrix genes in NP compartments. Our regulatory network analysis identified FOXM1 and KDM4E as signature transcription factor of AF and NP respectively, which might be involved in the regulation of core genes of AF and NP transcriptome.
Collapse
Affiliation(s)
- Lorenzo M Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Camila M Trochez
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meixue Duan
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
27
|
Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 2020; 131:110660. [PMID: 32853910 DOI: 10.1016/j.biopha.2020.110660] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain (LBP), a prevalent and costly disease around the world, is predominantly caused by intervertebral disc (IVD) degeneration (IDD). LBP also presents a substantial burden to public health and the economy. IDD is mainly caused by aging, trauma, genetic susceptibility, and other factors. It is closely associated with changes in tissue structure and function, including progressive destruction of the extracellular matrix (ECM), enhanced senescence, disc cell death, and impairment of tissue biomechanical function. The inflammatory process, exacerbated by cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), are considered to be the key mediators of IDD and LBP. IL-1β and TNF-α are the most important proinflammatory cytokines, as they have powerful proinflammatory activities and can promote the secretion of a variety of proinflammatory mediators. They are also upregulated in the degenerative IVDs, and they are closely related to various pathological IDD processes, including inflammatory response, matrix destruction, cellular senescence, autophagy, apoptosis, pyroptosis, and proliferation. Therefore, anti-IL-1β and anti-TNF-α therapies may have the potential to alleviate disc degeneration and LBP. In this paper, we reviewed the expression pattern and signal transduction pathways of IL-1β and TNF-α, and we primarily focused on their similar and different roles in IDD. Because IL-1β and TNF-α inhibition have the potential to alleviate IDD, an in-depth understanding of the role of IL-1β and TNF-α in IDD will benefit the development of new treatment methods for disc degeneration with IL-1β and TNF-α at the core.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingxue Che
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
28
|
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2020; 250:302-317. [PMID: 32564440 DOI: 10.1002/dvdy.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell-based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench-side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human-induced pluripotent stem cells into notochord-like and nucleus pulposus-like cells for use in novel cell-based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post-natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell-based therapies to bring emerging subphenotypes into consideration.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Qi Y, Zhang W, Li G, Niu L, Zhang Y, Tang R, Feng G. An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model. FASEB J 2020; 34:11115-11132. [PMID: 32627881 DOI: 10.1096/fj.202000280r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/20/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Abstract
Articular cartilage regeneration remains a major challenge in orthopedics. Noncanonical Wnt5a is a particularly attractive growth factor in this context; Wnt5a inhibits chondrocyte hypertrophy but maintains chondrogenesis. We designed a novel, vertically oriented-collagen scaffold. The effect of Wnt5a on MSCs and chondrocytes and the therapeutic effects of the Wnt5a/oriented-collagen scaffold in terms of osteochondral repair and cartilage integration were evaluated. In vitro, the proliferation, migration, and differentiation of MSCs and chondrocytes treated with Wnt5a, and the mechanisms thereof, were assessed. mRNA microarray analysis was performed to compare the expression profiles of MSCs before and after Wnt5a treatment. In vivo, full-thickness cylindrical osteochondral defects (4 mm in diameter, 3 mm in depth) were created in the patellar grooves of 24 New Zealand white rabbits and implanted with oriented-collagen scaffolds (n = 8), Wnt5a/oriented-collagen scaffolds (n = 8), or nothing (n = 8). After 6 and 12 weeks, integration and tissue responses were evaluated. The proliferation, migration, chondrogenic differentiation, and extracellular matrix formation of/by MSCs and chondrocytes improved greatly after treatment with Wnt5a. Western blotting showed that the PI3K/AKT/JNK signaling pathway was activated. Microarray analysis revealed that the Wnt5a group exhibited a significant upregulation of the PI3K pathway. Reactome GSEA pathway interaction analysis revealed that such upregulation was associated with collagen and extracellular matrix formation. In vivo, the Wnt5a/oriented-collagen scaffold group exhibited optimal interface integration, cartilage regeneration, and collagenous fiber arrangement, accompanied by significantly increased glycosaminoglycan and collagen accumulations in the zones of regeneration and integration, compared to the other groups. Gene expression analysis showed that the levels of mRNAs encoding genes involved in cartilage formation were significantly increased in the Wnt5a/oriented, collagen scaffold group (all P < .05). Wnt5a promoted the proliferation, migration, and chondrogenic differentiation of MSCs and chondrocytes via the activation of the PI3K/AKT/JNK signaling pathway. The Wnt5a/oriented-collagen constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment for the repair of human cartilage defects.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Guoqi Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Lie Niu
- Department of Orthopedic Surgery, People's Hospital of Dongping County, Shandong, China
| | - Yuxiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ruofu Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
30
|
Zhao Y, Qiu C, Wang W, Peng J, Cheng X, Shangguan Y, Xu M, Li J, Qu R, Chen X, Jia S, Luo D, Liu L, Li P, Guo F, Vasilev K, Liu L, Hayball J, Dong S, Pan X, Li Y, Guo L, Cheng L, Li W. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation. Theranostics 2020; 10:7015-7033. [PMID: 32550919 PMCID: PMC7295059 DOI: 10.7150/thno.45359] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Intervertebral disc (IVD) degeneration is a common degenerative disease that can lead to collapse or herniation of the nucleus pulposus (NP) and result in radiculopathy in patients. Methods: NP tissue and cells were isolated from patients and mice, and the expression profile of cortistatin (CST) was analysed. In addition, ageing of the NP was compared between 6-month-old WT and CST-knockout (CST-/-) mice. Furthermore, NP tissues and cells were cultured to validate the role of CST in TNF-α-induced IVD degeneration. Moreover, in vitro and in vivo experiments were performed to identify the potential role of CST in mitochondrial dysfunction, mitochondrial ROS generation and activation of the NLRP3 inflammasome during IVD degeneration. In addition, NF-κB signalling pathway activity was tested in NP tissues and cells from CST-/- mice. Results: The expression of CST in NP cells was diminished in the ageing- and TNF-α-induced IVD degeneration process. In addition, compared with WT mice, aged CST-/- mice displayed accelerated metabolic imbalance and enhanced apoptosis, and these mice showed a disorganized NP tissue structure. Moreover, TNF-α-mediated catabolism and apoptosis were alleviated by exogenous CST treatment. Furthermore, CST inhibited mitochondrial dysfunction in NP cells through IVD degeneration and suppressed activation of the NLRP3 inflammasome. In vitro and ex vivo experiments indicated that increased NF-κB pathway activity might have been associated with the IVD degeneration observed in CST-/- mice. Conclusion: This study suggests the role of CST in mitochondrial ROS and activation of the NLRP3 inflammasome in IVD degeneration, which might shed light on therapeutic targets for IVD degeneration.
Collapse
|
31
|
Zhang GZ, Deng YJ, Xie QQ, Ren EH, Ma ZJ, He XG, Gao YC, Kang XW. Sirtuins and intervertebral disc degeneration: Roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta 2020; 508:33-42. [PMID: 32348785 DOI: 10.1016/j.cca.2020.04.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which seriously reduces the quality of life of patients and places a heavy economic burden on their families. Cellular senescence is considered to be an important factor leading to IDD, and inflammatory response, oxidative stress, and mitochondrial dysfunction are closely related to intervertebral disc (IVD) senescence. Therefore, inhibition of the inflammatory response and oxidative stress, along with maintaining mitochondrial function, may be useful in treating IDD. The sirtuins are a family of evolutionarily conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, which are the major molecules mediating life extension or delay of aging-related diseases. The sirtuin protein family consist of seven members (SIRT1 - 7), which are mainly involved in various aging-related diseases by regulating inflammation, oxidative stress, and mitochondrial function. Among them, SIRT1, SIRT2, SIRT3, and SIRT6 are closely related to IDD. In addition, some activators of sirtuin proteins, such as resveratrol, melatonin, magnolol, 1,4-dihydropyridine (DHP), SRT1720, and nicotinamide mononucleotide (NMN), have been evaluated in preclinical studies for their effects in preventing IDD. This review described the biological functions of sirtuins and the important roles of SIRT1, SIRT2, SIRT3, and SIRT6 in IDD by regulating oxidative stress, inflammatory response, and mitochondrial function. In addition, we introduce the status of some sirtuin activators in IDD preclinical studies. This review will provide a background for further clarification of the molecular mechanism underlying IDD and the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yi-Cheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China; The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China.
| |
Collapse
|
32
|
Volleman TNE, Schol J, Morita K, Sakai D, Watanabe M. Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine 2020; 17:19-35. [PMID: 32252152 PMCID: PMC7136098 DOI: 10.14245/ns.2040040.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Collapse
Affiliation(s)
- Tibo Nico Emmie Volleman
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
33
|
Liu Q, Yang C, Wang S, Shi D, Wei C, Song J, Lin X, Dou R, Bai J, Xiang Z, Huang S, Liu K, Xiong B. Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal 2020; 18:51. [PMID: 32228612 PMCID: PMC7106599 DOI: 10.1186/s12964-020-00557-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) in the tumor microenvironment influence tumor initiation, invasion and metastasis. Several studies have shown that Wnt5a is mainly expressed in the tumor stroma, especially in TAMs. However, whether Wnt5a regulates the polarization and biological function of TAMs in colorectal cancer (CRC) is incompletely understood. Methods Immunofluorescence staining was performed to detect CD68 and Wnt5a expression in colorectal tissues from patients (63 CRC specimens VS 20 normal tissues). RT-qPCR, flow cytometry, ELISA and inhibitors were carried out to explore the role of Wnt5a in the polarization of TAMs. Clone formation and transwell assays were performed to determine the effects of Wnt5a–treated macrophages on tumor proliferation, migration and invasion in vitro. Finally, a xenograft model was applied to confirm the effects of Wnt5a+ TAMs on CRC tumorigenesis. Results We found that high Wnt5a+CD68+/CD68+ TAMs ratio was significantly associated with poor prognosis in CRC patients and Wnt5a+ TAM was an M2-like TAM subtype. Subsequently, we found that Wnt5a induced macrophages to secrete IL-10, which then acted as an autocrine cytokine to induce M2 polarization of these macrophages. IL-10 neutralizing antibody completely reversed the pro-M2 effect of Wnt5a. Mechanistically, the CaKMII-ERK1/2-STAT3 pathway was required for Wnt5a-mediated IL-10 expression in macrophages. Furthermore, Wnt5a-induced M2 macrophages promoted CRC cells proliferation, migration and invasion; knockdown of Wnt5a in TAMs significantly impaired the pro-tumor functions of TAMs. Conclusions Our data indicate that Wnt5a could induce M2 polarization of TAMs by regulating CaKMII-ERK1/2-STAT3 pathway–mediated IL-10 secretion, ultimately promoting tumor growth and metastasis of CRC.
Collapse
Affiliation(s)
- Qing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Chen Wei
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xiaobin Lin
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jian Bai
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Zhenxian Xiang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Sihao Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Keshu Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
34
|
Li X, Zhang Z, Liang W, Zeng J, Shao X, Xu L, Jia L, He X, Li H, Zheng C, Ye H, Asakawa T. Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: In vivo and in vitro verification. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112390. [PMID: 31760158 DOI: 10.1016/j.jep.2019.112390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tougu Xiaotong capsules (TXC) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY We attempted to verify TXC's therapeutic effects and mechanisms related to the p38 mitogen-activated protein kinase (MAPK) pathway in vivo and in vitro. MATERIALS AND METHODS TXC's therapeutic effects were assessed by observing cartilage degeneration and inflammatory factors in a modified Hulth's model (in vivo) and a lipopolysaccharides (LPS)-exposed cellular model (in vitro). The expression of biomarkers related to p38 MAPK pathway-mediated inflammation was also investigated. RESULTS TXC treatment reversed cartilage degeneration related biomarkers (ADAMTS 4, ADAMTS 5, Col I, Col V, MMP 3, MMP 9, and MMP 13) and inflammation factors (IL-1β, TNF-α, and IL-6) in both the animal and cellular OA models. Expression of p-p38 MAPK was downregulated following TXC administration, and changes to microRNAs in the cellular models were recovered. These results indicated that the p38 MAPK pathway-related mechanism may involve therapeutic effects of TXC. CONCLUSIONS This study verified TXC's efficacy to treat OA in vivo and in vitro and suggests that p38 MAPK pathway-related mechanisms may be involved in TXC's therapeutic effects.
Collapse
Affiliation(s)
- Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, PR China.
| | - Zhenli Zhang
- SIPO Patent Examination (Beijing) Center, Beijing, 100160, PR China.
| | - Wenna Liang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Xiang Shao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Limei Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Liangliang Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Xiaojuan He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Hui Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Chunsong Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, PR China.
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu-city, Shizuoka, 431-3192, Japan.
| |
Collapse
|
35
|
Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, Pan H, Cui H, Long J, Wang J, Zheng Z. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res 2020; 8:10. [PMID: 32133213 PMCID: PMC7028926 DOI: 10.1038/s41413-020-0087-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response is induced by the overexpression of inflammatory cytokines, mainly interleukin (IL)-1β, and is one of the main causes of intervertebral disc degeneration (IVDD). NLR pyrin domain containing 3 (NLRP3) inflammasome activation is an important source of IL-1β. As an anti-inflammatory neuroendocrine hormone, melatonin plays various roles in different pathophysiological conditions. However, its roles in IVDD are still not well understood and require more examination. First, we demonstrated that melatonin delayed the progression of IVDD and relieved IVDD-related low back pain in a rat needle puncture IVDD model; moreover, NLRP3 inflammasome activation (NLRP3, p20, and IL-1β levels) was significantly upregulated in severely degenerated human discs and a rat IVDD model. Subsequently, an IL-1β/NF-κB-NLRP3 inflammasome activation positive feedback loop was found in nucleus pulposus (NP) cells that were treated with IL-1β. In these cells, expression of NLRP3 and p20 was significantly increased, NF-κB signaling was involved in this regulation, and mitochondrial reactive oxygen species (mtROS) production increased. Furthermore, we found that melatonin disrupted the IL-1β/NF-κB-NLRP3 inflammasome activation positive feedback loop in vitro and in vivo. Melatonin treatment decreased NLRP3, p20, and IL-1β levels by inhibiting NF-κB signaling and downregulating mtROS production. Finally, we showed that melatonin mediated the disruption of the positive feedback loop of IL-1β in vivo. In this study, we showed for the first time that IL-1β promotes its own expression by upregulating NLRP3 inflammasome activation. Furthermore, melatonin disrupts the IL-1β positive feedback loop and may be a potential therapeutic agent for IVDD.
Collapse
Affiliation(s)
- Fan Chen
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Guowei Jiang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hui Liu
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Zemin Li
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuxin Pei
- 2Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hua Wang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Hehai Pan
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Haowen Cui
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jun Long
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jianru Wang
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhaomin Zheng
- 1Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- 3Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080 China
| |
Collapse
|
36
|
Bai WW, Tang ZY, Shan TC, Jing XJ, Li P, Qin WD, Song P, Wang B, Xu J, Liu Z, Yu HY, Ma ZM, Wang SX, Liu C, Guo T. Up-regulation of paired-related homeobox 2 promotes cardiac fibrosis in mice following myocardial infarction by targeting of Wnt5a. J Cell Mol Med 2019; 24:2319-2329. [PMID: 31880857 PMCID: PMC7011146 DOI: 10.1111/jcmm.14914] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiac fibrosis is a key factor to determine the prognosis in patient with myocardial infarction (MI). The aim of this study is to investigate whether the transcriptional factor paired‐related homeobox 2 (Prrx2) regulates Wnt5a gene expression and the role in myocardial fibrosis following MI. The MI surgery was performed by ligation of left anterior descending coronary artery. Cardiac remodelling was assessed by measuring interstitial fibrosis performed with Masson staining. Cell differentiation was examined by analysis the expression of alpha‐smooth muscle actin (α‐SMA). Both Prrx2 and Wnt5a gene expressions were up‐regulated in mice following MI, accompanied with increased mRNA and protein levels of α‐SMA, collagen I and collagen III, compared to mice with sham surgery. Adenovirus‐mediated gene knock down of Prrx2 increased survival rate, alleviated cardiac fibrosis, decreased infarction sizes and improved cardiac functions in mice with MI. Importantly, inhibition of Prrx2 suppressed ischaemia‐induced Wnt5a gene expression and Wnt5a signalling. In cultured cardiac fibroblasts, TGF‐β increased gene expressions of Prrx2 and Wnt5a, and induced cell differentiations, which were abolished by gene silence of either Prrx2 or Wnt5a. Further, overexpression of Prrx2 or Wnt5a mirrored the effects of TGF‐β on cell differentiations of cardiac fibroblasts. Gene silence of Wnt5a also ablated cell differentiations induced by Prrx2 overexpression in cardiac fibroblasts. Mechanically, Prrx2 was able to bind with Wnt5a gene promoter to up‐regulate Wnt5a gene expression. In conclusions, targeting Prrx2‐Wnt5a signalling should be considered to improve cardiac remodelling in patients with ischaemic heart diseases.
Collapse
Affiliation(s)
- Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Yu Tang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Ti-Chao Shan
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Jiao Jing
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wei-Dong Qin
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ping Song
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bo Wang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jian Xu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, China
| | - Zhi-Min Ma
- Department of Endocrinology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Chao Liu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
37
|
Li R, Lin S, Zhu M, Deng Y, Chen X, Wei K, Xu J, Li G, Bian L. Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. SCIENCE ADVANCES 2019; 5:eaaw3896. [PMID: 31663014 PMCID: PMC6795506 DOI: 10.1126/sciadv.aaw3896] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/25/2019] [Indexed: 05/30/2023]
Abstract
Noncanonical Wnt signaling in stem cells is essential to numerous developmental events. However, no prior studies have capitalized on the osteoinductive potential of noncanonical Wnt ligands to functionalize biomaterials in enhancing the osteogenesis and associated skeleton formation. Here, we investigated the efficacy of the functionalization of biomaterials with a synthetic Wnt5a mimetic ligand (Foxy5 peptide) to promote the mechanosensing and osteogenesis of human mesenchymal stem cells by activating noncanonical Wnt signaling. Our findings showed that the immobilized Wnt5a mimetic ligand activated noncanonical Wnt signaling via the up-regulation of Disheveled 2 and downstream RhoA-ROCK signaling, leading to enhanced intracellular calcium level, F-actin stability, actomyosin contractility, and cell adhesion structure development. This enhanced mechanotransduction in stem cells promoted the in vitro osteogenic lineage commitment and the in vivo healing of rat calvarial defects. Our work provides valuable guidance for the developmentally inspired design of biomaterials for a wide array of therapeutic applications.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Meiling Zhu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Jianbin Xu
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P. R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, P. R. China
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077 Hong Kong, P.R. China
| |
Collapse
|
38
|
Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration. PLoS One 2019; 14:e0222188. [PMID: 31513634 PMCID: PMC6742346 DOI: 10.1371/journal.pone.0222188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Environmental and endogenous factors under genetic predisposition are considered to initiate the human intervertebral disc (IVD) degeneration. DNA methylation is an essential mechanism to ensure cell-specific gene expression for normal development and tissue stability. Aberrant epigenetic alterations play a pivotal role in several diseases, including osteoarthritis. However, epigenetic alternations, including DNA methylation, in IVD degeneration have not been evaluated. The purpose of this study was to comprehensively compare the genome-wide DNA methylation profiles of human IVD tissues, specifically nucleus pulpous (NP) tissues, with early and advanced stages of disc degeneration. METHODS Human NP tissues were used in this study. The samples were divided into two groups: early stage degeneration (n = 8, Pfirrmann's MRI grade: I-III) and advanced stage degeneration (n = 8, grade: IV). Genomic DNA was processed for genome-wide DNA methylation profiling using the Infinium MethylationEPIC BeadChip array. Extraction of raw methylation data, clustering and scatter plot of each group values of each sample were performed using a methylation module in GenomeStudio software. The identification of differentially methylated loci (DMLs) and the Gene Ontology (GO) analysis were performed using R software with the ChAMP package. RESULTS Unsupervised hierarchical clustering revealed that early and advanced stage degenerated IVD samples segregated into two main clusters by their DNA methylome. A total of 220 DMLs were identified between early and advanced disc degeneration stages. Among these, four loci were hypomethylated and 216 loci were hypermethylated in the advanced disc degeneration stage. The GO enrichment analysis of genes containing DMLs identified two significant GO terms for biological processes, hemophilic cell adhesion and cell-cell adhesion. CONCLUSIONS We conducted a genome-wide DNA methylation profile comparative study and observed significant differences in DNA methylation profiles between early and advanced stages of human IVD degeneration. These results implicate DNA methylation in the process of human IVD degeneration.
Collapse
|
39
|
Abstract
STUDY DESIGN An in vivo and in vitro study of the correlation between Paraoxonase 1 (PON1) and intervertebral disc degeneration (IVDD). OBJECTIVE The aim of this study is to clarify the expression and role of PON1 on the process of IVDD. SUMMARY OF BACKGROUND DATA IVDD is responsible for most of the spinal degenerative diseases. Inflammation and oxidative stress can deteriorate the living environment of nucleus pulposus (NP) cells, leading to IVDD. PON1 is an enzyme reported to have anti-inflammatory and anti-oxidative effects. There is no study about the correlation of PON1 expression with IVDD. METHODS Immunohistochemical (IHC), hematoxylin and eosin (H&E) staining, and Western blot examined the expression of PON1 in 88 human disc samples (male: female 43: 45) and rat models (n = 5 each group). The level of PON1 is measured in the tumor necrosis factor (TNF)-α and oxidative stress (H2O2)-induced degenerative NP cell models using Western blot and reverse transcription-polymerase chain reaction (RT-qPCR). The TNF-α, interleukin (IL)-1β, Mito superoxide (SOX), aggrecan, and collagen II are detected in nucleus pulposus (NP) cells transfected with si-RNA of PON1 using Enzyme-Linked Immunosorbent Assay (ELISA), mitoSOX staining Western blot, and RT-qPCR. RESULTS The expression of PON1 is significantly suppressed in human and rat degenerative intervertebral discs. The level of PON1 is significantly decreased in TNF-α and oxidative stress (H2O2)-induced degenerative NP cell models. ELISA results show that the level of TNF-α and IL-1β obviously increased; Mito SOX staining indicates that the Mito SOX fluorescence significantly increased, and the expression of aggrecan and collagen reduced in NP cells transfected with si-RNA of PON1. CONCLUSION Our study indicates that low PON1 expression is predictive of severe IVDD; PON1 plays an important role of keeping the homeostatic balance of intervertebral discs, and therapeutic approach regarding PON1 may be helpful to alleviate IVDD in the future. LEVEL OF EVIDENCE N/A.
Collapse
|
40
|
Wang K, Chen T, Ying X, Zhang Z, Shao Z, Lin J, Xu T, Chen Y, Wang X, Chen J, Sheng S. Ligustilide alleviated IL-1β induced apoptosis and extracellular matrix degradation of nucleus pulposus cells and attenuates intervertebral disc degeneration in vivo. Int Immunopharmacol 2019; 69:398-407. [PMID: 30785069 DOI: 10.1016/j.intimp.2019.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 01/26/2023]
Abstract
Intervertebral disc degeneration is a multifactorial and complicated degenerative disease that imposes a huge economic burden on society. However, there is no effective treatment that can delay and reverse the progression of disc degeneration. The inflammatory response causes the death of nucleus pulposus cells and the degradation of extracellular matrix are main factors of intervertebral disc degeneration. Ligustilide is a bioactive phthalide that is said to have an anti-inflammatory effect and anti-apoptosis effect on various disorders. Therefore, we further explored the protective effect of ligustilide on intervertebral disc degeneration and its potential mechanism. In this study, we found that ligustilide inhibited apoptosis, suppressed the expression of related inflammatory mediators (iNOS and COX-2) and decreased the expression of inflammatory cytokines (TNF-a and IL-6) in nucleus pulposus cells under IL-1β stimulation. At the same time, the degradation of extracellular matrix of nucleus pulposus cells induced by IL-1β was inhibited. In addition, we also found that ligustilide inhibits the inflammation response by inhibiting the NF-κB signaling pathway. Moreover, TUNEL assay and histological analysis showed that ligustilide could inhibit the apoptosis of nucleus pulposus cells and ameliorate the progression of intervertebral disc degeneration in punctured Rat IDD model. In summary, ligustilide may become a new potential treatment for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Ke Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tingting Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The First Affiliated Hospital of Wenzhou Medical University, NanBaiXiang Street, Wenzhou, Zhejiang Province, China
| | - Xiaozhou Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tianzhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Third Affiliated Hospital and Ruian People's Hospital of Wenzhou Medical University, Wansong Road 108#, Ruian, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
41
|
Liu Y, Peng WQ, Guo YY, Liu Y, Tang QQ, Guo L. Krüppel-like factor 10 (KLF10) is transactivated by the transcription factor C/EBPβ and involved in early 3T3-L1 preadipocyte differentiation. J Biol Chem 2018; 293:14012-14021. [PMID: 30026232 DOI: 10.1074/jbc.ra118.004401] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue stores energy and plays an important role in energy homeostasis. CCAAT/enhancer-binding protein β (C/EBPβ) is an important early transcription factor for 3T3-L1 preadipocyte differentiation, facilitating mitotic clonal expansion (MCE) and transactivating C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ) to promote adipogenesis. C/EBPβ is induced early, but the expression of antimitotic C/EBPα and PPARγ is not induced until ∼48 h. The delayed expression of C/EBPα and PPARγ is thought to ensure MCE progression, but the molecular mechanism for this delay remains elusive. Here, we show that the zinc-finger transcription factor Krüppel-like factor 10 (KLF10) is induced after adipogenic induction and that its expression positively correlates with that of C/EBPβ but inversely correlates with expression of C/EBPα and PPARγ. C/EBPβ bound to the KLF10 promoter and transactivated its expression during MCE. KLF10 overexpression in 3T3-L1 preadipocyte repressed adipogenesis and decreased C/EBPα and PPARγ expression, whereas siRNA-mediated down-regulation of KLF10 enhanced adipogenesis and increased C/EBPα and PPARγ expression. Luciferase assays revealed an inhibitory effect of KLF10 on C/EBPα promoter activity. Using promoter deletion and mutation analysis, we identified a KLF10-binding site within the proximal promoter region of C/EBPα. Furthermore, KLF10 interacted with and recruited histone deacetylase 1 (HDAC1) to the C/EBPα promoter, decreasing acetylated histone H4 on the C/EBPα promoter and inactivating C/EBPα transcription. Because C/EBPα can transactivate PPARγ, our results suggest a mechanism by which expression of C/EBPα and PPARγ is delayed via KLF10 expression and shed light on the negative feedback loop for C/EBPβ-regulated adipogenesis in 3T3-L1 preadipocyte.
Collapse
Affiliation(s)
- Yuan Liu
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wan-Qiu Peng
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Liu
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Institute of Stem Cell Research and Regenerative Medicine of Institutes of Biomedical Sciences, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|