1
|
Gao Y, Wang S, Wang A, Fan S, Ge Y, Wang H, Gao D, Wang J, Mao Z, Zhao H, Zhang H, Shi L, Liu H, Zhu G, Yang A, Bai Y, Zhang X, Liu C, Wang Q, Li R, Liang K, Brown KG, Cui Z, Han C, Zhang J, Meng F. Comparison of children and adults in deep brain stimulation for Tourette Syndrome: a large-scale multicenter study of 102 cases with long-term follow-up. BMC Med 2024; 22:218. [PMID: 38816877 PMCID: PMC11141040 DOI: 10.1186/s12916-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising therapy for refractory Gilles de la Tourette syndrome (GTS). However, its long-term efficacy, safety, and recommended surgical age remain controversial, requiring evidence to compare different age categories. METHODS This retrospective cohort study recruited 102 GTS patients who underwent DBS between October 2006 and April 2022 at two national centers. Patients were divided into two age categories: children (aged < 18 years; n = 34) and adults (aged ≥ 18 years; n = 68). The longitudinal outcomes as tic symptoms were assessed by the YGTSS, and the YBOCS, BDI, and GTS-QOL were evaluated for symptoms of obsessive-compulsive disorder (OCD), depression, and quality of life, respectively. RESULTS Overall, these included patients who finished a median 60-month follow-up, with no significant difference between children and adults (p = 0.44). Overall, the YGTSS total score showed significant postoperative improvements and further improved with time (improved 45.2%, 51.6%, 55.5%, 55.6%, 57.8%, 61.4% after 6, 12, 24, 36, 48, and ≥ 60 months of follow-up compared to baseline, respectively) in all included patients (all p < 0.05). A significantly higher improvement was revealed in children than adults at ≥ 60 months of follow-up in the YGTSS scores (70.1% vs 55.9%, p = 0.043), and the time to achieve 60% improvement was significantly shorter in the children group (median 6 months vs 12 months, p = 0.013). At the last follow-up, the mean improvements were 45.4%, 48.9%, and 55.9% and 40.3%, 45.4%, and 47.9% in YBOCS, BDI, and GTS-QOL scores for children and adults, respectively, which all significantly improved compared to baseline (all p < 0.05) but without significant differences between these two groups (all p > 0.05), and the children group received significantly higher improvement in GTS-QOL scores than adults (55.9% vs. 47.9%, p = 0.049). CONCLUSIONS DBS showed acceptable long-term efficacy and safety for both children and adults with GTS. Surgeries performed for patients younger than 18 years seemed to show acceptable long-term efficacy and safety and were not associated with increased risks of loss of benefit compared to patients older than 18 at the time of surgery. However, surgeries for children should also be performed cautiously to ensure their refractoriness and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anni Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shiying Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Ge
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Huimin Wang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jian Wang
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Hulin Zhao
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chong Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiao Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Renpeng Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kun Liang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kayla Giovanna Brown
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhiqiang Cui
- Department of Neurosurgery, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Jianguo Zhang
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
3
|
Acevedo N, Castle D, Rossell S. The promise and challenges of transcranial magnetic stimulation and deep brain stimulation as therapeutic options for obsessive-compulsive disorder. Expert Rev Neurother 2024; 24:145-158. [PMID: 38247445 DOI: 10.1080/14737175.2024.2306875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Obsessive compulsive disorder (OCD) represents a complex and often difficult to treat disorder. Pharmacological and psychotherapeutic interventions are often associated with sub-optimal outcomes, and 40-60% of patients are resistant to first line therapies and thus left with few treatment options. OCD is underpinned by aberrant neurocircuitry within cortical, striatal, and thalamic brain networks. Considering the neurocircuitry impairments that underlie OCD symptomology, neurostimulation therapies provide an opportunity to modulate psychopathology in a personalized manner. Also, by probing pathological neural networks, enhanced understanding of disease states can be obtained. AREAS COVERED This perspective discusses the clinical efficacy of TMS and DBS therapies, treatment access options, and considerations and challenges in managing patients. Recent scientific progress is discussed, with a focus on neurocircuitry and biopsychosocial aspects. Translational recommendations and suggestions for future research are provided. EXPERT OPINION There is robust evidence to support TMS and DBS as an efficacious therapy for treatment resistant OCD patients supported by an excellent safety profile and favorable health economic data. Despite a great need for alternative therapies for chronic and severe OCD patients, resistance toward neurostimulation therapies from regulatory bodies and the psychiatric community remains. The authors contend for greater access to TMS and DBS for treatment resistant OCD patients at specialized sites with appropriate clinical resources, particularly considering adjunct and follow-up care. Also, connectome targeting has shown robust predictive ability of symptom improvements and holds potential in advancing personalized neurostimulation therapies.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| | - David Castle
- Psychological Sciences, University of Tasmania, Hobart, Australia
- Centre for Mental Health Innovation, Hobart, Tasmania, Australia
- Statewide Mental Health Service, Hobart, Tasmania, Australia
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Remoli G, Tariciotti L, Remore LG, Palmisciano P, Sciancalepore F, Canevelli M, Lacorte E, Da Re F, Bruno G, Ferrarese C, Appollonio I, Locatelli M, Vanacore N. An updated overview of recent and ongoing deep brain stimulation (DBS) trials in patients with dementia: a systematic review. Neurol Sci 2023; 44:3395-3427. [PMID: 37204563 DOI: 10.1007/s10072-023-06821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Dementia affects more than 55 million people worldwide. Several technologies have been developed to slow cognitive decline: deep brain stimulation (DBS) of network targets in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) have been recently investigated. OBJECTIVE This study aimed to review the characteristics of the populations, protocols, and outcomes of patients with dementia enrolled in clinical trials investigating the feasibility and efficacy of DBS. MATERIALS AND METHODS A systematic search of all registered RCTs was performed on Clinicaltrials.gov and EudraCT, while a systematic literature review was conducted on PubMed, Scopus, Cochrane, and APA PsycInfo to identify published trials. RESULTS The literature search yielded 2122 records, and the clinical trial search 15 records. Overall, 17 studies were included. Two of 17 studies were open-label studies reporting no NCT/EUCT code and were analysed separately. Of 12 studies investigating the role of DBS in AD, we included 5 published RCTs, 2 unregistered open-label (OL) studies, 3 recruiting studies, and 2 unpublished trials with no evidence of completion. The overall risk of bias was assessed as moderate-high. Our review showed significant heterogeneity in the recruited populations regarding age, disease severity, informed consent availability, inclusion, and exclusion criteria. Notably, the standard mean of overall severe adverse events was moderately high (SAEs: 9.10 ± 7.10%). CONCLUSION The population investigated is small and heterogeneous, published results from clinical trials are under-represented, severe adverse events not negligible, and cognitive outcomes uncertain. Overall, the validity of these studies requires confirmation based on forthcoming higher-quality clinical trials.
Collapse
Affiliation(s)
- Giulia Remoli
- Neurology Section, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Leonardo Tariciotti
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
- University of Milan, Milan, Italy.
| | - Luigi Gianmaria Remore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Francesco Sciancalepore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Neuroscience, University of Rome "La Sapienza,", Rome, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Fulvio Da Re
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Bruno
- Department of Neuroscience, University of Rome "La Sapienza,", Rome, Italy
| | - Carlo Ferrarese
- Neurology Section, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Ildebrando Appollonio
- Neurology Section, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Marco Locatelli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Aldo Ravelli Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
5
|
Schulz S, Harzheim L, Hübner C, Lorke M, Jünger S, Woopen C. Patient-centered empirical research on ethically relevant psychosocial and cultural aspects of cochlear, glaucoma and cardiovascular implants - a scoping review. BMC Med Ethics 2023; 24:68. [PMID: 37641094 PMCID: PMC10464431 DOI: 10.1186/s12910-023-00945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The significance of medical implants goes beyond technical functioning and reaches into everyday life, with consequences for individuals as well as society. Ethical aspects associated with the everyday use of implants are relevant for individuals' lifeworlds and need to be considered in implant care and in the course of technical developments. METHODS This scoping review aimed to provide a synthesis of the existing evidence regarding ethically relevant psychosocial and cultural aspects in cochlear, glaucoma and cardiovascular implants in patient-centered empirical research. Systematic literature searches were conducted in EBSCOhost, Philpapers, PsycNET, Pubmed, Web of Science and BELIT databases. Eligible studies were articles in German or English language published since 2000 dealing with ethically relevant aspects of cochlear, glaucoma and passive cardiovascular implants based on empirical findings from the perspective of (prospective) implant-wearers and their significant others. Following a descriptive-analytical approach, a data extraction form was developed and relevant data were extracted accordingly. We combined a basic numerical analysis of study characteristics with a thematically organized narrative synthesis of the data. RESULTS Sixty-nine studies were included in the present analysis. Fifty were in the field of cochlear implants, sixteen in the field of passive cardiovascular implants and three in the field of glaucoma implants. Implant-related aspects were mainly found in connection with autonomy, freedom, identity, participation and justice, whereas little to no data was found with regards to ethical principles of privacy, safety or sustainability. CONCLUSIONS Empirical research on ethical aspects of implant use in everyday life is highly relevant, but marked by ambiguity and unclarity in the operationalization of ethical terms and contextualization. A transparent orientation framework for the exploration and acknowledgment of ethical aspects in "lived experiences" may contribute to the improvement of individual care, healthcare programs and research quality in this area. Ethics-sensitive care requires creating awareness for cultural and identity-related issues, promoting health literacy to strengthen patient autonomy as well as adjusting healthcare programs accordingly. More consideration needs to be given to sustainability issues in implant development and care according to an approach of ethics-by-design.
Collapse
Affiliation(s)
- Sabine Schulz
- Cologne Center for Ethics, Rights, Economics, and Social Sciences of Health (CERES), University of Cologne and University Hospital of Cologne, Universitätsstraße 91, 50931, Cologne, Germany.
| | - Laura Harzheim
- Cologne Center for Ethics, Rights, Economics, and Social Sciences of Health (CERES), University of Cologne and University Hospital of Cologne, Universitätsstraße 91, 50931, Cologne, Germany
| | - Constanze Hübner
- Center for Life Ethics, University of Bonn, 53113, Bonn, Germany
| | - Mariya Lorke
- Faculty of Engineering and Mathematics, University of Applied Sciences and Arts (HSBI), 33619, Bielefeld, Germany
| | - Saskia Jünger
- Department of Community Health, University of Applied Health Sciences Bochum, Gesundheitscampus 6-8, 44801, Bochum, Germany
| | | |
Collapse
|
6
|
Mazzoleni A, Bhatia S, Bantounou MA, Kumar NS, Dzalto M, Soiza RL. Clinical practice guidelines on the use of deep brain stimulation for the treatment of obsessive-compulsive disorder: systematic review. BJPsych Open 2023; 9:e148. [PMID: 37551586 PMCID: PMC10486236 DOI: 10.1192/bjo.2023.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/13/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has been proposed to improve symptoms of obsessive-compulsive disorder (OCD) but is not yet an established therapy. AIMS To identify relevant guidelines and assess their recommendations for the use of DBS in OCD. METHOD Medline, Embase, American Psychiatric Association PsycInfo and Scopus were searched, as were websites of relevant societies and guideline development organisations. The review was based on the PRISMA recommendations, and the search strategy was verified by a medical librarian. The protocol was developed and registered with PROSPERO (CRD42022353715). The guidelines were assessed for quality using the AGREE II instrument. RESULTS Nine guidelines were identified. Three guidelines scored >80% on AGREE II. 'Scope and Purpose' and 'Editorial Independence' were the highest scoring domains, but 'Applicability' scores were low. Eight guidelines recommended that DBS is used after all other treatment options have failed to alleviate OCD symptoms. One guideline did not recommend DBS beyond a research setting. Only one guideline performed a cost-effectiveness analysis; the other eight did not provide details on safe or effective DBS protocols. CONCLUSION Despite a very limited evidence base, eight of the nine identified guidelines supported the use of DBS for OCD as a last line of therapy; however, multiple aspects of DBS provision were not addressed.
Collapse
Affiliation(s)
| | | | - Maria A. Bantounou
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; and National Medical Research Association, London, UK
| | | | | | - Roy L. Soiza
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
A Protocol to Investigate Deep Brain Stimulation for Refractory Tinnitus: From Rat Model to the Set-Up of a Human Pilot Study. Audiol Res 2022; 13:49-63. [PMID: 36648926 PMCID: PMC9844413 DOI: 10.3390/audiolres13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chronic tinnitus can have an immense impact on quality of life. Despite recent treatment advances, many tinnitus patients remain refractory to them. Preclinical and clinical evidence suggests that deep brain stimulation (DBS) is a promising treatment to suppress tinnitus. In rats, it has been shown in multiple regions of the auditory pathway that DBS can have an alleviating effect on tinnitus. The thalamic medial geniculate body (MGB) takes a key position in the tinnitus network, shows pathophysiological hallmarks of tinnitus, and is readily accessible using stereotaxy. Here, a protocol is described to evaluate the safety and test the therapeutic effects of DBS in the MGB in severe tinnitus sufferers. METHODS Bilateral DBS of the MGB will be applied in a future study in six patients with severe and refractory tinnitus. A double-blinded, randomized 2 × 2 crossover design (stimulation ON and OFF) will be applied, followed by a period of six months of open-label follow-up. The primary focus is to assess safety and feasibility (acceptability). Secondary outcomes assess a potential treatment effect and include tinnitus severity measured by the Tinnitus Functional Index (TFI), tinnitus loudness and distress, hearing, cognitive and psychological functions, quality of life, and neurophysiological characteristics. DISCUSSION This protocol carefully balances risks and benefits and takes ethical considerations into account. This study will explore the safety and feasibility of DBS in severe refractory tinnitus, through extensive assessment of clinical and neurophysiological outcome measures. Additionally, important insights into the underlying mechanism of tinnitus and hearing function might be revealed. TRIAL REGISTRATION ClinicalTrials.gov NCT03976908 (6 June 2019).
Collapse
|
9
|
Coenen VA, Schlaepfer TE, Sajonz BEA, Reinacher PC, Döbrössy MD, Reisert M. "The Heart Asks Pleasure First"-Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from slMFB DBS in Depression and Obsessive-Compulsive Disorder. Brain Sci 2022; 12:438. [PMID: 35447971 PMCID: PMC9028695 DOI: 10.3390/brainsci12040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
More than a decade ago, deep brain stimulation (DBS) of the superolateral medial forebrain bundle (slMFB), as part of the greater MFB system, had been proposed as a putative yet experimental treatment strategy for therapy refractory depression (TRD) and later for obsessive-compulsive disorders (OCD). Antidepressant and anti-OCD efficacy have been shown in open case series and smaller trials and were independently replicated. The MFB is anato-physiologically confluent with the SEEKING system promoting euphoric drive, reward anticipation and reward; functions realized through the mesocorticolimbic dopaminergic system. Growing clinical experience concerning surgical and stimulation aspects from a larger number of patients shows an MFB functionality beyond SEEKING and now re-informs the scientific rationale concerning the MFB's (patho-) physiology. In this white paper, we combine observations from more than 75 cases of slMFB DBS. We integrate these observations with a selected literature review to provide a new neuroethological view on the MFB. We here formulate a re-interpretation of the MFB as the main structure of an integrated SEEKING/MAINTENANCE circuitry, allowing for individual homeostasis and well-being through emotional arousal, basic and higher affect valence, bodily reactions, motor programing, vigor and flexible behavior, as the basis for the antidepressant and anti-OCD efficacy.
Collapse
Affiliation(s)
- Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Thomas E. Schlaepfer
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Department of Interventional Biological Psychiatry, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Máté D. Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
10
|
Müller S, van Oosterhout A, Bervoets C, Christen M, Martínez-Álvarez R, Bittlinger M. Concerns About Psychiatric Neurosurgery and How They Can Be Overcome: Recommendations for Responsible Research. NEUROETHICS-NETH 2022. [DOI: 10.1007/s12152-022-09485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Background
Psychiatric neurosurgery is experiencing a revival. Beside deep brain stimulation (DBS), several ablative neurosurgical procedures are currently in use. Each approach has a different profile of advantages and disadvantages. However, many psychiatrists, ethicists, and laypeople are sceptical about psychiatric neurosurgery.
Methods
We identify the main concerns against psychiatric neurosurgery, and discuss the extent to which they are justified and how they might be overcome. We review the evidence for the effectiveness, efficacy and safety of each approach, and discuss how this could be improved. We analyse whether and, if so, how randomised controlled trials (RCTs) can be used in the different approaches, and what alternatives are available if conducting RCTs is impossible for practical or ethical reasons. Specifically, we analyse the problem of failed RCTs after promising open-label studies.
Results
The main concerns are: (i) reservations based on historical psychosurgery, (ii) concerns about personality changes, (iii) concerns regarding localised interventions, and (iv) scepticism due to the lack of scientific evidence. Given the need for effective therapies for treatment-refractory psychiatric disorders and preliminary evidence for the effectiveness of psychiatric neurosurgery, further research is warranted and necessary. Since psychiatric neurosurgery has the potential to modify personality traits, it should be held to the highest ethical and scientific standards.
Conclusions
Psychiatric neurosurgery procedures with preliminary evidence for efficacy and an acceptable risk–benefit profile include DBS and micro- or radiosurgical anterior capsulotomy for intractable obsessive–compulsive disorder. These methods may be considered for individual treatment attempts, but multi-centre RCTs are necessary to provide reliable evidence.
Collapse
|
11
|
Devos JVP, Temel Y, Ackermans L, Visser-Vandewalle V, Onur OA, Schruers K, Smit J, Janssen MLF. Methodological Considerations for Setting Up Deep Brain Stimulation Studies for New Indications. J Clin Med 2022; 11:jcm11030696. [PMID: 35160153 PMCID: PMC8836606 DOI: 10.3390/jcm11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical treatment with a growing range of indications. The number of clinical studies is expanding because of DBS for new indications and efforts to improve DBS for existing indications. To date, various methods have been used to perform DBS studies. Designing a clinical intervention study with active implantable medical devices has specific challenges while expanding patient treatment. This paper provides an overview of the key aspects that are essential for setting up a DBS study.
Collapse
Affiliation(s)
- Jana V. P. Devos
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (L.A.); (J.S.); (M.L.F.J.)
- Department of Ear, Nose, Throat, Head and Neck Surgery, Maastricht University Medical Center, Maastricht University, 6229 HX Maastricht, The Netherlands
- Correspondence: (J.V.P.D.); (Y.T.)
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (L.A.); (J.S.); (M.L.F.J.)
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht University, 6229 HX Maastricht, The Netherlands
- Correspondence: (J.V.P.D.); (Y.T.)
| | - Linda Ackermans
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (L.A.); (J.S.); (M.L.F.J.)
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany;
| | - Oezguer A. Onur
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany;
| | - Koen Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht University, 6229 HX Maastricht, The Netherlands;
| | - Jasper Smit
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (L.A.); (J.S.); (M.L.F.J.)
- Department of Ear, Nose, Throat, Head and Neck Surgery, Zuyderland Medical Center, 6419 PC Heerlen, The Netherlands
| | - Marcus L. F. Janssen
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands; (L.A.); (J.S.); (M.L.F.J.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
12
|
Ashkan K, Mirza AB, Tambirajoo K, Furlanetti L. Deep brain stimulation in the management of paediatric neuropsychiatric conditions: Current evidence and future directions. Eur J Paediatr Neurol 2021; 33:146-158. [PMID: 33092983 DOI: 10.1016/j.ejpn.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Neurosurgery has provided an alternative option for patients with refractory psychiatric indications. Lesion procedures were the initial techniques used, but deep brain stimulation (DBS) has the advantage of relative reversibility and adjustability. This review sets out to delineate the current evidence for DBS use in psychiatric conditions, with an emphasis on the paediatric population, highlighting pitfalls and opportunities. METHODS A systematic review of the literature was conducted on studies reporting the use of DBS in the management of psychiatric disorders. The PRISMA guidelines were employed to structure the review of the literature. Data was discussed focusing on the indications for DBS management of psychiatric conditions in the paediatric age group. RESULTS A total of seventy-three full-text papers reported the use of DBS surgery for the management of psychiatric conditions matching the inclusion criteria. The main indications were Tourette Syndrome (GTS) (15 studies), Obsessive Compulsive Disorder (OCD) (20), Treatment Resistant Depression (TRD) (27), Eating Disorders (ED) (7) and Aggressive Behaviour and self-harm (AB) (4). Out of these, only 11 studies included patients in the paediatric age group (≤18 years-old). Among the paediatric patients, the indications for surgery included GTS, AB and ED. CONCLUSIONS The application of deep brain stimulation for psychiatric indications has progressed at a steady pace in the adult population and at a much slower pace in the paediatric population. Future studies in children should be done in a trial setting with strict and robust criteria. A move towards personalising DBS therapy with new stimulation paradigms will provide new frontiers and possibilities in this growing field.
Collapse
Affiliation(s)
- Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Asfand Baig Mirza
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Kantharuby Tambirajoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK.
| |
Collapse
|
13
|
Wu H, Adler S, Azagury DE, Bohon C, Safer DL, Barbosa DAN, Bhati MT, Williams NR, Dunn LB, Tass PA, Knutson BD, Yutsis M, Fraser A, Cunningham T, Richardson K, Skarpaas TL, Tcheng TK, Morrell MJ, Roberts LW, Malenka RC, Lock JD, Halpern CH. Brain-Responsive Neurostimulation for Loss of Control Eating: Early Feasibility Study. Neurosurgery 2020; 87:1277-1288. [PMID: 32717033 PMCID: PMC8599841 DOI: 10.1093/neuros/nyaa300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Loss of control (LOC) is a pervasive feature of binge eating, which contributes significantly to the growing epidemic of obesity; approximately 80 million US adults are obese. Brain-responsive neurostimulation guided by the delta band was previously found to block binge-eating behavior in mice. Following novel preclinical work and a human case study demonstrating an association between the delta band and reward anticipation, the US Food and Drug Administration approved an Investigational Device Exemption for a first-in-human study. OBJECTIVE To assess feasibility, safety, and nonfutility of brain-responsive neurostimulation for LOC eating in treatment-refractory obesity. METHODS This is a single-site, early feasibility study with a randomized, single-blinded, staggered-onset design. Six subjects will undergo bilateral brain-responsive neurostimulation of the nucleus accumbens for LOC eating using the RNS® System (NeuroPace Inc). Eligible participants must have treatment-refractory obesity with body mass index ≥ 45 kg/m2. Electrophysiological signals of LOC will be characterized using real-time recording capabilities coupled with synchronized video monitoring. Effects on other eating disorder pathology, mood, neuropsychological profile, metabolic syndrome, and nutrition will also be assessed. EXPECTED OUTCOMES Safety/feasibility of brain-responsive neurostimulation of the nucleus accumbens will be examined. The primary success criterion is a decrease of ≥1 LOC eating episode/week based on a 28-d average in ≥50% of subjects after 6 mo of responsive neurostimulation. DISCUSSION This study is the first to use brain-responsive neurostimulation for obesity; this approach represents a paradigm shift for intractable mental health disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Casey H Halpern
- Correspondence: Casey H. Halpern, MD, Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive (R-227), Stanford, CA 94305-5327, USA.
| |
Collapse
|
14
|
Farrell SM, Pereira EAC, Brown MRD, Green AL, Aziz TZ. Neuroablative surgical treatments for pain due to cancer. Neurochirurgie 2020; 67:176-188. [PMID: 33129802 DOI: 10.1016/j.neuchi.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Cancer pain is common and challenging to manage - it is estimated that approximately 30% of cancer patients have pain that is not adequately controlled by analgesia. This paper discusses safe and effective neuroablative treatment options for refractory cancer pain. Current management of cancer pain predominantly focuses on the use of medications, resulting in a relative loss of knowledge of these surgical techniques and the erosion of the skills required to perform them. Here, we review surgical methods of modulating various points of the neural axis with the aim to expand the knowledge base of those managing cancer pain. Integration of neuroablative approaches may lead to higher rates of pain relief, and the opportunity to dose reduce analgesic agents with potential deleterious side effects. With an ever-increasing population of cancer patients, it is essential that neurosurgeons maintain or train in these techniques in tandem with the oncological multi-disciplinary team.
Collapse
Affiliation(s)
- S M Farrell
- Nuffield Department of Clinical Sciences, John-Radcliffe Hospital, OX3 9DU Oxford, United Kingdom; The Royal Free London NHS Foundation Trust, London, United Kingdom.
| | - E A C Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, United Kingdom.
| | - M R D Brown
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom; The Institute of Cancer Research, London, United Kingdom.
| | - A L Green
- Nuffield Department of Clinical Sciences, John-Radcliffe Hospital, OX3 9DU Oxford, United Kingdom.
| | - T Z Aziz
- Nuffield Department of Clinical Sciences, John-Radcliffe Hospital, OX3 9DU Oxford, United Kingdom.
| |
Collapse
|
15
|
Behmer Hansen RT, Dubey A, Smith C, Henry PJ, Mammis A. Paediatric deep brain stimulation: ethical considerations in malignant Tourette syndrome. JOURNAL OF MEDICAL ETHICS 2020; 46:668-673. [PMID: 32366702 DOI: 10.1136/medethics-2020-106074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/29/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Gilles de la Tourette syndrome (TS) is a childhood neuropsychiatric disorder characterised by the presence of motor and vocal tics. Patients with malignant TS experience severe disease sequelae; risking morbidity and mortality due to tics, self-harm, psychiatric comorbidities and suicide. By definition, those cases termed 'malignant' are refractory to all conventional psychiatric and pharmacological regimens. In these instances, deep brain stimulation (DBS) may be efficacious. Current 2015 guidelines recommend a 6-month period absent of suicidal ideation before DBS is offered to patients with TS. We therefore wondered whether it may be ethically justifiable to offer DBS to a minor with malignant TS. We begin with a discussion of non-maleficence and beneficence. New evidence suggests that suicide risk in young patients with TS has been underestimated. In turn, DBS may represent an invaluable opportunity for children with malignant TS to secure future safety, independence and fulfilment. Postponing treatment is associated with additional risks. Ultimately, we assert this unique risk-benefit calculus justifies offering DBS to paediatric patients with malignant TS. A multidisciplinary team of clinicians must determine whether DBS is in the best interest of their individual patients. We conclude with a suggestion for future TS-DBS guidelines regarding suicidal ideation. The importance of informed consent and assent is underscored.
Collapse
Affiliation(s)
| | - Arjun Dubey
- School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Cynthia Smith
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Patrick J Henry
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Antonios Mammis
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
16
|
Smit JV, Pielkenrood BJ, Arts RAGJ, Janssen ML, Temel Y, Stokroos RJ. Patient Acceptance of Invasive Treatments for Tinnitus. Am J Audiol 2018; 27:184-196. [PMID: 29507954 DOI: 10.1044/2017_aja-17-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/28/2017] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The field of neuromodulation is currently seeking to treat a wide range of disorders with various types of invasive devices. In recent years, several preclinical trials and case reports in humans have been published on their potential for chronic tinnitus. However, studies to obtain insight into patients' willingness to undergo these treatments are scarce. The aim of this survey study was to find out whether tinnitus patients are willing to undergo invasive neuromodulation when taking its risks, costs, and potential benefits into account. METHOD A Visual Analog Scale (VAS, 0-10) was used to measure the outcome. Spearman's rank-order correlation coefficients were computed to determine the correlation between patient characteristics and acceptance rates. RESULTS Around one fifth of the patients were reasonably willing to undergo invasive treatment (VAS 5-7), and around one fifth were fully willing to do so (VAS 8-10). Hearing aids, used as a control, were accepted most, followed by cochlear implantation, deep brain stimulation, and cortical stimulation. Acceptance rates were slightly higher when the chance of cure was higher. Patients with a history of attempted treatments were more eager than others to find a new treatment for tinnitus. CONCLUSIONS A considerable proportion of patients with tinnitus would accept a variety of invasive treatments despite the associated risks or costs. When clinical neuromodulatory studies for tinnitus are to be performed, particular attention should be given to obtaining informed consent, including explaining the potential risks and providing a realistic outcome expectation.
Collapse
Affiliation(s)
- Jasper V. Smit
- Department of Ear, Nose, and Throat/Head and Neck Surgery, Maastricht University Medical Center, The Netherlands
| | - Bart J. Pielkenrood
- Department of Ear, Nose, and Throat/Head and Neck Surgery, Maastricht University Medical Center, The Netherlands
| | - Remo A. G. J. Arts
- Department of Ear, Nose, and Throat/Head and Neck Surgery, Maastricht University Medical Center, The Netherlands
| | - Miranda L. Janssen
- Department of Methodology and Statistics, Maastricht University Medical Center, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, The Netherlands
| | - Robert J. Stokroos
- Department of Ear, Nose, and Throat/Head and Neck Surgery, Maastricht University Medical Center, The Netherlands
| |
Collapse
|
17
|
Ethics of Deep Brain Stimulation in Adolescent Patients with Refractory Tourette Syndrome: a Systematic Review and Two Case Discussions. NEUROETHICS-NETH 2018; 11:143-155. [PMID: 29937946 PMCID: PMC5978799 DOI: 10.1007/s12152-018-9359-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Introduction Tourette Syndrome (TS) is a childhood onset disorder characterized by vocal and motor tics and often remits spontaneously during adolescence. For treatment refractory patients, Deep Brain Stimulation (DBS) may be considered. Methods and Results We discuss ethical problems encountered in two adolescent TS patients treated with DBS and systematically review the literature on the topic. Following surgery one patient experienced side effects without sufficient therapeutic effects and the stimulator was turned off. After a second series of behavioural treatment, he experienced a tic reduction of more than 50%. The second patient went through a period of behavioural disturbances that interfered with optimal programming, but eventually experienced a 70% tic reduction. Sixteen DBS surgeries in adolescent TS patients have been reported, none of which pays attention to ethical aspects. Discussion Specific ethical issues arise in adolescent TS patients undergoing DBS relating both to clinical practice as well as to research. Attention should be paid to selecting patients fairly, thorough examination and weighing of risks and benefits, protecting the health of children and adolescents receiving DBS, special issues concerning patient's autonomy, and the normative impact of quality of life. In research, registration of all TS cases in a central database covering a range of standardized information will facilitate further development of DBS for this indication. Conclusion Clinical practice should be accompanied by ongoing ethical reflection, preferably covering not only theoretical thought but providing also insights in the views and perspectives of those concerned, that is patients, family members and professionals.
Collapse
|
18
|
Volpini M, Giacobbe P, Cosgrove GR, Levitt A, Lozano AM, Lipsman N. The History and Future of Ablative Neurosurgery for Major Depressive Disorder. Stereotact Funct Neurosurg 2017; 95:216-228. [PMID: 28723697 DOI: 10.1159/000478025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND There is an urgent need to develop safe and effective treatments for patients with treatment-resistant depression (TRD). Several neurosurgical procedures have been developed to treat the dysfunctional brain circuits implicated in major depression. OBJECTIVES This review describes the most common ablative procedures used to treat major depressive disorder: anterior cingulotomy, subcaudate tractotomy, limbic leucotomy, and anterior capsulotomy. The efficacy and safety of each are discussed and compared with other current and emerging modalities, including deep brain stimulation (DBS) and MR-guided focused ultrasound (MRgFUS). METHODS The PubMed and MEDLINE electronic databases were used in this study, through July 2016. Keywords, including "treatment resistant depression," and "ablative neurosurgery," etc. were used to generate reference hits. RESULTS Approximately a third to half of patients who underwent ablative procedures achieved a treatment response and/or remission. The efficacy and safety profiles corresponding to both ablative procedures and DBS were very similar. CONCLUSIONS The longitudinal experience with ablative procedures shows that there remains an important role for accurate, discrete lesions in disrupting affective circuitry in the treatment of TRD. New modalities, such as MRgFUS, have the potential to further improve the accuracy of ablative procedures, while enhancing safety by obviating the need for open brain surgery.
Collapse
Affiliation(s)
- Matthew Volpini
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Beeker T, Schlaepfer TE, Coenen VA. Autonomy in Depressive Patients Undergoing DBS-Treatment: Informed Consent, Freedom of Will and DBS' Potential to Restore It. Front Integr Neurosci 2017; 11:11. [PMID: 28642690 PMCID: PMC5462943 DOI: 10.3389/fnint.2017.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
According to the World Health Organization, depression is one of the most common and most disabling psychiatric disorders, affecting at any given time approximately 325 million people worldwide. As there is strong evidence that depressive disorders are associated with a dynamic dysregulation of neural circuits involved in emotional processing, recently several attempts have been made to intervene directly in these circuits via deep brain stimulation (DBS) in patients with treatment-resistant major depressive disorder (MDD). Given the promising results of most of these studies, the rising medical interest in this new treatment correlates with a growing sensitivity to ethical questions. One of the most crucial concerns is that DBS might interfere with patients' ability to make autonomous decisions. Thus, the goal of this article is to evaluate the impact DBS presumably has on the capacity to decide and act autonomously in patients with MDD in the light of the autonomy-undermining effects depression has itself. Following the chronological order of the procedure, special attention will first be paid to depression's effects on patients' capacity to make use of their free will in giving valid Informed Consent. We suggest that while the majority of patients with MDD appear capable of autonomous choices, as it is required for Informed Consent, they might still be unable to effectively act according to their own will whenever acting includes significant personal effort. In reducing disabling depressive symptoms like anhedonia and decrease of energy, DBS for treatment resistant MDD thus rather seems to be an opportunity to substantially increase autonomy than a threat to it.
Collapse
Affiliation(s)
- Timo Beeker
- Department of Psychiatry and Psychotherapy, Medical School Brandenburg Theodor FontaneRüdersdorf, Germany
| | - Thomas E. Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical CenterFreiburg, Germany
- Medical Faculty, Freiburg UniversityFreiburg, Germany
| | - Volker A. Coenen
- Medical Faculty, Freiburg UniversityFreiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical CenterFreiburg, Germany
| |
Collapse
|
20
|
de Haan S, Rietveld E, Stokhof M, Denys D. Becoming more oneself? Changes in personality following DBS treatment for psychiatric disorders: Experiences of OCD patients and general considerations. PLoS One 2017; 12:e0175748. [PMID: 28426824 PMCID: PMC5398533 DOI: 10.1371/journal.pone.0175748] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Does DBS change a patient's personality? This is one of the central questions in the debate on the ethics of treatment with Deep Brain Stimulation (DBS). At the moment, however, this important debate is hampered by the fact that there is relatively little data available concerning what patients actually experience following DBS treatment. There are a few qualitative studies with patients with Parkinson's disease and Primary Dystonia and some case reports, but there has been no qualitative study yet with patients suffering from psychiatric disorders. In this paper, we present the experiences of 18 patients with Obsessive-Compulsive Disorder (OCD) who are undergoing treatment with DBS. We will also discuss the inherent difficulties of how to define and assess changes in personality, in particular for patients with psychiatric disorders. We end with a discussion of the data and how these shed new light on the conceptual debate about how to define personality.
Collapse
Affiliation(s)
- Sanneke de Haan
- The Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Philosophy, Theology and Religious Studies, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Erik Rietveld
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
- Institute for Logic, Language and Computation, Department of Philosophy, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Stokhof
- Institute for Logic, Language and Computation, Department of Philosophy, University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Abstract
Abstract:On seeing promising results in a small number of patients, some researchers are conducting trials to determine whether deep brain stimulation (DBS) is an effective treatment for anorexia nervosa (AN). This article asks whether we should open enrollment in trials of DBS for AN to adolescents. Despite concerns about informed consent, parental consent, and unforeseeable psychological sequelae, the article concludes that the risks to anorexic adolescents associated with participation in trials of DBS are reasonable considering the substantial risks of not enrolling teens with AN in research on DBS. The seriousness of AN, its high incidence in teens, and serious shortfalls in the AN treatment literature point to the need for improved, evidence-based treatments for teens with AN. This unmet need generates an obligation on the part of researchers and physicians to promote and conduct research on AN in adolescents.
Collapse
|
22
|
Franco R, Fonoff ET, Alvarenga P, Lopes AC, Miguel EC, Teixeira MJ, Damiani D, Hamani C. DBS for Obesity. Brain Sci 2016; 6:brainsci6030021. [PMID: 27438859 PMCID: PMC5039450 DOI: 10.3390/brainsci6030021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity is a chronic, progressive and prevalent disorder. Morbid obesity, in particular, is associated with numerous comorbidities and early mortality. In patients with morbid obesity, pharmacological and behavioral approaches often have limited results. Bariatric surgery is quite effective but is associated with operative failures and a non-negligible incidence of side effects. In the last decades, deep brain stimulation (DBS) has been investigated as a neurosurgical modality to treat various neuropsychiatric disorders. In this article we review the rationale for selecting different brain targets, surgical results and future perspectives for the use of DBS in medically refractory obesity.
Collapse
Affiliation(s)
- Ruth Franco
- Division of Pediatric Endocrinology, Children's Hospital, University of São Paulo Medical School, São Paulo 05403-000, Brazil.
| | - Erich T Fonoff
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Pedro Alvarenga
- Department of Psychiatry, Institute of Psychiatry, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Antonio Carlos Lopes
- Department of Psychiatry, Institute of Psychiatry, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Euripides C Miguel
- Department of Psychiatry, Institute of Psychiatry, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Manoel J Teixeira
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
| | - Durval Damiani
- Division of Pediatric Endocrinology, Children's Hospital, University of São Paulo Medical School, São Paulo 05403-000, Brazil.
| | - Clement Hamani
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo 01060-970, Brazil.
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 1R8, Canada.
- Division of Neuroimaging, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
23
|
Sinha S, McGovern RA, Sheth SA. Deep brain stimulation for severe autism: from pathophysiology to procedure. Neurosurg Focus 2016; 38:E3. [PMID: 26030703 DOI: 10.3171/2015.3.focus1548] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges.
Collapse
Affiliation(s)
- Saurabh Sinha
- 1Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Robert A McGovern
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
24
|
Ho AL, Sussman ES, Pendharkar AV, Azagury DE, Bohon C, Halpern CH. Deep brain stimulation for obesity: rationale and approach to trial design. Neurosurg Focus 2016; 38:E8. [PMID: 26030708 DOI: 10.3171/2015.3.focus1538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obesity is one of the most serious public health concerns in the US. While bariatric surgery has been shown to be successful for treatment of morbid obesity for those who have undergone unsuccessful behavioral modification, its associated risks and rates of relapse are not insignificant. There exists a neurological basis for the binge-like feeding behavior observed in morbid obesity that is believed to be due to dysregulation of the reward circuitry. The authors present a review of the evidence of the neuroanatomical basis for obesity, the potential neural targets for deep brain stimulation (DBS), as well as a rationale for DBS and future trial design. Identification of an appropriate patient population that would most likely benefit from this type of therapy is essential. There are also significant cost and ethical considerations for such a neuromodulatory intervention designed to alter maladaptive behavior. Finally, the authors present a consolidated set of inclusion criteria and study end points that should serve as the basis for any trial of DBS for obesity.
Collapse
Affiliation(s)
| | | | | | | | - Cara Bohon
- 3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Casey H Halpern
- 1Departments of Neurosurgery.,3Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
25
|
|
26
|
Mikell CB, Sinha S, Sheth SA. Neurosurgery for schizophrenia: an update on pathophysiology and a novel therapeutic target. J Neurosurg 2015; 124:917-28. [PMID: 26517767 DOI: 10.3171/2015.4.jns15120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The main objectives of this review were to provide an update on the progress made in understanding specific circuit abnormalities leading to psychotic symptoms in schizophrenia and to propose rational targets for therapeutic deep brain stimulation (DBS). Refractory schizophrenia remains a major unsolved clinical problem, with 10%-30% of patients not responding to standard treatment options. Progress made over the last decade was analyzed through reviewing structural and functional neuroimaging studies in humans, along with studies of animal models of schizophrenia. The authors reviewed theories implicating dysfunction in dopaminergic and glutamatergic signaling in the pathophysiology of the disorder, paying particular attention to neurosurgically relevant nodes in the circuit. In this context, the authors focused on an important pathological circuit involving the associative striatum, anterior hippocampus, and ventral striatum, and discuss the possibility of targeting these nodes for therapeutic neuromodulation with DBS. Finally, the authors examined ethical considerations in the treatment of these vulnerable patients. The functional anatomy of neural circuits relevant to schizophrenia remains of great interest to neurosurgeons and psychiatrists and lends itself to the development of specific targets for neuromodulation. Ongoing progress in the understanding of these structures will be critical to the development of potential neurosurgical treatments of schizophrenia.
Collapse
Affiliation(s)
- Charles B Mikell
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| | - Saurabh Sinha
- Division of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Sameer A Sheth
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
27
|
Jiménez-Ponce F, García-Muñoz L, Carrillo-Ruiz J. The role of bioethics in the neurosurgical treatment of psychiatric disorders. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2015. [DOI: 10.1016/j.hgmx.2015.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|