1
|
Yamaki T, Hatakeyama N, Murayama T, Funakura M, Hara T, Onodera S, Ito D, Yakufujiang M, Odaki M, Oka N, Kobayashi S. Prediction of voluntary movements of the upper extremities by resting state-brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study. Hum Brain Mapp 2023; 44:3158-3167. [PMID: 36929226 PMCID: PMC10171500 DOI: 10.1002/hbm.26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG-PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG-PET may be a useful and robust biomarker for predicting long-term recovery of motor function in severe TBI patients with disorders of consciousness.
Collapse
Affiliation(s)
- Tomohiro Yamaki
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.,Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Naoya Hatakeyama
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Takemi Murayama
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Mika Funakura
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Takuya Hara
- Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Shinji Onodera
- Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Daisuke Ito
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Maidinamu Yakufujiang
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Masaru Odaki
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Nobuo Oka
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.,Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| | - Shigeki Kobayashi
- Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan
| |
Collapse
|
2
|
Aubinet C, Schnakers C, Majerus S. Language Assessment in Patients with Disorders of Consciousness. Semin Neurol 2022; 42:273-282. [PMID: 36100226 DOI: 10.1055/s-0042-1755561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The assessment of residual language abilities in patients with disorders of consciousness (DoC) after severe brain injury is particularly challenging due to their limited behavioral repertoire. Moreover, associated language impairment such as receptive aphasia may lead to an underestimation of actual consciousness levels. In this review, we examine past research on the assessment of residual language processing in DoC patients, and we discuss currently available tools for identifying language-specific abilities and their prognostic value. We first highlight the need for validated and sensitive bedside behavioral assessment tools for residual language abilities in DoC patients. As regards neuroimaging and electrophysiological methods, the tasks involving higher level linguistic commands appear to be the most informative about level of consciousness and have the best prognostic value. Neuroimaging methods should be combined with the most appropriate behavioral tools in multimodal assessment protocols to assess receptive language abilities in DoC patients in the most complete and sensitive manner.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, California
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Huang CX, Li YH, Lu W, Huang SH, Li MJ, Xiao LZ, Liu J. Positron emission tomography imaging for the assessment of mild traumatic brain injury and chronic traumatic encephalopathy: recent advances in radiotracers. Neural Regen Res 2022; 17:74-81. [PMID: 34100430 PMCID: PMC8451552 DOI: 10.4103/1673-5374.314285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A chronic phase following repetitive mild traumatic brain injury can present as chronic traumatic encephalopathy in some cases, which requires a neuropathological examination to make a definitive diagnosis. Positron emission tomography (PET) is a molecular imaging modality that has high sensitivity for detecting even very small molecular changes, and can be used to quantitatively measure a range of molecular biological processes in the brain using different radioactive tracers. Functional changes have also been reported in patients with different forms of traumatic brain injury, especially mild traumatic brain injury and subsequent chronic traumatic encephalopathy. Thus, PET provides a novel approach for the further evaluation of mild traumatic brain injury at molecular levels. In this review, we discuss the recent advances in PET imaging with different radiotracers, including radioligands for PET imaging of glucose metabolism, tau, amyloid-beta, γ-aminobutyric acid type A receptors, and neuroinflammation, in the identification of altered neurological function. These novel radiolabeled ligands are likely to have widespread clinical application, and may be helpful for the treatment of mild traumatic brain injury. Moreover, PET functional imaging with different ligands can be used in the future to perform large-scale and sequential studies exploring the time-dependent changes that occur in mild traumatic brain injury.
Collapse
Affiliation(s)
- Chu-Xin Huang
- Department of Radiology; Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yan-Hui Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wei Lu
- Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Meng-Jun Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Li-Zhi Xiao
- PET-CT Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Aubinet C, Chatelle C, Gosseries O, Carrière M, Laureys S, Majerus S. Residual implicit and explicit language abilities in patients with disorders of consciousness: A systematic review. Neurosci Biobehav Rev 2021; 132:391-409. [PMID: 34864003 DOI: 10.1016/j.neubiorev.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Language assessment in post-comatose patients is difficult due to their limited behavioral repertoire; yet associated language deficits might lead to an underestimation of consciousness levels in unresponsive wakefulness syndrome (UWS) or minimally conscious state (MCS; -/+) diagnoses. We present a systematic review of studies from 2002 assessing residual language abilities with neuroimaging, electrophysiological or behavioral measures in patients with severe brain injury. Eighty-five articles including a total of 2278 patients were assessed for quality. The median percentages of patients showing residual implicit language abilities (i.e., cortical responses to specific words/sentences) were 33 % for UWS, 50 % for MCS- and 78 % for MCS + patients, whereas explicit language abilities (i.e., command-following using brain-computer interfaces) were reported in 20 % of UWS, 33 % of MCS- and 50 % of MCS + patients. Cortical responses to verbal stimuli increased along with consciousness levels and the progressive recovery of consciousness after a coma was paralleled by the reappearance of both implicit and explicit language processing. This review highlights the importance of language assessment in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium.
| | - Camille Chatelle
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Steve Majerus
- Fund for Scientific Research, FNRS, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Belgium.
| |
Collapse
|
5
|
Bertagnoni G, Lupi A, Fedeli M, Sensi G, Nogara M. 18F-fluorodeoxyglucose positron-emitted tomography for predicting neurological outcome in hypoxic-ischemic encephalopathy. Brain Inj 2021; 35:1292-1300. [PMID: 34499582 DOI: 10.1080/02699052.2021.1972154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: 18F-fluorodeoxyglucose positron-emitted tomography (FDG-PET) is a promising yet unexplored functional neuroimaging tool in the study and prognosis of hypoxic-ischemic encephalopathy (HIE) after cardiac arrest or respiratory failure. The present study aimed to correlate clinical data and FDG-PET scans for both analysis and prognostic use. Methods: 24 patients from an intensive rehabilitation ward were retrospectively evaluated. Data collected included age, gender, cause of anoxic event, length of stay in acute and rehabilitation units, discharge destination, and evaluation at admission and discharge using three clinical scales to assess cognitive function, independence and disability. Subjects were identified as good and bad performers on the basis of quantitative analysis of FDG-PET scans with the Cortex ID software. The relation between glucose uptake reduction and neurological outcome was evaluated. Results: good and bad performers presented no statistically significant difference regarding demographical data and in-hospital length of stay. The two categories significantly differed for impairment and disability levels both at admission and at discharge from the inpatient rehabilitation unit. Conclusions: FDG-PET considerably facilitates the early identification of patients with HIE who will have poor neurological outcome and could inform planning for their rehabilitation and care.
Collapse
Affiliation(s)
| | - Andrea Lupi
- Division of Nuclear Medicine, Ospedale S. Bortolo, Vicenza, Italy
| | - Marta Fedeli
- Department of Physical Medicine and Rehabilitation, Ospedale S. Bortolo, Vicenza, Italy
| | - Giovanni Sensi
- Department of Physical Medicine and Rehabilitation, Ospedale S. Bortolo, Vicenza, Italy
| | - Matteo Nogara
- School of Physical Medicine and Rehabilitation, University of Padua, Padua Italy
| |
Collapse
|
6
|
Chen Y, Zhang J. How Energy Supports Our Brain to Yield Consciousness: Insights From Neuroimaging Based on the Neuroenergetics Hypothesis. Front Syst Neurosci 2021; 15:648860. [PMID: 34295226 PMCID: PMC8291083 DOI: 10.3389/fnsys.2021.648860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Consciousness is considered a result of specific neuronal processes and mechanisms in the brain. Various suggested neuronal mechanisms, including the information integration theory (IIT), global neuronal workspace theory (GNWS), and neuronal construction of time and space as in the context of the temporospatial theory of consciousness (TTC), have been laid forth. However, despite their focus on different neuronal mechanisms, these theories neglect the energetic-metabolic basis of the neuronal mechanisms that are supposed to yield consciousness. Based on the findings of physiology-induced (sleep), pharmacology-induced (general anesthesia), and pathology-induced [vegetative state/unresponsive wakeful syndrome (VS/UWS)] loss of consciousness in both human subjects and animals, we, in this study, suggest that the energetic-metabolic processes focusing on ATP, glucose, and γ-aminobutyrate/glutamate are indispensable for functional connectivity (FC) of normal brain networks that renders consciousness possible. Therefore, we describe the energetic-metabolic predispositions of consciousness (EPC) that complement the current theories focused on the neural correlates of consciousness (NCC).
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Olsen A, Babikian T, Bigler ED, Caeyenberghs K, Conde V, Dams-O'Connor K, Dobryakova E, Genova H, Grafman J, Håberg AK, Heggland I, Hellstrøm T, Hodges CB, Irimia A, Jha RM, Johnson PK, Koliatsos VE, Levin H, Li LM, Lindsey HM, Livny A, Løvstad M, Medaglia J, Menon DK, Mondello S, Monti MM, Newcombe VFJ, Petroni A, Ponsford J, Sharp D, Spitz G, Westlye LT, Thompson PM, Dennis EL, Tate DF, Wilde EA, Hillary FG. Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav 2021; 15:526-554. [PMID: 32797398 PMCID: PMC8032647 DOI: 10.1007/s11682-020-00313-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Virginia Conde
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen Genova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Neurology, Department of Psychiatry & Department of Psychology, Cognitive Neurology and Alzheimer's, Center, Feinberg School of Medicine, Weinberg, Chicago, IL, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hopsital, Trondheim University Hospital, Trondheim, Norway
| | - Ingrid Heggland
- Section for Collections and Digital Services, NTNU University Library, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ruchira M Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, Pittsburgh, PA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Vassilis E Koliatsos
- Departments of Pathology(Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Harvey Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Lucia M Li
- C3NL, Imperial College London, London, UK
- UK DRI Centre for Health Care and Technology, Imperial College London, London, UK
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- Department of Neurology, Drexel University, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Brain Injury Research Center (BIRC), UCLA, Los Angeles, CA, USA
| | | | - Agustin Petroni
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific & Technical Research Council, Institute of Research in Computer Science, Buenos Aires, Argentina
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - David Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Frank G Hillary
- Department of Neurology, Hershey Medical Center, State College, PA, USA.
| |
Collapse
|
8
|
Wang Z, Mascarenhas C, Jia X. Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments. Transl Stroke Res 2020; 11:628-642. [PMID: 31939060 PMCID: PMC7347441 DOI: 10.1007/s12975-019-00765-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Positron emission tomography (PET) is widely used in clinical and animal studies, along with the development of diverse tracers. The biochemical characteristics of PET tracers may help uncover the pathophysiological consequences of cardiac arrest (CA) and ischemic stroke, which include cerebral ischemia and reperfusion, depletion of oxygen and glucose, and neuroinflammation. PubMed was searched for studies of the application of PET for "cardiac arrest," "ischemic stroke," and "targeted temperature management." Available studies were included and classified according to the biochemical properties involved and metabolic processes of PET tracers, and were summarized. The mechanisms of ischemic brain injuries were investigated by PET with various tracers to elucidate the pathological process from the initial decrease of cerebral blood flow (CBF) to the subsequent abnormalities in energy and oxygen metabolism, to the monitoring of inflammation. In general, the trends of cerebral blood flow and oxygen metabolism after ischemic attack are not unidirectional but closely related to the time point of injury and recovery. Glucose metabolism after injury showed significant differences in different brain regions whereas global cerebral metabolic rate of glucose (CMRglc) declined. PET monitoring of neuroinflammation shows comparable efficacy to immunostaining. The technology of PET targeting in brain metabolism and the development of tracers provide new tools to track and evaluate the brain's pathological changes after ischemic brain injury. Despite no existing evidence for an available PET-based prediction method, discoveries of new tracers are expected to provide more possibilities for the whole field.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 43007, China
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Conrad Mascarenhas
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|