1
|
Bernardini C, Zamparini F, Prati C, Salaroli R, Spinelli A, Zannoni A, Forni M, Gandolfi MG. Osteoinductive and regenerative potential of premixed calcium-silicate bioceramic sealers on vascular wall mesenchymal stem cells. Int Endod J 2024; 57:1264-1278. [PMID: 38943551 DOI: 10.1111/iej.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 07/01/2024]
Abstract
AIM The osteogenic potential of new premixed calcium-silicate-containing bioceramic sealers (Ca-Si sealers) was tested with porcine vascular wall-mesenchymal stem cells (pVW-MSCs). METHODOLOGY Two Ca-Si-containing sealers: Ceraseal (MetaBiomed, Cheong-si, South Korea) and AH Plus Bioceramic (Maruchi, Wonju-si, South Korea), and an epoxy resin sealer (AH Plus; Dentsply, Konstanz, Germany) as a control, were prepared according to the manufacturers' indications. All samples were allowed to set for 100% of their setting time in a sterile humid cabinet at 37°C and 95% relative humidity. pVW-MSC seeding efficiency and osteogenic differentiation were analysed as marker of gene/protein expression for up to 12 days. Mineralization assay and immunofluorescence staining were performed and evaluated over a period of 21 days. Statistical analyses were conducted using one-way analysis of variance (p < .05). Additional samples were prepared and stored under the same conditions and inspected using an environmental scanning electron microscope equipped with an energy dispersive X-ray spectroscopy system. RESULTS Significantly higher cell seeding efficiency (p < .05) was observed for both Ca-Si sealers from day 8. pVW-MSCs showed a significant shift towards the osteogenic lineage only when seeded in contact with Ca-Si sealers. Gene expression of osteopontin was upregulated significantly. Collagen I and osteocalcin were clearly expressed by cells in contact with Ca-Si sealers. Mineralization granules were observed in Alizarin red assays and confocal laser scanning microscopy analysis of both Ca-Si sealers. No gene expression or granule mineralization were observed on the epoxy resin sealer. CONCLUSIONS Premixed Ca-Si sealers displayed a higher potential for osteogenic activity on pVW-MSCs. Epoxy resin sealer was unable to induce any osteogenic activity. The properties of both Ca-Si sealers suggest their potential as osteoinductive platforms for vascular MSCs in periapical bone.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fausto Zamparini
- Endodontic Clinical Section, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Laboratory of Green Biomaterials and Oral Pathology, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Spinelli
- Endodontic Clinical Section, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Giovanna Gandolfi
- Laboratory of Green Biomaterials and Oral Pathology, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Al-Ameri HW, Shetty S, Rahman B, Gopalakrishnan ARK, Ismail AA, Acharya AB. Evaluation of salivary Thy-1 in health, periodontitis, and obesity. Oral Dis 2024; 30:2670-2677. [PMID: 37338076 DOI: 10.1111/odi.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Thy-1 (CD90) is a glycosylphosphatidyl-anchored protein belonging to the immunoglobulin family and is known to control mesenchymal stromal cells differentiation into osteoblasts or adipocytes. The study aimed to investigate the salivary levels of Thy-1 in health, periodontitis, obesity, and any potential association. MATERIALS AND METHODS Seventy-one participants were divided into four groups: healthy (H), subjects with periodontitis (P), obese individuals (O), and obese individuals having periodontitis (PO). Unstimulated whole saliva was collected from participants who were evaluated for periodontal parameters. The levels of Thy-1 were measured with a commercially available ELISA kit. The data were statistically analyzed. RESULTS A significant difference in salivary Thy-1 levels among different groups was observed. Periodontitis patients had the maximum, and obese individuals had the minimum Thy-1 levels. Significant differences between H and P, H and PO, P and O, and O and PO were observed. Overall correlations between Thy-1 and periodontal parameters and a positive correlation with pocket depth in group PO were noted. CONCLUSION Thy-1 could be detected in the saliva of all study participants. It is implied that a local inflammatory condition like periodontitis elevates the salivary levels of Thy-1 with, and without obesity.
Collapse
Affiliation(s)
- Hawra'a Wisam Al-Ameri
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sunaina Shetty
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Betul Rahman
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Asmaa Anwer Ismail
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Anirudh B Acharya
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Huang L, Chen X, Yang X, Zhang Y, Qiu X. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J Biomed Mater Res B Appl Biomater 2024; 112:e35412. [PMID: 38701383 DOI: 10.1002/jbm.b.35412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
Endodontic therapy, while generally successful, is primarily limited to mature teeth, hence the pressing need to explore regenerative approaches. Gelatin methacryloyl (GelMA) hydrogels have emerged as pivotal biomaterials, promising a bright future for dental pulp regeneration. Despite advancements in tissue engineering and biomaterials, achieving true pulp tissue regeneration remains a formidable task. GelMA stands out for its injectability, rapid gelation, and excellent biocompatibility, serving as the cornerstone of scaffold materials. In the pursuit of dental pulp regeneration, GelMA holds significant potential, facilitating the delivery of stem cells, growth factors, and other vital substances crucial for tissue repair. Presently, in the field of dental pulp regeneration, researchers have been diligently utilizing GelMA hydrogels as engineering scaffolds to transport various effective substances to promote pulp regeneration. However, existing research is relatively scattered and lacks comprehensive reviews and summaries. Therefore, the primary objective of this article is to elucidate the application of GelMA hydrogels as regenerative scaffolds in this field, thereby providing clear direction for future researchers. Additionally, this article provides a comprehensive discussion on the synthesis, characterization, and application of GelMA hydrogels in root canal therapy regeneration. Furthermore, it offers new application strategies and profound insights into future challenges, such as optimizing GelMA formulations to mimic the complex microenvironment of pulp tissue and enhancing its integration with host tissues.
Collapse
Affiliation(s)
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoXia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yinchun Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
4
|
Roi A, Roi C, Negruțiu ML, Rusu LC, Riviș M. Mesenchymal Stem Cells Derived from Human Periapical Cysts and Their Implications in Regenerative Medicine. Biomedicines 2023; 11:2436. [PMID: 37760877 PMCID: PMC10525783 DOI: 10.3390/biomedicines11092436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells currently play an important role in the tissue engineering field in developing new regenerative approaches. The oral cavity is a rich source of mesenchymal stem cells, and introducing the use of dental stem cells, characterized by a multilineage differentiation potential, immunomodulatory activity and repair capacity, offers a good perspective for clinical dentistry. Human periapical cyst mesenchymal stem cells (hPCy-MSCs) represent a new category of dental stem cells, being collected from pathological tissue and exhibiting MSCs-like properties. As studies have described, these new identified cells possess the same characteristics as those described in MSCs, exhibiting plasticity, a high proliferation rate and the potential to differentiate into osteogenic, adipogenic and neural lineages. Reusing the biological tissue that is considered pathologic offers a new perspective for the development of further clinical applications. The identification and characterization of MSCs in the human periapical cysts allows for a better understanding of the molecular interactions, the potential healing capacity and the mechanisms of inducing the local osteogenic process, integrated in the microenvironment. Although their involvement in regenerative medicine research is recent, they exhibit important properties that refer them for the development of clinical applications in dentistry.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.R.); (L.C.R.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Ciprian Roi
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department of Anesthesiology and Oral Surgery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Meda Lavinia Negruțiu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Laura Cristina Rusu
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.R.); (L.C.R.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Mircea Riviș
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department of Anesthesiology and Oral Surgery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
5
|
Das M, Sloan AJ. Stem cell sources from human biological waste material: a role for the umbilical cord and dental pulp stem cells for regenerative medicine. Hum Cell 2023:10.1007/s13577-023-00922-6. [PMID: 37273175 DOI: 10.1007/s13577-023-00922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Stem cell research with biological waste material is an area that holds promise to revolutionize treatment modalities and clinical practice. The interest in surgical remnants is increasing with time as research on human embryonic stem cells remains controversial due to legal and ethical issues. Perhaps, these restrictions are the motivation for the use of alternative mesenchymal stem cell (MSC) sources in the regenerative field. Stem cells (SCs) of Umbilical Cord (UC) and Dental Pulp (DP) have almost similar biological characteristics to other MSCs and can differentiate into a number of cell lineages with enormous potential future prospects. A concise critical observation of UC-MSCs and DP-MSCs is presented here reviewing articles from the last two decades along with other stem cell sources from different biological waste materials.
Collapse
Affiliation(s)
- Monalisa Das
- Department of Pedodontics & Preventive Dentistry, Dr. R. Ahmed Dental College and Hospital, Kolkata, India.
- , No. 2 Durganagar, Sripally, Chakdaha, Nadia, West Bengal, 741222, India.
| | - Alastair J Sloan
- Melbourne Dental School, Level 4, 720 Swanston Street, Melbourne, VIC, 3010, Australia
| |
Collapse
|
6
|
Kwon SK, Kyeong M, Adasooriya D, Cho SW, Jung IY. Histologic and Electron Microscopic Characterization of a Human Immature Permanent Premolar with Chronic Apical Abscess 16 years after Regenerative Endodontic Procedures. J Endod 2023:S0099-2399(23)00289-3. [PMID: 37268290 DOI: 10.1016/j.joen.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Previous studies have reported successful clinical outcomes after regenerative endodontic procedures (REPs) for immature permanent teeth with pulpal infection. However, it remains unclear whether the procedures promote true regeneration or repair. This case report describes the histologic and electron microscopic characteristics of a human immature permanent premolar with a chronic apical abscess that was treated with an REP. Tooth #20 of a 9-year-old girl underwent an REP. At the 6-year follow-up, the patient was asymptomatic, and closure of the apex and thickening of the dentinal walls were observed. However, 16 years after the procedure, apical periodontitis recurred, necessitating apical surgery. The resected root fragments were obtained during the surgery and analyzed using micro-computed tomography, light microscopy, and scanning electron microscopy. Distinct dentinal tubules and interglobular dentin were observed in the regenerated hard tissue. Cementum-like tissue and a root canal were also observed in the apical fragment. The regenerated root tissue in this case exhibited a structure similar to the native root structure. Therefore, we believe that cell-free REPs possess regenerative potential for teeth diagnosed with pulp necrosis and chronic apical abscess.
Collapse
Affiliation(s)
- Seung-Kyung Kwon
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Minjae Kyeong
- Division of Anatomy and Developmental Biology, Department of Oral biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Dinuka Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Il-Young Jung
- Professor, Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
7
|
Zhang W, Xu T, Li X, Zhang Y, Zou X, Chen F, Yue L. Single-cell atlas of dental pulp stem cells exposed to the oral bacteria Porphyromonas gingivalis and Enterococcus faecalis. Front Cell Dev Biol 2023; 11:1166934. [PMID: 37287452 PMCID: PMC10242116 DOI: 10.3389/fcell.2023.1166934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Porphyromonas gingivalis and Enterococcus faecalis promote the development of pulpitis and periapical periodontitis. These bacteria are difficult to eliminate from the root canal systems, leading to persistent infection and poor treatment outcomes. We explored the response of human dental pulp stem cells (hDPSCs) to bacterial invasion and the mechanisms underlying the impact of residual bacteria on dental pulp regeneration. Methods: Single-cell sequencing was used to categorize the hDPSCs into clusters based on their response to P. gingivalis and E. faecalis. We depicted a single-cell transcriptome atlas of hDPSCs stimulated by P. gingivalis or E. faecalis. Results: The most differentially expressed genes in the Pg samples were THBS1, COL1A2, CRIM1, and STC1, which are related to matrix formation and mineralization, and HILPDA and PLIN2, which are related to the cellular response to hypoxia. A cell cluster characterized by high expression levels of THBS1 and PTGS2 was increased after P. gingivalis stimulation. Further signaling pathway analysis showed that hDPSCs prevented P. gingivalis infection by regulating the TGF-β/SMAD, NF-κB, and MAPK/ERK signaling pathways. Differentiation potency and pseudotime trajectory analyses showed that hDPSCs infected by P. gingivalis undergo multidirectional differentiation, particularly to the mineralization-related cell lineage. Furthermore, P. gingivalis can create a hypoxia environment to effect cell differentiation. The Ef samples were characterized by the expression of CCL2, which is related to leukocyte chemotaxis, and ACTA2, which is related to actin. There was an increased proportion of a cell cluster that was similar to myofibroblasts and exhibited significant ACTA2 expression. The presence of E. faecalis promoted the differentiation of hDPSCs into fibroblast-like cells, which highlights the role of fibroblast-like cells and myofibroblasts in tissue repair. Discussion: hDPSCs do not maintain their stem cell status in the presence of P. gingivalis and E. faecalis. They differentiate into mineralization-related cells in the presence of P. gingivalis and into fibroblast-like cells in the presence of E. faecalis. We identified the mechanism underlying the infection of hDPSCs by P. gingivalis and E. faecalis. Our results will improve understanding of the pathogenesis of pulpitis and periapical periodontitis. Furthermore, the presence of residual bacteria can have adverse effects on the outcomes of regenerative endodontic treatment.
Collapse
Affiliation(s)
- Wen Zhang
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Tiansong Xu
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xueying Li
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiaoying Zou
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Center of Stomatology, Peking University Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lin Yue
- Department Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
8
|
Li M, Wang Y, Xue J, Xu Q, Zhang Y, Liu J, Xu H, Guan Z, Bian C, Zhang G, Yu Y. Baicalin can enhance odonto/osteogenic differentiation of inflammatory dental pulp stem cells by inhibiting the NF-κB and β-catenin/Wnt signaling pathways. Mol Biol Rep 2023; 50:4435-4446. [PMID: 37009956 PMCID: PMC10068215 DOI: 10.1007/s11033-023-08398-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Scutellaria baicalensis Georgi is a famous traditional Chinese medicine, which is widely used in treating fever, upper respiratory tract infection and other diseases. Pharmacology study showed it can exhibit anti-bacterial, anti-inflammation and analgesic effects. In this study, we investigated the effect of baicalin on the odonto/osteogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). METHODS AND RESULTS iDPSCs were isolated from the inflamed pulps collected from pulpitis. The proliferation of iDPSCs was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazolium bromide (MTT) assay and flow cytometry. Alkaline phosphatase (ALP) activity assay, alizarin red staining, Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay were conducted to examine the differentiation potency along with the involvement of nuclear factor kappa B(NF-κB) and β-catenin/Wnt signaling pathway. MTT assay and cell-cycle analysis demonstrated that baicalin had no influence on the proliferation of iDPSCs. ALP activity assay and alizarin red staining demonstrated that baicalin could obviously enhance ALP activity and calcified nodules formed in iDPSCs. RT-PCR and Western blot showed that the odonto/osteogenic markers were upregulated in baicalin-treated iDPSCs. Moreover, expression of cytoplastic phosphor-P65, nuclear P65, and β-catenin in iDPSCs was significantly increased compared with DPSCs, but the expression in baicalin-treated iDPSCs was inhibited. In addition, 20 µM Baicalin could accelerate odonto/osteogenic differentiation of iDPSCs via inhibition of NF-κB and β-catenin/Wnt signaling pathways. CONCLUSION Baicalin can promote odonto/osteogenic differentiation of iDPSCs through inhibition of NF-κB and β-catenin/Wnt pathways, thus providing direct evidence that baicalin may be effective in repairing pulp with early irreversible pulpitis.
Collapse
Affiliation(s)
- Mengyuan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Yumeng Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Jing Xue
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Qingqing Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Yuerong Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Jie Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Hai Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of Conservative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Zhuo Guan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Chengyue Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China
| | - Guangdong Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China.
| | - Yan Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, 210029, Jiangsu, China.
- Department of Conservative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Shang-Hai Road 1Th, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Fan Y, Lyu P, Bi R, Cui C, Xu R, Rosen CJ, Yuan Q, Zhou C. Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling. eLife 2023; 12:82537. [PMID: 36722472 PMCID: PMC9925051 DOI: 10.7554/elife.82537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
Oral inflammatory diseases such as apical periodontitis are common bacterial infectious diseases that may affect the periapical alveolar bone tissues. A protective process occurs simultaneously with the inflammatory tissue destruction, in which mesenchymal stem cells (MSCs) play a primary role. However, a systematic and precise description of the cellular and molecular composition of the microenvironment of bone affected by inflammation is lacking. In this study, we created a single-cell atlas of cell populations that compose alveolar bone in healthy and inflammatory disease states. We investigated changes in expression frequency and patterns related to apical periodontitis, as well as the interactions between MSCs and immunocytes. Our results highlight an enhanced self-supporting network and osteogenic potential within MSCs during apical periodontitis-associated inflammation. MSCs not only differentiated toward osteoblast lineage cells but also expressed higher levels of osteogenic-related markers, including Sparc and Col1a1. This was confirmed by lineage tracing in transgenic mouse models and human samples from oral inflammatory-related alveolar bone lesions. In summary, the current study provides an in-depth description of the microenvironment of MSCs and immunocytes in both healthy and disease states. We also identified key apical periodontitis-associated MSC subclusters and their biomarkers, which could further our understanding of the protective process and the underlying mechanisms of oral inflammatory-related bone disease. Taken together, these results enhance our understanding of heterogeneity and cellular interactions of alveolar bone cells under pathogenic and inflammatory conditions. We provide these data as a tool for investigators not only to better appreciate the repertoire of progenitors that are stress responsive but importantly to help design new therapeutic targets to restore bone lesions caused by apical periodontitis and other inflammatory-related bone diseases.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chen Cui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | | | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
10
|
Expert consensus on regenerative endodontic procedures. Int J Oral Sci 2022; 14:55. [PMID: 36450715 PMCID: PMC9712432 DOI: 10.1038/s41368-022-00206-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Regenerative endodontic procedures (REPs) is a biologic-based treatment modality for immature permanent teeth diagnosed with pulp necrosis. The ultimate objective of REPs is to regenerate the pulp-dentin complex, extend the tooth longevity and restore the normal function. Scientific evidence has demonstrated the efficacy of REPs in promotion of root development through case reports, case series, cohort studies, and randomized controlled studies. However, variations in clinical protocols for REPs exist due to the empirical nature of the original protocols and rapid advancements in the research field of regenerative endodontics. The heterogeneity in protocols may cause confusion among dental practitioners, thus guidelines and considerations of REPs should be explicated. This expert consensus mainly discusses the biological foundation, the available clinical protocols and current status of REPs in treating immature teeth with pulp necrosis, as well as the main complications of this treatment, aiming at refining the clinical management of REPs in accordance with the progress of basic researches and clinical studies, suggesting REPs may become a more consistently evidence-based option in dental treatment.
Collapse
|
11
|
Lyu P, Song Y, Bi R, Li Z, Wei Y, Huang Q, Cui C, Song D, Zhou X, Fan Y. Protective Actions in Apical Periodontitis: The Regenerative Bioactivities Led by Mesenchymal Stem Cells. Biomolecules 2022; 12:1737. [PMID: 36551165 PMCID: PMC9776067 DOI: 10.3390/biom12121737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resulting from bacterial infection, apical periodontitis (AP) is a common inflammatory disease of the periapical region of the tooth. The regeneration of the destroyed periapical alveolar bone and the surrounding periodontium tissues has long been a difficult task in clinical practice. These lesions are closely related to pathogen invasion and an overreactive immune response. It is worth noting that the protective healing process occurs simultaneously, in which mesenchymal stem cells (MSCs) have a crucial function in mediating the immune system and promoting regeneration. Here, we review the recent studies related to AP, with a focus on the regulatory network of MSCs. We also discuss the potential therapeutic approaches of MSCs in inflammatory diseases to provide a basis for promoting tissue regeneration and modulating inflammation in AP. A deeper understanding of the protective action of MSCs and the regulatory networks will help to delineate the underlying mechanisms of AP and pave the way for stem-cell-based regenerative medicine in the future.
Collapse
Affiliation(s)
- Ping Lyu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiming Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zucen Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yali Wei
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Huang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Dongzhe Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Zhang T, Chen Z, Zhu M, Jing X, Xu X, Yuan X, Zhou M, Zhang Y, Lu M, Chen D, Xu S, Song J. Extracellular vesicles derived from human dental mesenchymal stem cells stimulated with low-intensity pulsed ultrasound alleviate inflammation-induced bone loss in a mouse model of periodontitis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Dos Reis-Prado AH, Abreu LG, Fagundes RR, Oliveira SC, Bottino MC, Ribeiro-Sobrinho AP, Benetti F. Influence of ethylenediaminetetraacetic acid on regenerative endodontics: a systematic review. Int Endod J 2022; 55:579-612. [PMID: 35305029 DOI: 10.1111/iej.13728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The effects of ethylenediaminetetraacetic acid (EDTA) on regenerative endodontic procedures (REPs) are controversial, because, despite releasing growth factors from dentine, some studies show negative effects on cell behaviour. OBJECTIVES To investigate the influence of the use of EDTA in REP on the growth factors' release, cell behaviour, and tissue regeneration. METHODS A systematic search was conducted (PubMed/Medline, Scopus, Cochrane Library, Web of Science, Embase, OpenGrey, and reference lists) up to February 2021. Only in vivo and in vitro studies evaluating the effects of EDTA on the biological factors of dentine, pulp/periapical tissues, and cell behaviour were eligible. Studies without a control group or available full text were excluded. The growth factors' release was the primary outcome. Risk of bias in the in vitro and in vivo studies was performed according to Joanna Briggs Institute's Checklist and SYRCLE's RoB tool, respectively. RESULTS Of the 1848 articles retrieved, 36 were selected. Among these, 32 were in vitro, three animal studies, and one with both models. The EDTA concentrations ranged from 3%-15%, at different times. Regarding growth factors' release (17 studies), 15 studies found significant transforming growth factor (TGF)-β release after dentine conditioning with EDTA, and most found no influence on vascular endothelial growth factor (VEGF) release. Regarding cell behaviour (26 studies), eight studies showed no influence of EDTA-treated dentine on cell viability; whereas, five, nine, and six studies showed higher cell migration, adhesion, and differentiation, respectively. No influence of EDTA conditioning was observed in animal studies. In vitro studies had a low risk of bias, whereas animal studies had high risk of bias. Meta-analysis was unfeasible. DISCUSSION This review found that EDTA increased TGF-β release and improved cell activity. However, well-designed histological analyses using immature teeth models are needed. CONCLUSIONS High quality in vitro evidence suggests that EDTA-treated dentine positively influences TGF-β release, cell migration, attachment, and differentiation; further research to evaluate its influence on tissue regeneration is necessary due to low methodological quality of the animal studies.
Collapse
Affiliation(s)
- A H Dos Reis-Prado
- Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - L G Abreu
- Child's and Adolescent's Oral Health, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - R R Fagundes
- Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - S C Oliveira
- Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - M C Bottino
- Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| | - A P Ribeiro-Sobrinho
- Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - F Benetti
- Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Effect of taxifolin and epigallocatechin-3-gallate on biomineralization potential of stem cells from dental apical papilla. Arch Oral Biol 2022; 138:105413. [DOI: 10.1016/j.archoralbio.2022.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
|
15
|
Lin X, Chi D, Meng Q, Gong Q, Tong Z. Single-Cell Sequencing Unveils the Heterogeneity of Nonimmune Cells in Chronic Apical Periodontitis. Front Cell Dev Biol 2022; 9:820274. [PMID: 35237614 PMCID: PMC8883837 DOI: 10.3389/fcell.2021.820274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic apical periodontitis (CAP) is a unique dynamic interaction between microbial invasions and host defense mechanisms, resulting in infiltration of immune cells, bone absorption, and periapical granuloma formation. To help to understand periapical tissue pathophysiology, we constituted a single-cell atlas for 26,737 high-quality cells from inflammatory periapical tissue and uncovered the complex cellular landscape. The eight types of cells, including nonimmune cells and immune cells, were identified in the periapical tissue of CAP. Considering the key roles of nonimmune cells in CAP, we emphasized osteo-like cells, basal/stromal cells, endothelial cells, and epithelial cells, and discovered their diversity and heterogeneity. The temporal profiling of genomic alterations from common CAP to typical periapical granuloma provided predictions for transcription factors and biological processes. Our study presented potential clues that the shift of inflammatory cytokines, chemokines, proteases, and growth factors initiated polymorphic cell differentiation, lymphangiogenesis, and angiogenesis during CAP.
Collapse
Affiliation(s)
- Xinwei Lin
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Danlu Chi
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qingzhen Meng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qimei Gong, ; Zhongchun Tong,
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qimei Gong, ; Zhongchun Tong,
| |
Collapse
|
16
|
Farias ZBBMD, Silva LPD, De Arruda JAA, Cavalcante JDS, Almeida HCRD, Oliveira MCVD, Souza LBD, Sobral APV. ALDH1 expression and potential clinical implications in chronic inflammatory periapical lesions. Braz Oral Res 2022; 36:e019. [DOI: 10.1590/1807-3107bor-2022.vol36.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
|
17
|
Terranova L, Louvrier A, Hébraud A, Meyer C, Rolin G, Schlatter G, Meyer F. Highly Structured 3D Electrospun Conical Scaffold: A Tool for Dental Pulp Regeneration. ACS Biomater Sci Eng 2021; 7:5775-5787. [PMID: 34846849 DOI: 10.1021/acsbiomaterials.1c00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New procedures envisioned for dental pulp regeneration after pulpectomy include cell homing strategy. It involves host endogenous stem cell recruitment and activation. To meet this cell-free approach, we need to design a relevant scaffold to support cell migration from tissues surrounding the dental root canal. A composite membrane made of electrospun poly(lactic acid) nanofibers and electrosprayed polycaprolactone with tannic acid (TA) microparticles which mimics the architecture of the extracellular matrix was first fabricated. After rolling the membrane in the form of a 3D conical scaffold and subsequently coating it with gelatin, it can be directly inserted into the root canal. The porous morphology of the construct was characterized by SEM at different length scales. It was shown that TA was released from the 3D conical scaffold after 2 days in PBS at 37 °C. Biocompatibility studies were first assessed by seeding human dental pulp stem cells (DPSCs) on planar membranes coated or not coated with gelatin to compare the surfaces. After 24 h, the results highlighted that the gelatin-coating increased the membrane biocompatibility and cell viability. Similar DPSC morphology and proliferation on both membrane surfaces were observed. The culture of DPSCs on conical scaffolds showed cell colonization in the whole cone volume, proving that the architecture of the conical scaffold was suitable for cell migration.
Collapse
Affiliation(s)
- Lisa Terranova
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Aurélien Louvrier
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France
| | - Anne Hébraud
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Christophe Meyer
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France
| | - Gwenaël Rolin
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France.,Inserm CIC-1431, CHU Besançon, Besançon F-25000, France
| | - Guy Schlatter
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Florent Meyer
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Pôle de médecine et chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
18
|
Virdee SS, Bashir N, Camilleri J, Cooper PR, Tomson P. Exploiting dentine matrix proteins in cell-free approaches for periradicular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:707-732. [PMID: 34309453 PMCID: PMC9419954 DOI: 10.1089/ten.teb.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recent discovery of mesenchymal stem cells within periapical lesions (PL-MSC) has presented novel opportunities for managing periradicular diseases in adult teeth by way of enhancing tissue regeneration. This discovery coincides with the current paradigm shift toward biologically driven treatment strategies in endodontics, which have typically been reserved for non-vital immature permanent teeth. One such approach that shows promise is utilizing local endogenous non-collagenous dentine extracellular matrix components (dECM) to recruit and upregulate the intrinsic regenerative capacity of PL-MSCs in situ. At picogram levels, these morphogens have demonstrated tremendous ability to enhance the cellular activities in in vitro and in vivo animal studies that would otherwise be necessary for periradicular regeneration. Briefly, these include proliferation, viability, migration, differentiation, and mineralization. Therefore, topical application of dECMs during ortho- or retrograde root canal treatment could potentially enhance and sustain the regenerative mechanisms within diseased periapical tissues that are responsible for attaining favorable clinical and radiographic outcomes. This would provide many advantages when compared with conventional antimicrobial-only therapies for apical periodontitis (AP), which do not directly stimulate healing and have had stagnant success rates over the past five decades despite significant advances in operative techniques. The aim of this narrative review was to present the novel concept of exploiting endogenous dECMs as clinical tools for treating AP in mature permanent teeth. A large scope of literature was summarized to discuss the issues associated with conventional treatment modalities; current knowledge surrounding PL-MSCs; composition of the dECM; inductive potentials of dECM morphogens in other odontogenic stem cell niches; how treatment protocols can be adapted to take advantage of dECMs and PL-MSCs; and finally, the challenges currently impeding successful clinical translation alongside directions for future research.
Collapse
Affiliation(s)
- Satnam Singh Virdee
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Nasir Bashir
- University of Birmingham, 1724, School of Dentistry, Birmingham Dental Hospital and School of Dentistry, 5 Mill Pool Way, Edgbaston, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7SA;
| | - Josette Camilleri
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Paul R Cooper
- University of Otago, 2495, Faculty of Dentistry, Dunedin, New Zealand;
| | - Phillip Tomson
- University of Birmingham College of Medical and Dental Sciences, 150183, School of Dentistry, Institute of Clinical Sciences, 5 Mill Pool Way, Edgbaston, Birmingham, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7EG.,University of Birmingham;
| |
Collapse
|
19
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
20
|
Sanz JL, Rodríguez-Lozano FJ, Lopez-Gines C, Monleon D, Llena C, Forner L. Dental stem cell signaling pathway activation in response to hydraulic calcium silicate-based endodontic cements: A systematic review of in vitro studies. Dent Mater 2021; 37:e256-e268. [PMID: 33573840 DOI: 10.1016/j.dental.2021.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To present a qualitative synthesis of in vitro studies which analyzed human dental stem cell (DSC) molecular signaling pathway activation in response to hydraulic calcium silicate-based cements (HCSCs). METHODS A systematic electronic search was performed in Medline, Scopus, Embase, Web of Science and SciELO databases on January 20 and last updated on March 20, 2020. In vitro studies assessing the implication of signaling pathways in activity related marker (gene/protein) expression and mineralization induced by HCSCs in contact with human DSCs were included. RESULTS The search identified 277 preliminary results. After discarding duplicates, and screening of titles, abstracts, and full texts, 13 articles were considered eligible. All of the materials assessed by the included studies showed positive results in cytocompatibility and/or bioactivity assays. ProRoot MTA and Biodentine were the modal HCSCs studied, hDPSCs were the modal cell variant used, and the most studied signaling pathway was MAPK. In vitro assays measuring the expression of activity-related markers and mineralized nodule formation evidenced the involvement of MAPK (and its subfamilies ERK, JNK and P38), NF-κB, Wnt/β-catenin, BMP/Smad and CAMKII pathways in the biological response of DSCs to HCSCs. SIGNIFICANCE HCSCs considered in the present review elicited a favorable biological response from a variety of DSCs in vitro, thus supporting their use in biologically-based endodontic procedures. MAPK, NF-κβ, Wnt/β-catenin, BMP/Smad and CAMKII signaling pathways have been proposed as potential mediators in the biological interaction between DSCs and HCSCs. Understanding the signaling processes involved in tissue repair could lead to the development of new biomaterial compositions targeted at enhancing these mechanisms through biologically-based procedures.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Concha Lopez-Gines
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Daniel Monleon
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Carmen Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain.
| |
Collapse
|
21
|
Seubbuk S, Surarit R, Stephens D, Hasturk H, Van Dyke TE, Kantarci A. TLR2 and TLR4 Differentially Regulate the Osteogenic Capacity of Human Periodontal Ligament Fibroblasts. JOURNAL OF THE INTERNATIONAL ACADEMY OF PERIODONTOLOGY 2021; 23:3-10. [PMID: 33512337 PMCID: PMC8142849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AIMS To test that the osteogenic capacity of periodontal ligament (PDL) fibroblasts can be mediated by TLR2 and TLR4 activation. MATERIALS AND METHODS Human PDL fibroblasts were cultured in osteogenic medium and treated with TLR2 and TLR4 agonists (Pam3CSK4 and monophosphoryl Lipid A (MPLA), respectively). Cell proliferation was measured by MTT and BrdU incorporation. Osteogenic differentiation was measured by alkaline phosphatase (ALP) activity. Nodule formation was measured for osteoblast function. The expression of markers of potential signaling pathways (RUNX2, OCN, BSP and Osterix) was evaluated by quantitative PCR. RESULTS PDL fibroblasts grew at the same rate during the first 5 days in response to both Pam3CSK5 and MPLA. On day 7, cells cultured in the presence of Pam3CSK4 had a significantly higher rate of DNA replication, while cells in MPLA group had a significantly lower DNA replication rate (one-third) compared to the control (p less than 0.05). Pam3CSK4 induced significantly higher ALP activity and larger calcified nodules. TLR4 activation significantly reduced the expression of RUNX2 and osterix and enhanced OCN. Neither TLR2 nor TLR4 affected BSP expression. CONCLUSIONS These data suggest that the activation of TLR2 and TLR4 differentially and perhaps antagonistically modulate osteogenesis by human PDL fibroblasts and have a direct role of TLR-mediated PDL function during periodontal regeneration as a potential target for therapeutics.
Collapse
Affiliation(s)
- Sujiwan Seubbuk
- Molecular Medicine Program, Faculty of Science, Mahidol University, Ratchthewi, Bangkok Thailand; Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA; and Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Ratchthewi, Bangkok Thailand
| | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Ratchthewi, Bangkok Thailand
| | - Danielle Stephens
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - Hatice Hasturk
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA. E-mail address:
| |
Collapse
|
22
|
Hromcik F, Vokurka J, Kyr M, Izakovicova Holla L. Granulation Tissue Enhanced with Aspirin and Omega‐3 PUFAs as a Local Adjunct to the Surgical Treatment of Periodontitis. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Filip Hromcik
- Clinic of Dentistry St. Anne's Faculty Hospital Pekarska 53 Brno 65691 Czech Republic
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
| | - Jan Vokurka
- Clinic of Dentistry St. Anne's Faculty Hospital Pekarska 53 Brno 65691 Czech Republic
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
| | - Michal Kyr
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
- Department of Pediatric Oncology University Hospital Brno Cernopolni 9 Brno 61300 Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Dentistry St. Anne's Faculty Hospital Pekarska 53 Brno 65691 Czech Republic
- Faculty of Medicine Masaryk University Kamenice 5 Brno 62500 Czech Republic
| |
Collapse
|
23
|
Couto de Carvalho LA, Tosta Dos Santos SL, Sacramento LV, de Almeida VR, de Aquino Xavier FC, Dos Santos JN, Gomes Henriques Leitão ÁC. Mesenchymal stem cell markers in periodontal tissues and periapical lesions. Acta Histochem 2020; 122:151636. [PMID: 33132168 DOI: 10.1016/j.acthis.2020.151636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are characterized by the potential to differentiate into multiple cell lineages, high proliferation rates, and self-renewal capacity, in addition to the ability to maintain their undifferentiated state. These cells have been identified in physiological oral tissues such as pulp tissue, dental follicle, apical papilla and periodontal ligament, as well as in pathological situations such as chronic periapical lesions (CPLs). The criteria used for the identification of MSCs include the positive expression of specific surface antigens, with CD73, CD90, CD105, CD44, CD146, STRO-1, CD166, NANOG and OCT4 being the most specific for these cells. AIM The aim of this review was to explore the literature on markers able to identify MSCs as well as the presence of these cells in the healthy periodontal ligament and CPLs, highlighting their role in regenerative medicine and implications in the progression of these lesions. METHODS Narrative literature review searching the PubMed and Medline databases. Articles published in English between 1974 and 2020 were retrieved. CONCLUSION The included studies confirmed the presence of MSCs in the healthy periodontal ligament and in CPLs. Several surface markers are used for the characterization of these cells which, although not specific, are effective in cell recognition. Mesenchymal stem cells participate in tissue repair, exerting anti- inflammatory, immunosuppressive and proangiogenic effects, and are therefore involved in the progression and attenuation of CPLs or even in the persistence of these lesions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Nunes Dos Santos
- Postgraduation Program in Dentistry and Health, Federal University of Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
24
|
Bashir NZ. The role of insulin-like growth factors in modulating the activity of dental mesenchymal stem cells. Arch Oral Biol 2020; 122:104993. [PMID: 33259987 DOI: 10.1016/j.archoralbio.2020.104993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
Regenerative treatment protocols are an exciting prospect in the management of oral pathology, as they allow for tissues to be restored to their original form and function, as compared to the reparative healing mechanisms which currently govern the outcomes of the majority of dental treatment. Stem cell therapy presents with a great deal of untapped potential in this pursuit of tissue regeneration, and, in particular, mesenchymal stem cells (MSCs) derived from dental tissues are of specific relevance with regards to their applications in engineering craniofacial tissues. A number of mediatory factors are involved in modulating the actions of dental MSCs, and, of these, insulin like growth factors (IGFs) are known to have potent effects in governing the behavior of these cells. The IGF family comprises a number of primary ligands, receptors, and binding proteins which are known to modulate the key properties of dental MSCs, such as their proliferation rates, differentiation potential, and mineralisation. The aims of this review are three-fold: (i) to present an overview of dental MSCs and the role of growth factors in modulating their characteristics, (ii) to discuss in greater detail the specific role of IGFs and the benefits they may convey for tissue engineering, and (iii) to provide a summary of potential for in vivo clinical translation of the current in vitro body of evidence.
Collapse
|
25
|
Samiei M, Aghazadeh Z, Abdolahinia ED, Vahdati A, Daneshvar S, Noghani A. The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells. Acta Odontol Scand 2020; 78:494-500. [PMID: 32191156 DOI: 10.1080/00016357.2020.1734655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: Extremely low-frequency electromagnetic fields (ELF-EMF) can affect biological systems and alter some cell functions like proliferation rate. Dental pulp tissue is known as a source of multipotent stromal stem cells (MSCs), which can be obtained by a less invasive and more available process compared to bone marrow-derived stem cells (BMSCs). This study aimed to consider the effect of ELF-EMF on proliferation rates of human dental pulp stem cells (hDPSCs).Material and methods: ELF-EMF was generated by a system including autotransformer, multi-meter, solenoid coils, teslameter and its probe. The effect of ELF-EMF with the intensity of 0.5 and 1 mT and 50 Hz on the proliferation rate of hDPSCs was assessed in 20 and 40 min per day for 7 days. MTT assay and DAPI test were used to determine the growth and proliferation of DPSCs.Results: Based on MTT, ELF-EMF has maximum effect with the intensity of 1 mT for 20 min/day on the proliferation of hDPSCs. The survival and proliferation rate in all exposure groups were significantly higher than the control group. Based on the data obtained from MTT and DAPI assay, the number of viable cells in the group exposed to 1 mT for 20 min/day was higher than other groups (p < .05).Conclusions: Regarding to the results of this study, 0.5 and 1 mT ELF-EMF can enhance survival and proliferation rates of hDPSCs.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Vahdati
- Dental Public Health Program, Community Oral Health Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran
| | - Sabalan Daneshvar
- Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, University of Tabriz, Tabriz, Iran
| | - Atefe Noghani
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
The Implications of Titanium Alloys Applied in Maxillofacial Osteosynthesis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Titanium alloys are known for their biological, mechanical and chemical properties, which have successfully expanded their use in the maxillofacial field. The internal fixation using titanium miniplates and screws offer a new perspective for the treatment of trauma and in orthognathic surgery and maxillofacial oncology. Although, titanium is highly recommended for its excellent biocompatibility, recent research has focused on identifying the potential local and general implications of the interactions between the human tissue and the metallic particles. This present review aims to outline the existing tissue changes, cellular alterations and future perspectives regarding the use of titanium-based alloys as osteosynthesis materials, taking into consideration the existing present debate whether the routinely removal of these materials should be an indication.
Collapse
|
27
|
Zhou H, Li X, Yin Y, He XT, An Y, Tian BM, Hong YL, Wu LA, Chen FM. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth. Stem Cell Res Ther 2020; 11:110. [PMID: 32143712 PMCID: PMC7060605 DOI: 10.1186/s13287-020-01614-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although dental pulp stem cells (DPSCs) isolated from periodontally compromised teeth (P-DPSCs) have been demonstrated to retain pluripotency and regenerative potential, their use as therapeutics remains largely unexplored. In this study, we investigated the proangiogenic effects of extracellular vesicles (EVs) secreted by P-DPSCs using in vitro and in vivo testing models. Methods Patient-matched DPSCs derived from periodontally healthy teeth (H-DPSCs) were used as the control for P-DPSCs. Conditioned media (CMs) derived from H-DPSCs and P-DPSCs (H-CM and P-CM), CMs derived from both cell types pretreated with the EV secretion blocker GW4869 (H-GW and P-GW), and EVs secreted by H-DPSCs and P-DPSCs (H-EVs and P-EVs) were prepared to test their proangiogenic effects on endothelial cells (ECs). Cell proliferation, migration, and tube formation were assessed using the Cell Counting Kit-8 (CCK-8), transwell/scratch wound healing, and Matrigel assays, respectively. Specifically, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blot analysis were used to examine the expression levels of angiogenesis-related genes/proteins in ECs in response to EV-based incubation. Finally, a full-thickness skin defect model was applied to test the effects of EVs on wound healing and new vessel formation. Results Both H-CM and P-CM promoted EC angiogenesis, but the proangiogenic effects were compromised when ECs were incubated in H-GW and P-GW, wherein the EV secretion was blocked by pretreatment with GW4869. In EV-based incubations, although both H-EVs and P-EVs were found to enhance the angiogenesis-related activities of ECs, P-EVs exerted a more robust potential to stimulate EC proliferation, migration, and tube formation. In addition, P-EVs led to higher expression levels of angiogenesis-related genes/proteins in ECs than H-EVs. Similarly, both P-EVs and H-EVs were found to accelerate wound healing and promote vascularization across skin defects in mice, but wounds treated with P-EVs resulted in a quicker healing outcome and enhanced new vessel formation. Conclusions The findings of the present study provide additional evidence that P-DPSCs derived from periodontally diseased teeth represent a potential source of cells for research and therapeutic use. Particularly, the proangiogenic effects of P-EVs suggest that P-DPSCs may be used to promote new vessel formation in cellular therapy and regenerative medicine.
Collapse
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Ying An
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yong-Long Hong
- Stomatology Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China.
| | - Li-An Wu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
28
|
Ayoub S, Berbéri A, Fayyad-Kazan M. An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine. Mol Biol Rep 2020; 47:2381-2389. [PMID: 32026284 DOI: 10.1007/s11033-020-05298-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The broad clinical applications of Mesenchymal Stem Cells (MSCs) in the regenerative medicine field is attributed to their ability to self-renew and differentiate into multiple cellular lineages. Nowadays, MSCs can be derived from a variety of adult and fetal tissues including bone marrow, adipose tissue, umbilical cord and placenta. The difficulties associated with the isolation of MSCs from certain tissues such as bone marrow promoted the search for alternative tissues which are easily accessible. Oral derived MSCs include dental pulp stem cells (DPSCs), dental follicle progenitor cells (DFPC), and periodontal ligament stem cells (PDLSC). Being abundant and easily accessible, oral derived MSCs represent an interesting alternative MSC type to be employed in regenerative medicine. Human periapical cyst-mesenchymal stem cells (hPCy-MSCs) correspond to a newly discovered and characterized MSC subtype. Interestingly, hPCy-MSCs are collected from periapical cysts, which are a biological waste, without any influence on the other healthy tissues in oral cavity. hPCy-MSCs exhibit cell surface marker profile similar to that of other oral derived MSCs, show high proliferative potency, and possess the potential to differentiate into different cell types such as osteoblasts, adipocytes and neurons-like cells. hPCy-MSCs, therefore, represent a novel promising MSCs type to be applied in regenerative medicine domain. In this review, we will compare the different types of dental derived MSCs, we will highlight the isolation technique, the characteristics, and the therapeutic potential of hPCy-MSCs.
Collapse
Affiliation(s)
- Sara Ayoub
- Department of Prosthodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon. .,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
29
|
Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell 2020; 64:101330. [PMID: 32473704 DOI: 10.1016/j.tice.2020.101330] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent, genomic stable, self-renewable, and culturally expandable adult stem cells. MSCs facilitate tissue development, maintenance and repair, and produce secretory factors that support engraftment and trophic functions, marking them an attractive option in cell therapy, regenerative medicine and tissue engineering. METHOD In this review, we summarize the recent researches regarding the isolation and characterization of MSCs, therapeutic applications and advanced engineering techniques. We also discuss the advantages and limitations that remain to be overcome for MSCs based therapy. RESULTS It has been demonstrated that MSCs are able to modulate endogenous tissue and immune cells. Preclinical studies and early phase clinical trials have shown their great potential for tissue engineering of bone, cartilage, marrow stroma, muscle, fat, and other connective tissues. CONCLUSIONS MSC-based therapy show considerable promise to rebuild damaged or diseased tissues, which could be a promising therapeutic method for regeneration medicine.
Collapse
|
30
|
Characterization of progenitor/stem cell population from human dental socket and their multidifferentiation potential. Cell Tissue Bank 2019; 21:31-46. [PMID: 31807957 DOI: 10.1007/s10561-019-09794-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Dental stem cells have many applications in medicine, dentistry and stem cell biology in general due to their easy accessibility and low morbidity. A common surgical manoeuvre after a tooth extraction is the dental socket curettage which is necessary to clean the alveolus and favour alveolar bone healing. This procedure can cause very low morbidity compared to bone marrow collection procedures and the collected material is normally discarded. In order to investigate if the tissue obtained by dental socket curettage after a tooth extraction was a feasible alternative source to isolate human stem cells, we isolated and characterized two different stem cell populations based on STRO-1 and CD146 expression. We were able to collect and grow cells from dental socket of vital and non-vital teeth. Both populations were proliferative, clonogenic and expressed STRO-1, CD146, CD90, NG2, PDGFR-β, which are markers found in stem cells, presented in vitro multiline-differentiation into osteogenic, chondrogenic, and adipogenic tissue, and in vivo transplanted cells formed mineralized tissue. Interestingly, STRO-1+ clonogenic cells presented better multidifferentiation than CD146+ cells. Our results showed that mesenchymal stem cells can be isolated from the tiny tissue collected by dental socket curettage after vital and non-vital tooth extraction and suggest that STRO-1 is an important marker to be used to sort cells with multidifferentiation capacity.
Collapse
|
31
|
Liu Y, Chen Y, Chu C, Qu Y, Xiang L, Man Y. A prospective cohort study of immediate implant placement into posterior compromised sockets with or without primary wound closure of reactive soft tissue. Clin Implant Dent Relat Res 2019; 22:13-20. [PMID: 31755640 DOI: 10.1111/cid.12845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 09/07/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Yeyu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yili Qu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan China
- Department of Prosthodontics West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
32
|
Digka A, Sakka D, Lyroudia K. Histological assessment of human regenerative endodontic procedures (
REP
) of immature permanent teeth with necrotic pulp/apical periodontitis: A systematic review. AUST ENDOD J 2019; 46:140-153. [DOI: 10.1111/aej.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Anna Digka
- Department of Endodontology School of Dentistry Aristotle University of Thessaloniki Thessaloniki Greece
| | - Dimitra Sakka
- Department of Endodontology School of Dentistry Aristotle University of Thessaloniki Thessaloniki Greece
| | - Kleoniki Lyroudia
- Department of Endodontology School of Dentistry Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
33
|
Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 2019; 11:23. [PMID: 31423011 PMCID: PMC6802669 DOI: 10.1038/s41368-019-0060-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
In modern medicine, bone and dental loss and defects are common and widespread morbidities, for which regenerative therapy has shown great promise. Mesenchymal stem cells, obtained from various sources and playing an essential role in organ development and postnatal repair, have exhibited enormous potential for regenerating bone and dental tissue. Currently, mesenchymal stem cells (MSCs)-based bone and dental regeneration mainly includes two strategies: the rescue or mobilization of endogenous MSCs and the application of exogenous MSCs in cytotherapy or tissue engineering. Nevertheless, the efficacy of MSC-based regeneration is not always fulfilled, especially in diseased microenvironments. Specifically, the diseased microenvironment not only impairs the regenerative potential of resident MSCs but also controls the therapeutic efficacy of exogenous MSCs, both as donors and recipients. Accordingly, approaches targeting a diseased microenvironment have been established, including improving the diseased niche to restore endogenous MSCs, enhancing MSC resistance to a diseased microenvironment and renormalizing the microenvironment to guarantee MSC-mediated therapies. Moreover, the application of extracellular vesicles (EVs) as cell-free therapy has emerged as a promising therapeutic strategy. In this review, we summarize current knowledge regarding the tactics of MSC-based bone and dental regeneration and the decisive role of the microenvironment, emphasizing the therapeutic potential of microenvironment-targeting strategies in bone and dental regenerative medicine.
Collapse
|
34
|
Ultrastructural morphology is distinct among primary progenitor cell isolates from normal, inflamed, and cryopreserved equine hoof tissue and CD105 +K14 + progenitor cells. In Vitro Cell Dev Biol Anim 2019; 55:641-655. [PMID: 31297697 PMCID: PMC6717190 DOI: 10.1007/s11626-019-00380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
The equine hoof dermal-epidermal interface requires progenitor cells with distinct characteristics. This study was designed to provide accurate ultrastructural depictions of progenitor cells isolated from inflamed tissue and normal tissue before and after cryopreservation and following selection of cells expressing both keratin (K) 14 (ectodermal) and cluster of differentiation (CD) 105 (mesodermal). Passage 3 cell ultrastructure was assessed following 2D culture and after 3D culture on decellularized hoof tissue scaffolds. Outcome measures included light, transmission electron, and scanning electron microscopy, immunocytochemistry, and CD105+K14+ cell trilineage plasticity. Cells from normal tissue had typical progenitor cell characteristics. Those from inflamed tissue had organelles and morphology consistent with catabolic activities including lysosomes, irregular rough endoplasmic reticulum, and fewer vacuoles and early endosomes than those from normal tissue. Cryopreserved tissue cells appeared apoptotic with an irregular cell membrane covered by cytoplasmic protrusions closely associated with endocytic and exocytic vesicles, chromatin aggregated on the nuclear envelop, abundant, poorly organized rough endoplasmic reticulum, and plentiful lysosomes. Cells that were CD105+K14+ were distinguishable from heterogenous cells by infrequent microvilli on the cell surface, sparse endosomes and vesicles, and desmosomes between cells. Cells expressed ectodermal (K15) and mesodermal (CD105) proteins in 2D and 3D cultures. Inflamed and cryopreserved tissue isolates attached poorly to tissue scaffold while normal tissue cells attached well, but only CD105+K14+ cells produced extracellular matrix after 4 d. The CD105+K14+ cells exhibited osteoblastic, adipocytic, and neurocytic differentiation. Ultrastructural information provided by this study contributes to understanding of equine hoof progenitor cells to predict their potential contributions to tissue maintenance, healing, and damage as well post-implantation behavior.
Collapse
|
35
|
Estrela C, Carmo Souza PO, Barbosa MG, Aburad de Carvalhosa A, Batista AC, Pinto Júnior DDS, Yamamoto-Silva FP, de Freitas Silva BS. Mesenchymal Stem Cell Marker Expression in Periapical Abscess. J Endod 2019; 45:716-723. [DOI: 10.1016/j.joen.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/27/2019] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
|
36
|
Mounir MMF, Farsi JMA, Alhazzazi TY, Matar MA, El-Housseiny AA. Characterization of the apical bridge barrier formed following amelogenin apexification. BMC Oral Health 2018; 18:201. [PMID: 30514371 PMCID: PMC6280449 DOI: 10.1186/s12903-018-0641-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background Recombinant amelogenin protein (RAP) is reported to induce complete root apex formation in dog model when used as apexification therapy. It also induces pulp regeneration in 85% of the treated group. Thus, the aim of this study was to investigate the nature of the remaining regenerated calcified tissues of the RAP group that showed no pulp regeneration compared to the calcium hydroxide treated group (CH). Methods A total of 240 dogs’ open apex root canals were used, after establishment of canals contamination. Canals were cleaned, irrigated, and filled with RAP as an apexification material and compared with CH. Treated teeth were assessed by H&E, trichrome staining, and/or immunohistochemistry technique, at 1, 3, and 6 months. Results A time-dependent increase in the calcified tissue barrier was observed in the apex of the RAP-treated group compared to the CH-treated group. The newly formed dentin in this RAP group was mainly tubular dentin and was functionally attached to the bone by periodontal ligament, while the CH group showed dentin-associated mineralized tissue (DAMT) associated with the newly formed apical barrier. Conclusions Out results suggest that RAP can be used as novel apexification material, resulting in a thickening and strengthening of the canal walls, and achieving apical closure.
Collapse
Affiliation(s)
- Maha M F Mounir
- Department of Diagnostic Oral Sciences, King Abdulaziz University, Faculty of Dentistry, Jeddah, Saudi Arabia. .,Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Jamila M A Farsi
- Department of Oral Biology, King Abdulaziz University, Faculty of Dentistry, Jeddah, Saudi Arabia
| | - Turki Y Alhazzazi
- Department of Oral Biology, King Abdulaziz University, Faculty of Dentistry, Jeddah, Saudi Arabia
| | - Moustafa A Matar
- Department of Pediatric Dentistry, Faculty of Dentistry, Pharos University, Alexandria, Egypt
| | - Azza A El-Housseiny
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Dehghani Nazhvani A, Ahzan S, Hosseini SM, Attar A, Monabati A, Tavangar MS. Purification of Stem Cells from Oral Pyogenic Granuloma Tissue. Open Dent J 2018; 12:560-566. [PMID: 30197695 PMCID: PMC6118039 DOI: 10.2174/1874210601812010560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/26/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Introduction: The isolation of stem cells from pathologically damaged dental tissues has been examined only by a few studies. The purpose of this study was to evaluate the possibility of isolation of stem cells from pyogenic granuloma. Methods: Pyogenic granuloma tissues were enzymatically digested and the resulting single cells were cultured. Then, the cultured cells differentiated into adipocytes and osteoblasts cells. Flow cytometry analyses were performed on markers such as CD 90, CD 73, CD105, CD 45 and CD14. Other features were also analyzed including the effect of colony formation and potentials of differentiation into adipocytes and osteoblasts. Results: The cells derived from pyogenic granuloma tissue formed higher colonies similar to typical spindle-shaped fibroblasts. The cells were positive for mesenchymal markers such as CD 44, CD 271, CD 90, and CD 73, and negative for surface molecules such as CD 14, CD 34 and CD 45. Moreover, they successfully differentiated into adipocytes and osteoblasts. Conclusion: The cells isolated from pyogenic granuloma could form CFU fibroblastic units expressing an appropriate marker panel of the cell surface antigen and adequate differentiation potential, all of which met the Cell Therapy International Association criteria for the definition of mesenchymal stromal cells. Pyogenic granuloma contains cells with stem cell properties.
Collapse
Affiliation(s)
- Ali Dehghani Nazhvani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.,Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shamsedin Ahzan
- Students' Research Committee, Cellular and Molecular Research Club, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed-Mojtaba Hosseini
- Students' Research Committee, Cellular and Molecular Research Club, Shiraz University of Medical Sciences, Shiraz, Iran.,Cellular and Molecular Research Club, Shiraz University of Medical Sciences, Shiraz, Iran.,Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Cellular and Molecular Research Club, Shiraz University of Medical Sciences, Shiraz, Iran.,Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Molecular Pathology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Sadat Tavangar
- Department of Operative Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B. Regenerative endodontics: a comprehensive review. Int Endod J 2018; 51:1367-1388. [PMID: 29777616 DOI: 10.1111/iej.12954] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
The European Society of Endodontology and the American Association for Endodontists have released position statements and clinical considerations for regenerative endodontics. There is increasing literature on this field since the initial reports of Iwaya et al. (Dental Traumatology, 17, 2001, 185) and Banchs & Trope (Journal of Endodontics, 30, 2004, 196). Endogenous stem cells from an induced periapical bleeding and scaffolds using blood clot, platelet rich plasma or platelet-rich fibrin have been utilized in regenerative endodontics. This approach has been described as a 'paradigm shift' and considered the first treatment option for immature teeth with pulp necrosis. There are three treatment outcomes of regenerative endodontics; (i) resolution of clinical signs and symptoms; (ii) further root maturation; and (iii) return of neurogenesis. It is known that results are variable for these objectives, and true regeneration of the pulp/dentine complex is not achieved. Repair derived primarily from the periodontal and osseous tissues has been shown histologically. It is hoped that with the concept of tissue engineering, namely stem cells, scaffolds and signalling molecules, that true pulp regeneration is an achievable goal. This review discusses current knowledge as well as future directions for regenerative endodontics. Patient-centred outcomes such as tooth discolouration and possibly more appointments with the potential for adverse effects needs to be discussed with patients and parents. Based on the classification of Cvek (Endodontics and Dental Traumatology, 8, 1992, 45), it is proposed that regenerative endodontics should be considered for teeth with incomplete root formation although teeth with near or complete root formation may be more suited for conventional endodontic therapy or MTA barrier techniques. However, much is still not known about clinical and biological aspects of regenerative endodontics.
Collapse
Affiliation(s)
- S G Kim
- Division of Endodontics, Columbia University College of Dental Medicine, New York, NY, USA
| | - M Malek
- Department of Endodontics, New York University College of Dentistry, New York, NY, USA
| | - A Sigurdsson
- Department of Endodontics, New York University College of Dentistry, New York, NY, USA
| | - L M Lin
- Department of Endodontics, New York University College of Dentistry, New York, NY, USA
| | - B Kahler
- The University of Queensland School of Dentistry, Brisbane, Australia
| |
Collapse
|
39
|
Widbiller M, Driesen RB, Eidt A, Lambrichts I, Hiller KA, Buchalla W, Schmalz G, Galler KM. Cell Homing for Pulp Tissue Engineering with Endogenous Dentin Matrix Proteins. J Endod 2018; 44:956-962.e2. [DOI: 10.1016/j.joen.2018.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
|
40
|
Apatzidou DA, Nile C, Bakopoulou A, Konstantinidis A, Lappin DF. Stem cell-like populations and immunoregulatory molecules in periodontal granulation tissue. J Periodontal Res 2018; 53:610-621. [PMID: 29687448 DOI: 10.1111/jre.12551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Determine the presence of mesenchymal stem cells (MSCs) in healthy periodontal tissue and periodontal granulation tissue (GT) and explore associations between immuno-regulatory molecules and selected subgingival microorganisms. MATERIAL AND METHODS Mesenchymal stem cells were isolated, propagated and characterised by flow cytometry from a region of healthy gingival tissue and inflamed GT of 10 systemically healthy non-smokers with chronic periodontitis. Tissue levels of immunoregulatory molecules were determined by qPCR and Gingival Crevicular Fluid (GCF) levels by ELISA. Subgingival plaque levels of periodontal pathogens were determined by qPCR RESULTS: Cells with MSC-properties were isolated from both inflamed GT and healthy gingival (G) tissue. A pro-inflammatory process predominated in GT which was partly reflected in GCF and putative periodontal pathogens were higher at diseased sites. However, there was no significant difference in surface levels of mesenchymal (CD90, CD73, CD146, CD271, STRO-1), endothelial (CD105, CD106), hematopoietic (CD34, CD45) and embryonic (SSEA-4) stem cell markers between MSCs isolated from GT and G tissue. CONCLUSION Periodontal lesions, albeit inflamed, retain healing potential as inferred by the presence of MSC-like cells with similar immunophenotypic characteristics to those found in healthy periodontal tissue. Therefore, there might be merits for healing in preserving sufficient GT in-situ during periodontal surgery.
Collapse
Affiliation(s)
- D A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - C Nile
- Infection and Immunity Research group, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - A Bakopoulou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - D F Lappin
- Infection and Immunity Research group, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
41
|
Carelli S, Colli M, Vinci V, Caviggioli F, Klinger M, Gorio A. Mechanical Activation of Adipose Tissue and Derived Mesenchymal Stem Cells: Novel Anti-Inflammatory Properties. Int J Mol Sci 2018; 19:ijms19010267. [PMID: 29337886 PMCID: PMC5796213 DOI: 10.3390/ijms19010267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The adipose tissue is a source of inflammatory proteins, such as TNF, IL-6, and CXCL8. Most of their production occurs in macrophages that act as scavengers of dying adipocytes. The application of an orbital mechanical force for 6-10 min at 97 g to the adipose tissue, lipoaspirated and treated according to Coleman procedures, abolishes the expression of TNF-α and stimulates the expression of the anti-inflammatory protein TNF-stimulated gene-6 (TSG-6). This protein had protective and anti-inflammatory effects when applied to animal models of rheumatic diseases. We examined biopsy, lipoaspirate, and mechanically activated fat and observed that in addition to the increased TSG-6, Sox2, Nanog, and Oct4 were also strongly augmented by mechanical activation, suggesting an effect on stromal cell stemness. Human adipose tissue-derived mesenchymal stem cells (hADSCs), produced from activated fat, grow and differentiate normally with proper cell surface markers and chromosomal integrity, but their anti-inflammatory action is far superior compared to those mesenchymal stem cells (MSCs) obtained from lipoaspirate. The expression and release of inflammatory cytokines from THP-1 cells was totally abolished in mechanically activated adipose tissue-derived hADSCs. In conclusion, we report that the orbital shaking of adipose tissue enhances its anti-inflammatory properties, and derived MSCs maintain such enhanced activity.
Collapse
Affiliation(s)
- Stephana Carelli
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", University of Milan, 20142 Milan, Italy.
| | - Mattia Colli
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", University of Milan, 20142 Milan, Italy.
| | - Valeriano Vinci
- Humanitas Research Hospital, Plastic Surgery Unit, Via Manzoni 56, 20089 Rozzano, Italy.
| | - Fabio Caviggioli
- Multimedica San Giuseppe Hospital, Plastic Surgery Unit, Via San Vittore 12, 20123 Milan, Italy.
| | - Marco Klinger
- Humanitas Research Hospital, Plastic Surgery Unit, Via Manzoni 56, 20089 Rozzano, Italy.
| | - Alfredo Gorio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
42
|
Zhu X, Liu J, Yu Z, Chen CA, Aksel H, Azim AA, Huang GTJ. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue. Tissue Eng Part C Methods 2018; 24:108-120. [PMID: 29298406 DOI: 10.1089/ten.tec.2017.0342] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.
Collapse
Affiliation(s)
- Xiaofei Zhu
- 1 Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center , Memphis, Tennessee.,2 VIP Dental Service and Geriatric Dentistry, School and Hospital of Stomatology, Peking University , Beijing, China
| | - Jie Liu
- 1 Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Zongdong Yu
- 1 Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Chao-An Chen
- 1 Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center , Memphis, Tennessee.,3 Department of Endodontics, Chi Mei Medical Center , Liouying, Tainan, Taiwan
| | - Hacer Aksel
- 1 Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center , Memphis, Tennessee.,4 Department of Endodontics, School of Dentistry, Hacettepe University , Ankara, Turkey
| | - Adham A Azim
- 1 Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - George T-J Huang
- 1 Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
43
|
Tatullo M, Codispoti B, Pacifici A, Palmieri F, Marrelli M, Pacifici L, Paduano F. Potential Use of Human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) as a Novel Stem Cell Source for Regenerative Medicine Applications. Front Cell Dev Biol 2017; 5:103. [PMID: 29259970 PMCID: PMC5723286 DOI: 10.3389/fcell.2017.00103] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications.
Collapse
Affiliation(s)
- Marco Tatullo
- Stem Cells Unit, Biomedical Section, TECNOLOGICA S.r.l., Marrelli Health, Crotone, Italy
| | - Bruna Codispoti
- Stem Cells Unit, Biomedical Section, TECNOLOGICA S.r.l., Marrelli Health, Crotone, Italy
| | - Andrea Pacifici
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Palmieri
- Stem Cells Unit, Biomedical Section, TECNOLOGICA S.r.l., Marrelli Health, Crotone, Italy
| | - Massimo Marrelli
- Stem Cells Unit, Biomedical Section, TECNOLOGICA S.r.l., Marrelli Health, Crotone, Italy
| | - Luciano Pacifici
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Paduano
- Stem Cells Unit, Biomedical Section, TECNOLOGICA S.r.l., Marrelli Health, Crotone, Italy
| |
Collapse
|
44
|
Gaviño Orduña JF, Caviedes-Bucheli J, Manzanares Céspedes MC, Berástegui Jimeno E, Martín Biedma B, Segura-Egea JJ, López-López J. Use of Platelet-rich Plasma in Endodontic Procedures in Adults: Regeneration or Repair? A Report of 3 Cases with 5 Years of Follow-up. J Endod 2017; 43:1294-1301. [DOI: 10.1016/j.joen.2017.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/26/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022]
|
45
|
Yue J, Wang P, Hong Q, Liao Q, Yan L, Xu W, Chen X, Zheng Q, Zhang L, Huang D. MicroRNA-335-5p Plays Dual Roles in Periapical Lesions by Complex Regulation Pathways. J Endod 2017; 43:1323-1328. [PMID: 28578884 DOI: 10.1016/j.joen.2017.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/02/2017] [Accepted: 03/12/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION MicroRNA-335-5p has been reported to regulate osteogenic and chondrogenic differentiations of mesenchymal stem cells. The aim of this study was to explore the function and regulation mechanism of miR-335-5p in apical periodontitis (AP). METHODS Total RNAs were extracted from human periodontal ligament fibroblasts (HPDLFs), 10 AP tissues, and 6 healthy periodontal ligament tissues using lysis buffer. Gene expression was detected using real-time polymerase chain reaction. The Dual Luciferase Assay (Promega, Madison, WI) was used to test miR-335-5p directly targeted urokinase-type plasminogen activator receptor (uPAR) and the receptor activator of nuclear factor kappa-B ligand (RANKL). Western Blot was used to detect protein expressions of RANKL, uPAR, and the fragile X-related 1 gene (FXR1). The enzyme-linked immunosorbent assay was used to detect the secretions of interleukin 6, tumor necrosis factor alpha, and RANKL. Data were analyzed using the Student t test. RESULTS miR-335-5p acted as a positive mediator in HPDLF inflammation (P < .05). Two targets of miR-335-5p, uPAR and RANKL, were identified. Interestingly, uPAR was repressed by miR-335-5p at the basal level, but it can be relieved from miR-335-5p-mediated repression, which is called derepression, when HPDLFs were subjected to lipopolysaccharide stimulation. miR-335-5p promoted RANKL in HPDLFs regardless of whether or not it was under inflammatory conditions (P < .05). We proved FXR1 was responsible for the derepression of uPAR from miR-335-5p (P < .01). Both FXR1 and uPAR were positive mediators in HPDLF inflammation (P < .05). miR-335-5p, uPAR, RANKL, and FXR1 had the same expression profiles in HPDLF inflammation and AP tissues (P < .05). CONCLUSIONS Our data showed that miR-335-5p may play dual roles in AP, and it might be considered as a target for therapeutic potency in clinical applications.
Collapse
Affiliation(s)
- Junli Yue
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Puyu Wang
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qingchun Hong
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qian Liao
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Li Yan
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Weizhe Xu
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qinghua Zheng
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China.
| |
Collapse
|
46
|
Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, Sun J. Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives. Front Physiol 2017; 8:197. [PMID: 28421002 PMCID: PMC5376595 DOI: 10.3389/fphys.2017.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated and pluripotent cells that can differentiate into specialized cells with a more specific function. Stem cell therapies become preferred methods for the treatment of multiple diseases. Oral and maxillofacial defect is one kind of the diseases that could be most possibly cured by stem cell therapies. Here we discussed oral diseases, oral adult stem cells, iPS cells, and the progresses/challenges/perspectives of application of stem cells for oral disease treatment.
Collapse
Affiliation(s)
- Bo Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Yi Qiu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Niu Zhou
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen UniversityGuangzhou, China
| | - Junjun Ding
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhou, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| | - Jianbo Sun
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen UniversityGuangzhou, China
| |
Collapse
|
47
|
Louvrier A, Euvrard E, Nicod L, Rolin G, Gindraux F, Pazart L, Houdayer C, Risold PY, Meyer F, Meyer C. Odontoblastic differentiation of dental pulp stem cells from healthy and carious teeth on an original PCL-based 3D scaffold. Int Endod J 2017; 51 Suppl 4:e252-e263. [PMID: 28109162 DOI: 10.1111/iej.12746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/17/2017] [Indexed: 01/09/2023]
Abstract
AIMS To isolate and characterize dental pulp stem cells (DPSCs) obtained from carious and healthy mature teeth extracted when conservative treatment was not possible or for orthodontic reasons; to evaluate the ability of DPSCs to colonize, proliferate and differentiate into functional odontoblast-like cells when cultured onto a polycaprolactone cone made by jet-spraying and prototyped into a design similar to a gutta-percha cone. METHODOLOGY DPSCs were obtained from nine carious and 12 healthy mature teeth. Then cells were characterized by flow cytometry and submitted to multidifferentiation to confirm their multipotency. These DPSCs were then cultured on a polycaprolactone cone in an odontoblastic differentiation medium. Cell proliferation, colonization of the biomaterial and functional differentiation of cells were histologically assessed. For the characterization, a t-Student test was used to compare the two groups. RESULTS In all cell cultures, characterization highlighted a mesenchymal stem cell phenotype (CD105+, CD90+, CD73+, CD11b-, CD34-, CD45-, HLA-DR-). No significant differences were found between cultures obtained from carious and healthy mature teeth. DPSCs from both origins were able to differentiate into osteocytes, adipocytes and chondrocytes. Cell colonization was observed both on the surface and in the thickness of polycaprolactone cones as well as a mineralized pericellular matrix deposit composed of type I collagen, alkaline phosphatase, osteocalcin and dentin sialophosphoprotein. CONCLUSIONS DPSCs were isolated from both carious and healthy mature teeth. They were able to colonize and proliferate within a polycaprolactone cone and could be differentiated into functional odontoblast-like cells.
Collapse
Affiliation(s)
- A Louvrier
- Service de Chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - E Euvrard
- Service de Chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France.,Nanomédecinelab, EA 4662, UFR SMP, Université de Franche-Comté, Besançon, France
| | - L Nicod
- Nanomédecinelab, EA 4662, UFR SMP, Université de Franche-Comté, Besançon, France
| | - G Rolin
- Centre d'Investigation Clinique de Besançon, INSERM 1431, Centre Hospitalier Régional Universitaire de Besançon, Besançon, France
| | - F Gindraux
- Nanomédecinelab, EA 4662, UFR SMP, Université de Franche-Comté, Besançon, France.,Service de Chirurgie Orthopédique, Traumatologique et Plastique, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - L Pazart
- Centre d'Investigation Clinique de Besançon, INSERM 1431, Centre Hospitalier Régional Universitaire de Besançon, Besançon, France
| | - C Houdayer
- Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, EA3922, UFR ST, Université de Franche-Comté, Besançon, France
| | - P Y Risold
- Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, EA3922, UFR ST, Université de Franche-Comté, Besançon, France
| | - F Meyer
- Inserm UMR 1121 Biomaterials and Bioengineering, FMTS, Université de Strasbourg, Strasbourg, France.,Institut Hospitalo Universitaire, Pôle de médecine et chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - C Meyer
- Service de Chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France.,Nanomédecinelab, EA 4662, UFR SMP, Université de Franche-Comté, Besançon, France
| |
Collapse
|
48
|
Bloomquist RF, Fowler TE, Sylvester JB, Miro RJ, Streelman JT. A compendium of developmental gene expression in Lake Malawi cichlid fishes. BMC DEVELOPMENTAL BIOLOGY 2017; 17:3. [PMID: 28158974 PMCID: PMC5291978 DOI: 10.1186/s12861-017-0146-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lake Malawi cichlids represent one of a growing number of vertebrate models used to uncover the genetic and developmental basis of trait diversity. Rapid evolutionary radiation has resulted in species that share similar genomes but differ markedly in phenotypes including brains and behavior, nuptial coloration and the craniofacial skeleton. Research has begun to identify the genes, as well as the molecular and developmental pathways that underlie trait divergence. RESULTS We assemble a compendium of gene expression for Lake Malawi cichlids, across pharyngula (the phylotypic stage) and larval stages of development, encompassing hundreds of gene transcripts. We chart patterns of expression in Bone morphogenetic protein (BMP), Fibroblast growth factor (FGF), Hedgehog (Hh), Notch and Wingless (Wnt) signaling pathways, as well as genes involved in neurogenesis, calcium and endocrine signaling, stem cell biology, and numerous homeobox (Hox) factors-in three planes using whole-mount in situ hybridization. Because of low sequence divergence across the Malawi cichlid assemblage, the probes we employ are broadly applicable in hundreds of species. We tabulate gene expression across general tissue domains, and highlight examples of unexpected expression patterns. CONCLUSIONS On the heels of recently published genomes, this compendium of developmental gene expression in Lake Malawi cichlids provides a valuable resource for those interested in the relationship between evolution and development.
Collapse
Affiliation(s)
- R F Bloomquist
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA.,Medical College of Georgia, School of Dentistry, Augusta, GA, USA
| | - T E Fowler
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - J B Sylvester
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - R J Miro
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA
| | - J T Streelman
- Georgia Institute of Technology, School of Biological Sciences and Institute for Bioengineering and Bioscience, Atlanta, GA, USA.
| |
Collapse
|
49
|
Estrela C, Freitas Silva BS, Silva JA, Yamamoto-Silva FP, Pinto-Júnior DDS, Gomez RS. Stem Cell Marker Expression in Persistent Apical Periodontitis. J Endod 2016; 43:63-68. [PMID: 27847139 DOI: 10.1016/j.joen.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/22/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION This study evaluated the expression of CD90 (mesenchymal stem cell) and Sox2 (progenitor stem cell) markers in persistent apical periodontitis (PAP) (n = 16) and primary periapical lesions (PPLs) (n = 10). METHODS All samples were classified histologically according to the intensity of inflammatory cell infiltrate in the periapical lesion. Immunohistochemistry was used to detect CD90 and Sox2 in PAP and PPLs. The Spearman correlation coefficient and the Mann-Whitney U test were used to analyze data at the 5% significance level. RESULTS CD90 expression was found in mesenchymal cells and vascular endothelial cells of 68.5% of all cases of PAP. There was no correlation between CD90 expression and histopathological diagnosis (P = .053) or inflammatory cell infiltrate intensity (P = .112). CD90 staining was predominantly found in the vascular endothelial cells of 30% (n = 3) of PPLs. CD90 expression was significantly higher in PAP than in PPLs (Mann-Whitney U test, P < .05). Sox2 expression was found in all cases of PAP. Eventually, all mesenchymal and chronic inflammatory cells exhibited Sox2 expression. There was no correlation between Sox2 expression and histopathological diagnoses (P = .749), inflammatory cell infiltrate intensity (P = .510), or acute or chronic inflammatory cell infiltrate (P = .256). Sox2 expression was found in 100% of PPLs. There was no difference in Sox2 expression between PAP and PPLs (P = .477). CONCLUSIONS Mesenchymal stem cells may contribute to the immunosuppressive environment in PAP. Additionally, distinct stem cell sources may be associated with the chronic nature of PAP as well as with the development of PPLs.
Collapse
Affiliation(s)
- Carlos Estrela
- Department of Stomatologic Sciences, School of Dentistry, Federal University of Goiás, Goiânia, Brazil.
| | | | - Júlio A Silva
- Department of Stomatologic Sciences, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Fernanda P Yamamoto-Silva
- Department of Stomatologic Sciences, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | | | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
50
|
Gauthier P, Yu Z, Tran QT, Bhatti FUR, Zhu X, Huang GTJ. Cementogenic genes in human periodontal ligament stem cells are downregulated in response to osteogenic stimulation while upregulated by vitamin C treatment. Cell Tissue Res 2016; 368:79-92. [PMID: 27757536 DOI: 10.1007/s00441-016-2513-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/19/2016] [Indexed: 01/09/2023]
Abstract
Regeneration of periodontal tissues, particularly cementum, is key to regaining periodontal attachment and health. Human periodontal ligament stem cells (hPDLSCs) have been shown to be a good cell source to regenerate periodontal tissues. However, their subpopulations and the differentiation induction in relation to cementogenic lineages is unclear. Thus, we aim to examine the expression of cementum-associated genes in PDLSC subpopulations and determine the effect of broadly used osteogenic stimulus or vitamin C (VC) on the expression of cementogenic and osteogenic genes in PDLSCs. Our real-time quantitative polymerase chain reaction (qPCR) analysis showed that cementogenic marker cementum attachment protein (CAP) expressed only slightly higher in STRO-1+/CD146+, STRO-1-/CD146+ and STRO-1-/CD146- subpopulations than in the original cell pool, while cementum protein 1 (CEMP1) expression in these subpopulations was not different from the original pool. Notably, under the stimulation with osteogenic differentiation medium, CAP and CEMP1 were downregulated while osteogenic markers bone sialoprotein (BSP) and osteocalcin (OCN) were upregulated. Both CAP and CEMP1 were upregulated by VC treatment. Transplantation of VC-treated PDLSCs into immunocompromised mice resulted in forming significantly more ectopic cementum- and bone-like mineral tissues in vivo. Immunohistochemical analysis of the ectopic growth showed that CAP and CEMP1 were mainly expressed in the mineral tissue and in some cells of the fibrous tissues. We conclude that osteogenic stimulation is not inductive but appears to be inhibitory of cementogenic pathways, whereas VC induces cementogenic lineage commitment by PDLSCs and may be a useful stimulus for cementogenesis in periodontal regeneration.
Collapse
Affiliation(s)
- Philippe Gauthier
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA.,Faculté de médecine dentaire, Département d'endodontie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Zongdong Yu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Quynh T Tran
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Fazal-Ur-Rehman Bhatti
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xiaofei Zhu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,VIP Dental Service and Geriatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - George T-J Huang
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA. .,Faculté de médecine dentaire, Département d'endodontie, Université Laval, Québec, QC, G1V 0A6, Canada. .,Lab, Cancer Research Building, University of Tennessee Health Science Center, 19 S. Manassas St. Lab Rm 225, Office 222, Memphis, TN, 38163, USA.
| |
Collapse
|