1
|
Bai L, Yu H, Cai Y, Wu R, Kang R, Jia Y, Zhang X, Tang D, Dai E. Itaconate drives pro-inflammatory responses through proteasomal degradation of GLO1. Biochem Biophys Res Commun 2025; 747:151292. [PMID: 39787788 DOI: 10.1016/j.bbrc.2025.151292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Itaconate is a small-molecule metabolite generated by the enzyme aconitate decarboxylase 1 (ACOD1), which is upregulated during inflammation. Traditionally, itaconate has been recognized for its anti-inflammatory properties; however, this study reveals a pro-inflammatory mechanism of itaconate in macrophages. We demonstrate that itaconate promotes the proteasomal degradation of glyoxalase 1 (GLO1) via Cys139. GLO1 is crucial for detoxifying methylglyoxal (MGO), a glycolysis byproduct that leads to advanced glycation end-products (AGEs). Elevated concentrations of itaconate correlate with reduced GLO1 expression in peripheral blood mononuclear cells (PBMCs) from patients with sepsis, linking increased itaconate concentrations to heightened MGO and AGE production. Functionally, itaconate-induced degradation of GLO1 promotes the accumulation of MGO and AGEs, thereby exacerbating inflammatory responses. In vivo, itaconate-treated myeloid-specific Ager conditional knockout mice exhibited reduced inflammation and improved survival in experimental sepsis models compared to wild-type controls. Collectively, these findings reveal a novel function of itaconate in immunometabolism, shedding light on its complex involvement in lethal infections.
Collapse
Affiliation(s)
- Lulu Bai
- 2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Hanghui Yu
- 2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yiqing Cai
- 2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Runliu Wu
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuanyuan Jia
- 2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Xinyue Zhang
- 2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Enyong Dai
- 2nd Ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
2
|
Park J, Kim S, Jung HY, Bae EH, Shin M, Park JI, Choi SY, Yi SJ, Kim K. Peroxiredoxin 1-Toll-like receptor 4-p65 axis inhibits receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation. iScience 2024; 27:111455. [PMID: 39720522 PMCID: PMC11667055 DOI: 10.1016/j.isci.2024.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Peroxiredoxin 1 (PRDX1), an intracellular antioxidant enzyme, has emerged as a regulator of inflammatory responses via Toll-like receptor 4 (TLR4) signaling. Despite this, the mechanistic details of the PRDX1-TLR4 axis and its impact on osteoclast differentiation remain elusive. Here, we show that PRDX1 suppresses RANKL-induced osteoclast differentiation. Utilizing pharmacological inhibitors, we reveal that PRDX1 inhibits osteoclastogenesis through both TLR4/TRIF and TLR4/MyD88 pathways. Transcriptome analysis revealed PRDX1-mediated alterations in gene expression, particularly upregulating serum amyloid A3 (Saa3) and aconitate decarboxylase 1 (Acod1). Mechanistically, PRDX1-TLR4 signaling activates p65, promoting Saa3 and Acod1 expression while inhibiting Nfatc1, a master regulator of osteoclastogenesis. Remarkably, PRDX1 redirects p65 binding from Nfatc1 to Saa3 and Acod1 promoters, thereby suppressing osteoclast formation. Structural analysis showed that a monomeric PRDX1 mutant with enhanced TLR4 binding exhibited the potent inhibition of osteoclast differentiation. These findings reveal the PRDX1-TLR4 axis's role in inhibiting osteoclastogenesis, offering potential therapeutic insights for bone disorders.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sanggil Kim
- Department of Lead Optimization, New Drug Development Center, Osong Medical Innovation Foundation (KBio), 123 Osongsaengmyeng-ro, Cheongju, Chungbuk, Republic of Korea
| | - Hye-Yeon Jung
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Eun Hwan Bae
- Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - So-Young Choi
- Department of Lead Optimization, New Drug Development Center, Osong Medical Innovation Foundation (KBio), 123 Osongsaengmyeng-ro, Cheongju, Chungbuk, Republic of Korea
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
3
|
Dai F, Zhang X, Ma G, Li W. ACOD1 mediates Staphylococcus aureus-induced inflammatory response via the TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112924. [PMID: 39133958 DOI: 10.1016/j.intimp.2024.112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
Staphylococcus aureus (SA) is a common Gram-positive bacterium that activates inflammatory cells, expressing various cytokines and inducing an inflammatory response. Recent research revealed aconitate decarboxylase 1 (ACOD1) as a regulator of the immune response through various metabolic pathways, playing a dual role in the inflammatory response. However, the mechanism by which ACOD1 participates in the regulation of SA-induced inflammatory responses in macrophages remains unknown. Therefore, this study aims to investigate the function and underlying regulatory mechanisms of ACOD1 in SA-induced inflammatory response. This study reveals that SA induced a macrophage inflammatory response and upregulated ACOD1 expression. ACOD1 knockdown significantly inhibited SA-induced macrophage inflammatory response, attenuated SA-induced nuclear envelope wrinkling, and plasma membrane rupture, and suppressed the TLR4/NF-κB signaling pathway. Furthermore, ACOD1 knockdown reduced the inflammatory response and alleviated lung tissue injury and cellular damage, leading to decreased bacterial loads in the lungs of SA-infected mice. Collectively, these findings demonstrate that SA induces an inflammatory response in macrophages and increases ACOD1 expression. ACOD1 enhances SA-induced inflammatory responses via the TLR4/NF-κB signaling pathway. Our findings highlight the significant role of ACOD1 in mediating the inflammatory response in SA-infected macrophages and elucidate its molecular mechanism in regulating the SA-induced inflammatory response.
Collapse
Affiliation(s)
- Fan Dai
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuyang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guilan Ma
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wu Li
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
4
|
Schwab AD, Nelson AJ, Gleason AM, Schanze OW, Wyatt TA, Shinde DD, Xiao P, Thomas VC, Guda C, Bailey KL, Kielian T, Thiele GM, Poole JA. Aconitate decarboxylase 1 mediates the acute airway inflammatory response to environmental exposures. Front Immunol 2024; 15:1432334. [PMID: 39351225 PMCID: PMC11439662 DOI: 10.3389/fimmu.2024.1432334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Background Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 μg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.
Collapse
Affiliation(s)
- Aaron D. Schwab
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Amy J. Nelson
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Angela M. Gleason
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Oliver W. Schanze
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Todd A. Wyatt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dhananjay D. Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peng Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jill A. Poole
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Reynolds MB, Klein B, McFadden MJ, Judge NK, Navarrete HE, Michmerhuizen BC, Awad D, Schultz TL, Harms PW, Zhang L, O'Meara TR, Sexton JZ, Lyssiotis CA, Kahlenberg JM, O'Riordan MX. Type I interferon governs immunometabolic checkpoints that coordinate inflammation during Staphylococcal infection. Cell Rep 2024; 43:114607. [PMID: 39126652 PMCID: PMC11590196 DOI: 10.1016/j.celrep.2024.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1β. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.
Collapse
Affiliation(s)
- Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin Klein
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah K Judge
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah E Navarrete
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Britton C Michmerhuizen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Birk MS, Walch P, Baykara T, Sefried S, Amelang J, Buerova E, Breuer I, Vervoots J, Typas A, Savitski MM, Mateus A, Selkrig J. Salmonella infection impacts host proteome thermal stability. Eur J Cell Biol 2024; 103:151448. [PMID: 39128247 DOI: 10.1016/j.ejcb.2024.151448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Intracellular bacterial pathogens hijack the protein machinery of infected host cells to evade their defenses and cultivate a favorable intracellular niche. The intracellular pathogen Salmonella enterica subsp. Typhimurium (STm) achieves this by injecting a cocktail of effector proteins into host cells that modify the activity of target host proteins. Yet, proteome-wide approaches to systematically map changes in host protein function during infection have remained challenging. Here we adapted a functional proteomics approach - Thermal-Proteome Profiling (TPP) - to systematically assess proteome-wide changes in host protein abundance and thermal stability throughout an STm infection cycle. By comparing macrophages treated with live or heat-killed STm, we observed that most host protein abundance changes occur independently of STm viability. In contrast, a large portion of host protein thermal stability changes were specific to infection with live STm. This included pronounced thermal stability changes in proteins linked to mitochondrial function (Acod1/Irg1, Cox6c, Samm50, Vdac1, and mitochondrial respiratory chain complex proteins), as well as the interferon-inducible protein with tetratricopeptide repeats, Ifit1. Integration of our TPP data with a publicly available STm-host protein-protein interaction database led us to discover that the secreted STm effector kinase, SteC, thermally destabilizes and phosphorylates the ribosomal preservation factor Serbp1. In summary, this work emphasizes the utility of measuring protein thermal stability during infection to accelerate the discovery of novel molecular interactions at the host-pathogen interface.
Collapse
Affiliation(s)
- Marlène S Birk
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Philipp Walch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Tarik Baykara
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Stephanie Sefried
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Jan Amelang
- Institute of Biochemistry and Molecular Biology, RWTH University Hospital, Aachen 52074, Germany
| | - Elena Buerova
- Institute of Biochemistry and Molecular Biology, RWTH University Hospital, Aachen 52074, Germany
| | - Ingrid Breuer
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Jörg Vervoots
- Institute of Biochemistry and Molecular Biology, RWTH University Hospital, Aachen 52074, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - André Mateus
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany; Department of Chemistry, Umeå University, Umeå 907 36, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå 907 36, Sweden.
| | - Joel Selkrig
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany.
| |
Collapse
|
7
|
Vaziri GJ, Reid NM, Rittenhouse TAG, Bolnick DI. Winter break? The effect of overwintering on immune gene expression in wood frogs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101296. [PMID: 39096759 DOI: 10.1016/j.cbd.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Among terrestrial ectotherms, hibernation is a common response to extreme cold temperatures and is associated with reduced physiological rates, including immunity. When winter wanes and temperatures increase, so too do vital rates of both ectothermic hosts and their parasites. Due to metabolic scaling, if parasite activity springs back faster than host immune functions then cold seasons and transitions between cold and warm seasons may represent periods of vulnerability for ectothermic hosts. Understanding host regulation of physiological rates at seasonal junctions is a first step toward identifying thermal mismatches between hosts and parasites. Here we show that immune gene expression is responsive to transitions into and out of the cold season in a winter-adapted amphibian, the wood frog (Lithobates sylvaticus), and that frogs experienced parasitism by at least two nematode species throughout the entirety of the cold season. In both splenic and skin tissues, we observed a decrease in immune gene expression going from fall to winter, observed no changes between winter and emergence from hibernation, and observed increases in immune gene expression after hibernation ended. At all timepoints, differentially expressed genes from spleens were more highly enriched for immune system processes than those from ventral skin, especially with respect to terms related to adaptive immune processes. Infection with nematode lungworms was also associated with upregulation of immune processes in the spleen. We suggest that rather than being a period of stagnation, during which physiological processes and infection potential cease, the cold season is immunologically dynamic, requiring coordinated regulation of many biological processes, and that the reemergence period may be an important time during which hosts invest in preparatory immunity.
Collapse
Affiliation(s)
- Grace J Vaziri
- University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, 06269, USA.
| | - Noah M Reid
- University of Connecticut, Institute for Systems Genomics, Storrs, CT, 06269, USA
| | - Tracy A G Rittenhouse
- University of Connecticut, Department of Natural Resources and the Environment, Storrs, CT, 06269, CT, USA
| | - Daniel I Bolnick
- University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, 06269, USA
| |
Collapse
|
8
|
Schofield JH, Longo J, Sheldon RD, Albano E, Ellis AE, Hawk MA, Murphy S, Duong L, Rahmy S, Lu X, Jones RG, Schafer ZT. Acod1 expression in cancer cells promotes immune evasion through the generation of inhibitory peptides. Cell Rep 2024; 43:113984. [PMID: 38520689 PMCID: PMC11090053 DOI: 10.1016/j.celrep.2024.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Targeting programmed cell death protein 1 (PD-1) is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment. Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1-resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naive CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on the secretion of ITA but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.
Collapse
Affiliation(s)
- James H Schofield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Emma Albano
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mark A Hawk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sean Murphy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Loan Duong
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sharif Rahmy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Wang K, Gao X, Yang H, Tian H, Zhang Z, Wang Z. Transcriptome analysis on pulmonary inflammation between periodontitis and COPD. Heliyon 2024; 10:e28828. [PMID: 38601631 PMCID: PMC11004760 DOI: 10.1016/j.heliyon.2024.e28828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Objective The aim of this study is to investigate the correlation between periodontal disease and chronic obstructive pulmonary disease (COPD) from the perspective of gene regulation, as well as the inflammatory pathways involved. Methods Forty C57BL/6 mice were randomly divided into four groups: control group, chronic periodontitis (CP) group, COPD group, and CP&COPD group. Lung tissue samples were selected for messenger ribonucleic acid (mRNA) sequencing analysis, and differential genes were screened out. Gene enrichment analysis was carried out, and then crosstalk gene enrichment analysis was conducted to explore the pathogenesis related to periodontal disease and COPD. Results Results of enrichment analysis showed that the differentially expressed genes (DEGs) in the CP group were concentrated in response to bacterial origin molecules. The DEGs in the COPD group gene were enriched in positive regulation of B cell activation. The DEGs in the CP&COPD group were concentrated in neutrophil extravasation and neutrophil migration. The mice in the three experimental groups had 19 crosstalk genes, five of which were key genes. Conclusions Lcn2, S100a8, S100a9, Irg1, Clec4d are potential crossover genes of periodontal disease and COPD. Lcn2, S100a8, S100a9 are correlated with neutrophils in both diseases. Irg1 and Clec4d may bind to receptors on the surface of lymphocytes to produce cytokines and activate inflammatory pathways, this requires further research.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, Beijing You 'an Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Gao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huan Tian
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Kuttiyarthu Veetil N, Henschen AE, Hawley DM, Melepat B, Dalloul RA, Beneš V, Adelman JS, Vinkler M. Varying conjunctival immune response adaptations of house finch populations to a rapidly evolving bacterial pathogen. Front Immunol 2024; 15:1250818. [PMID: 38370402 PMCID: PMC10869556 DOI: 10.3389/fimmu.2024.1250818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infection Mycoplasma gallisepticum (MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3'-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs.
Collapse
Affiliation(s)
| | - Amberleigh E. Henschen
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Balraj Melepat
- Department of Zoology, Charles University, Faculty of Science, Prague, Czechia
| | - Rami A. Dalloul
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Vladimír Beneš
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - James S. Adelman
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Michal Vinkler
- Department of Zoology, Charles University, Faculty of Science, Prague, Czechia
| |
Collapse
|
11
|
Torraca V, White RJ, Sealy IM, Mazon-Moya M, Duggan G, Willis AR, Busch-Nentwich EM, Mostowy S. Transcriptional profiling of zebrafish identifies host factors controlling susceptibility to Shigella flexneri. Dis Model Mech 2024; 17:dmm050431. [PMID: 38131137 PMCID: PMC10846535 DOI: 10.1242/dmm.050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Richard J. White
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Ian M. Sealy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Maria Mazon-Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Gina Duggan
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Alexandra R. Willis
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Elisabeth M. Busch-Nentwich
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Toh JYL, Zwe YH, Tan MTH, Gong Z, Li D. Sequential infection of human norovirus and Salmonella enterica resulted in higher mortality and ACOD1/IRG1 upregulation in zebrafish larvae. Microbes Infect 2024; 26:105229. [PMID: 37739029 DOI: 10.1016/j.micinf.2023.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Human norovirus (HNoVs) and Salmonella are both very important foodborne pathogens with mixed infection of HNoV and Salmonella reported clinically. With the use of model organism zebrafish (Danio rerio), it was observed that the sequential infection of HNoVs and Salmonella caused lower survival rates (12.5 ± 4.2%) than the single-pathogen infection by Salmonella (31.6 ± 7.3%, P < 0.05) or HNoVs (no mortality observed). Gene expression study with the use of RT-PCR and global transcriptomic analysis revealed that the mortality of zebrafish larvae was very likely due to the harmful inflammatory responses. Specifically, it was noted that the genes encoding aconitate decarboxylase 1 (ACOD1), also known as immunoresponsive gene 1 (IRG1), were significantly upregulated in the sequentially infected zebrafish larvae. The expression of acod1 could lead to mitochondrial reactive oxygen species (ROS) production. The ROS levels were indeed higher in sequentially infected zebrafish larvae than the single-pathogen infected ones (P < 0.05). An immersion treatment of glutathione or citraconate did not affect the microbial loads of HNoVs and Salmonella but significantly reduced the ROS levels and protected the zebrafish larvae by inducing higher survival rates in the sequentially infected zebrafish larvae (P < 0.05). Taken together, this study accumulated new knowledge over the function of ACOD1/IRG1 pathway in infectious diseases, and proposed possible treatment strategies accordingly.
Collapse
Affiliation(s)
- Jillinda Yi Ling Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Ye Htut Zwe
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.
| |
Collapse
|
13
|
Schofield JH, Longo J, Sheldon RD, Albano E, Hawk MA, Murphy S, Duong L, Rahmy S, Lu X, Jones RG, Schafer ZT. Acod1 Expression in Cancer Cells Promotes Immune Evasion through the Generation of Inhibitory Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557799. [PMID: 37745450 PMCID: PMC10515953 DOI: 10.1101/2023.09.14.557799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Targeting PD-1 is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment (TME). Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1 resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naïve CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on secretion of ITA, but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.
Collapse
Affiliation(s)
- James H. Schofield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - Ryan D. Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - Emma Albano
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Mark A. Hawk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Sean Murphy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Loan Duong
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Sharif Rahmy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
| |
Collapse
|
14
|
Wu R, Liu J, Tang D, Kang R. The Dual Role of ACOD1 in Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:518-526. [PMID: 37549395 DOI: 10.4049/jimmunol.2300101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 08/09/2023]
Abstract
Immunometabolism is an interdisciplinary field that focuses on the relationship between metabolic pathways and immune responses. Dysregulated immunometabolism contributes to many pathological settings, such as cytokine storm or immune tolerance. Aconitate decarboxylase 1 (ACOD1, also known as immunoresponsive gene 1), the mitochondrial enzyme responsible for catalyzing itaconate production, was originally identified as a bacterial LPS-inducible gene involved in innate immunity in mouse macrophages. We now know that the upregulation of ACOD1 expression in immune or nonimmune cells plays a context-dependent role in metabolic reprogramming, signal transduction, inflammasome regulation, and protein modification. The emerging function of ACOD1 in inflammation and infection is a double-edged sword. In this review, we discuss how ACOD1 regulates anti-inflammatory or proinflammatory responses in an itaconate-dependent or -independent manner. Further understanding of ACOD1 expression and function may pave the way for the development of precision therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Duan X, Hu M, Yang L, Zhang S, Wang B, Li T, Tan Y, Li Y, Liu X, Zhan Z. IRG1 prevents excessive inflammatory responses and cardiac dysfunction after myocardial injury. Biochem Pharmacol 2023; 213:115614. [PMID: 37209857 DOI: 10.1016/j.bcp.2023.115614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Acute myocardial infarction (MI) and chemotherapeutic drug administration can induce myocardial damage and cardiomyocyte cell death, and trigger the release of damage-associated molecular patterns (DAMPs) that initiate the aseptic inflammatory response. The moderate inflammatory response is beneficial for repairing damaged myocardium, while an excessive inflammatory response exacerbates myocardial injury, promotes scar formation, and results in a poor prognosis of cardiac diseases. Immune responsive gene 1 (IRG1) is specifically highly expressed in activated macrophages and mediates the production of tricarboxylic acid (TCA) cycle metabolite itaconate. However, the role of IRG1 in the inflammation and myocardial injury of cardiac stress-related diseases remains unknown. Here, we found that IRG1 knockout mice exhibited increased cardiac tissue inflammation and infarct size, aggravated myocardial fibrosis, and impaired cardiac function after MI and in vivo doxorubicin (Dox) administration. Mechanically, IRG1 deficiency enhanced the production of IL-6 and IL-1β by suppressing the nuclear factor red lineage 2-related factor 2 (NRF2) and activating transcription factor 3 (ATF3) pathway in cardiac macrophages. Importantly, 4-octyl itaconate (4-OI), a cell-permeable derivative of itaconate, reversed the inhibited expression of NRF2 and ATF3 caused by IRG1 deficiency. Moreover, in vivo 4-OI administration inhibited the cardiac inflammation and fibrosis, and prevented adverse ventricle remodeling in IRG1 knockout mice with MI or Dox-induced myocardial injury. Our study uncovers the critical protective role of IRG1 in suppressing inflammation and preventing cardiac dysfunction under ischemic or toxic injury conditions, providing a potential target for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Xuewen Duan
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Meiling Hu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Linshan Yang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sheng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tong Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Tan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xingguang Liu
- Department of Pathogen Biology, Naval Medical University, Shanghai 200433, China.
| | - Zhenzhen Zhan
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
16
|
Park J, Yu F, Fulcher JM, Williams SM, Engbrecht K, Moore RJ, Clair GC, Petyuk V, Nesvizhskii AI, Zhu Y. Evaluating Linear Ion Trap for MS3-Based Multiplexed Single-Cell Proteomics. Anal Chem 2023; 95:1888-1898. [PMID: 36637389 DOI: 10.1021/acs.analchem.2c03739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a growing demand to develop high-throughput and high-sensitivity mass spectrometry methods for single-cell proteomics. The commonly used isobaric labeling-based multiplexed single-cell proteomics approach suffers from distorted protein quantification due to co-isolated interfering ions during MS/MS fragmentation, also known as ratio compression. We reasoned that the use of MS3-based quantification could mitigate ratio compression and provide better quantification. However, previous studies indicated reduced proteome coverages in the MS3 method, likely due to long duty cycle time and ion losses during multilevel ion selection and fragmentation. Herein, we described an improved MS acquisition method for MS3-based single-cell proteomics by employing a linear ion trap to measure reporter ions. We demonstrated that linear ion trap can increase the proteome coverages for single-cell-level peptides with even higher gain obtained via the MS3 method. The optimized real-time search MS3 method was further applied to study the immune activation of single macrophages. Among a total of 126 single cells studied, over 1200 and 1000 proteins were quantifiable when at least 50 and 75% nonmissing data were required, respectively. Our evaluation also revealed several limitations of the low-resolution ion trap detector for multiplexed single-cell proteomics and suggested experimental solutions to minimize their impacts on single-cell analysis.
Collapse
Affiliation(s)
- Junho Park
- Department of Pharmacology, School of Medicine, CHA University, Seongnam-si, Gyeonggi-do, Seongnam 13488, Republic of Korea
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kristin Engbrecht
- Nuclear, Chemistry, and Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
17
|
Wu R, Liu J, Wang N, Zeng L, Yu C, Chen F, Wang H, Billiar TR, Jiang J, Tang D, Kang R. Aconitate decarboxylase 1 is a mediator of polymicrobial sepsis. Sci Transl Med 2022; 14:eabo2028. [PMID: 36001682 DOI: 10.1126/scitranslmed.abo2028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sepsis is a challenging clinical syndrome caused by a dysregulated host response to infection. Here, we identified an unexpected proseptic activity of aconitate decarboxylase 1 (ACOD1) in monocytes and macrophages. Previous studies have suggested that ACOD1, also known as immune-responsive gene 1, is an immunometabolic regulator that favors itaconate production to inhibit bacterial lipopolysaccharide-induced innate immunity. We used next-generation sequencing of lipopolysaccharide-activated THP1 cells to demonstrate that ACOD1 accumulation confers a robust proinflammation response by activating a cytokine storm, predominantly through the tumor necrosis factor signaling pathway. We further revealed that the phosphorylation of cyclin-dependent kinase 2 (CDK2) on threonine-160 mediates the activation of mitogen-activated protein kinase 8 through receptor for activated C kinase 1, leading to JUN-dependent transcription of ACOD1 in human and mouse macrophages or monocytes. Genetic deletion of CDK2 or ACOD1 in myeloid cells, or the administration of the CDK inhibitor dinaciclib, protected mice against polymicrobial sepsis and was associated with improved survival and decreased cytokine storm. The expression of the CDK2-ACOD1 axis also correlated with severity of illness in a cohort of 40 patients with bacterial sepsis. Thus, our findings provide evidence for a previously unrecognized function of ACOD1 in innate immunity and suggest it as a potential therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Zeng
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinsteins Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jianxin Jiang
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|