1
|
Rihs S, Parisi L, Lauener A, Mansour F, Schnyder I, Dekany GM, La Scala GC, Katsaros C, Degen M. Reflecting the human lip in vitro: Cleft lip skin and mucosa keratinocytes keep their identities. Oral Dis 2024; 30:4390-4403. [PMID: 38178623 DOI: 10.1111/odi.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES Cell models have shown great promise as tools for research, potentially providing intriguing alternatives to animal models. However, the original tissue characteristics must be maintained in culture, a fact that is often assumed, but seldom assessed. We aimed to follow the retention of the original tissue identities of cleft lip-derived skin and mucosa keratinocytes in vitro. METHODS Cleft lip-derived keratinocytes were isolated from discarded tissue along the cleft margins during cheiloplasty. Cell identities were assessed by immunohistochemistry and quantitative real-time PCR for tissue-specific markers and compared with native lip tissue. Moreover, keratinocytes were regularly analyzed for the retention of the original tissue characteristics by the aforementioned methods as well as by differentiation assays. RESULTS The various anatomical zones of the human lip could be distinguished using a panel of differentiation and functional-based markers. Using these markers, retention of the original tissue identities could be followed and confirmed in the corresponding primary keratinocytes in culture. CONCLUSIONS Our findings promote patient-derived cells retaining their original identities as astonishing and clinically relevant in vitro tools. Such cells allow a better molecular understanding of various lip-associated pathologies as well as their modeling in vitro, including but not restricted to orofacial clefts.
Collapse
Affiliation(s)
- Silvia Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Anic Lauener
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Farah Mansour
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Gabriela M Dekany
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Kobayashi E, Ling Y, Kobayashi R, Hoshikawa E, Itai E, Sakata O, Okuda S, Naru E, Izumi K. Development of a lip vermilion epithelium reconstruction model using keratinocytes from skin and oral mucosa. Histochem Cell Biol 2023; 160:349-359. [PMID: 37302086 DOI: 10.1007/s00418-023-02206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/13/2023]
Abstract
Lip vermilion is unique and can be distinguished from the adjacent skin and oral mucosa. However, because of the lack of appropriate evaluation tools, skin and/or oral mucosa substitutes such as in vitro vermilion epithelial models have been used for lip product testing. We aimed to develop and characterize a lip vermilion epithelium reconstruction model (LVERM) using skin and oral keratinocytes. LVERM was manufactured by co-culturing primary skin and oral keratinocytes, using a device that allowed the separation of cell seeding, and created an intercalated cell-free zone, referred to as the vermilion part. After removing the device, LVERM construction was completed in 8 days, in a submerged condition. Subsequently, they were placed in an air-liquid interface for 7 days. To determine the epithelial characteristics of LVERM, keratin 2e (KRT2) and small proline-rich protein 3 (SPRR3) expression patterns were examined. The in vivo expression profiles of KRT2 and SPRR3 genes in vermilion were also examined. We found that a continuous multi-layered epithelium was generated in the LVERM that exhibited ortho- and para-keratinization in the skin and oral mucosa parts, respectively. Although an intermediate keratinization pattern was observed in the vermilion part, KRT2 and SPRR3 were co-expressed in the suprabasal layer, consistent with the expression pattern of a single vermilion epithelial model. Clustering analysis revealed that KRT2 and SPRR3 gene expression in vermilion was location-dependent within the sample. Therefore, LVERM can be used as an evaluation tool for lip products and has great importance in innovative approaches for cosmetic testing.
Collapse
Affiliation(s)
- Eri Kobayashi
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryota Kobayashi
- Division of Biomimetics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Emi Hoshikawa
- Division of Biomimetics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Eriko Itai
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Osamu Sakata
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eiji Naru
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
3
|
Cao L, Su H, Si M, Xu J, Chang X, Lv J, Zhai Y. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol 2021; 9:662418. [PMID: 34820359 PMCID: PMC8606749 DOI: 10.3389/fbioe.2021.662418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.
Collapse
Affiliation(s)
- Lilan Cao
- School of Stomatology, Henan University, Kaifeng, China
| | - Huiying Su
- School of Stomatology, Henan University, Kaifeng, China
| | - Mengying Si
- School of Stomatology, Henan University, Kaifeng, China
| | - Jing Xu
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin Chang
- School of Stomatology, Henan University, Kaifeng, China
| | - Jiajia Lv
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| |
Collapse
|
4
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
5
|
Vanison C, Beckmann N, Smith A. Recent advances in lip reconstruction. Curr Opin Otolaryngol Head Neck Surg 2019; 27:219-226. [DOI: 10.1097/moo.0000000000000531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Kuo S, Kim HM, Wang Z, Bingham EL, Miyazawa A, Marcelo CL, Feinberg SE. Comparison of two decellularized dermal equivalents. J Tissue Eng Regen Med 2017; 12:983-990. [DOI: 10.1002/term.2530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Shiuhyang Kuo
- Department of Oral and Maxillofacial Surgery, School of DentistryUniversity of Michigan Ann Arbor MI USA
| | - Hyungjin Myra Kim
- Consulting for Statistics, Computing & Analytics ResearchUniversity of Michigan Ann Arbor MI USA
| | - Zhifa Wang
- Department of Surgery, Medical SchoolUniversity of Michigan Ann Arbor MI USA
| | - Eve L. Bingham
- Department of Oral and Maxillofacial Surgery, School of DentistryUniversity of Michigan Ann Arbor MI USA
| | - Atsuko Miyazawa
- Department of Oral and Maxillofacial Surgery, School of DentistryUniversity of Michigan Ann Arbor MI USA
| | - Cynthia L. Marcelo
- Department of Surgery, Medical SchoolUniversity of Michigan Ann Arbor MI USA
| | - Stephen E. Feinberg
- Department of Oral and Maxillofacial Surgery, School of DentistryUniversity of Michigan Ann Arbor MI USA
- Department of Surgery, Medical SchoolUniversity of Michigan Ann Arbor MI USA
| |
Collapse
|