1
|
Couch B, Hayward D, Baum G, Sakthiyendran NA, Harder J, Hernandez EJ, MacKay B. A systematic review of steroid use in peripheral nerve pathologies and treatment. Front Neurol 2024; 15:1434429. [PMID: 39286807 PMCID: PMC11402678 DOI: 10.3389/fneur.2024.1434429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The use of corticosteroids has become a part of the standard of care in various pathologies but their use in peripheral nerve injury treatment is limited. Given corticosteroids' anti-inflammatory properties and their regulatory role in neuronal protein production and myelination, corticosteroids could serve as an adjunct therapy for peripheral nerve injuries. This review aims to systematically investigate the current use of corticosteroid treatment in peripheral nerve pathologies. Methods The systematic search was performed on PubMed, MEDLINE, EMBASE, Scopus, Cochrane, and Web of Science using keywords such as "corticosteroid treatment," "peripheral nerve damage," "peripheral neuropathy," and "complications." The PRISMA guidelines were used to conduct the systematic review and all articles were reviewed by the corresponding author. After the initial search, individual study titles and abstracts were further screened and categorized using an inclusion and exclusion criteria followed by a final full-text review. Results Out of the total 27,922 identified records, 203 studies were included based on the selection criteria. These studies focused on the use and efficacy of steroids across a spectrum of compression and non-compression peripheral neuropathies such as cubital tunnel syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. Various studies noted the promising role of steroids in offering pain relief, nerve block, and nerve regeneration effects. Additionally, safety considerations and potential complications regarding steroid use in peripheral nerve injuries were analyzed. Conclusion While there is currently limited clinical utilization of corticosteroids in peripheral nerve pathologies, the anti-inflammatory and regenerative effects that steroids provide may be a beneficial tool in managing various peripheral neuropathies and their associated pain. Additional clinical trials and investigation into the mechanism of action could improve the reputation of steroid use as peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Brandon Couch
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dan Hayward
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gracie Baum
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Justin Harder
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Evan J Hernandez
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brendan MacKay
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
2
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Brough S, Alizadeh M. Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review. Front Bioeng Biotechnol 2024; 12:1401512. [PMID: 39050683 PMCID: PMC11266111 DOI: 10.3389/fbioe.2024.1401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Brough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Souza NM, Gonçalves MF, Ferreira LFR, Bilal M, Iqbal HMN, Soriano RN. Revisiting the Role of Biologically Active Natural and Synthetic Compounds as an Intervention to Treat Injured Nerves. Mol Neurobiol 2021; 58:4980-4998. [PMID: 34228268 DOI: 10.1007/s12035-021-02473-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Traumatic lesions in nerves present high incidence and may culminate in sensorimotor and/or autonomic dysfunctions or a total loss of function, affecting the patient's quality of life. Although the microenvironment favors peripheral nerve regeneration, the regenerative process is not always successful. Some herbs, natural products, and synthetic drugs have been studied as potential pro-regenerative interventions. We reviewed and discussed the most recent articles published over the last ten years in high impact factor journals. Even though most of the articles contemplated in this review were in vitro and animal model studies, those with herbs showed promising results. Most of them presented antioxidant and anti-inflammatory effects. Drugs of several pharmacological classes also showed optimistic outcomes in nerve functional recovery, including clinical trials. The results are hopeful; however, mechanisms of action need to be elucidated, and there is a need for more high-quality clinical studies. The study presents careful compilation of findings of dozens of compounds with consistent pro-regenerative evidence published in respected scientific journals. It may be valuable for health professionals and researchers in the field.
Collapse
Affiliation(s)
- Natália Melo Souza
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35032-620, Brazil
| | - Mateus Figueiredo Gonçalves
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, Aracaju Sergipe, Farolândia, 30049032-490, Brazil
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, Aracaju-Sergipe, Farolândia, 30049032-490, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35010-177, Brazil.
| |
Collapse
|
4
|
Geyik A, Koc B, Micili SC, Kiray M, Vayvada H, Guler S. Effect of decorin protein administration on rat sciatic nerve injury: an experimental study. Neurol Res 2021; 44:252-261. [PMID: 34581256 DOI: 10.1080/01616412.2021.1975226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Peripheral nerve traumas are common injuries in young adult population. The myriad of techniques and medications have been defined to obtain better recovery but none of them was proved to have superior effect. This study aims to determine the anti-fibrotic effect of the decorin on sciatic nerve injury in order to enhance functional outcome. MATERIALS AND METHODS 24 12-week-old male Sprague-Dawley rats (350-400 gr) were divided into four groups. The sciatic nerve was dissected and exposed; a full-thickness laceration was created 1.5 cm proximal to the bifurcation point and 1.5 cm distal to where it originated from the lumbosacral plexus. Motor and sensory tests were conducted before and after the operations for evaluating the nerve healing. RESULTS There was a statistically significant difference between DCN bolus and PBS bolus group. (p<0.0001, p<0.05) in neuromotor tests. Increase of the latency was significantly lower in DCN bolus and infusion group when compared with the PBS bolus group. (p<0,001). All operated gastrocnemius muscles were atrophic compared with the contralateral side. The differences between the averages in the sciatic functional index, the improvement of the DCN infusion group was 8.6 units better than the PBS group and 4.4 units better than the DCN bolus group. When the amount of stimulation was 10 mV at the proximal segment in electromyography, there was no significant difference between the DCN bolus and sham groups. (p> 0.05, p = 0.6623). CONCLUSION Decorin protein reduces the fibrosis and enhances the motor and sensory recovery both clinically and histologically. Despite the high cost, short half-life and production issues, this protein could be administered after the microsurgical repair but more studies are required to overcome the limitations.
Collapse
Affiliation(s)
- Alper Geyik
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Dokuz Eylul University, Izmir, Turkey
| | - Basar Koc
- Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | | | - Müge Kiray
- Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | - Haluk Vayvada
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Dokuz Eylul University, Izmir, Turkey
| | - Selin Guler
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
5
|
Jiu X, Liu Y, Wen J. Artesunate combined with verteporfin inhibits uveal melanoma by regulation of the MALAT1/yes-associated protein signaling pathway. Oncol Lett 2021; 22:597. [PMID: 34188699 PMCID: PMC8228376 DOI: 10.3892/ol.2021.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Uveal melanoma (UM) is the most common ocular malignancy and has no effective clinical treatment. Therefore, novel drugs to suppress UM tumor progression are urgently required. The present study aimed to clarify the underlying mechanism of the inhibitory effects of artesunate on UM. By using plasmid transfection and detecting apoptotic level, the present study identified artesunate as a potential candidate for UM treatment. Compared with those in the vehicle (DMSO)-treated control cells, artesunate enhanced the apoptotic rate and increased lactate dehydrogenase release, reactive oxygen species and IL1b and IL18 levels in C918 cells. Overexpression of yes-associated protein (YAP) or metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in C918 cells reversed the effects of artesunate and reduced the apoptotic rate compared with those observed in cells transfected with the negative control plasmid. Notably, verteporfin enhanced the effects of artesunate on C918 cells by increasing the apoptotic rate, indicating that combined therapy was more effective compared with treatment with artesunate alone. In conclusion, the results of the present study demonstrated that artesunate elevated the apoptotic rate and suppressed C918 cell viability by regulating the MALAT1/YAP signaling pathway, and these effects were enhanced by supplementation with verteporfin. These results suggested that artesunate may exert an inhibitory effect on C918 cells and that the MALAT1/YAP signaling may serve important role in mediating these effects, providing evidence of its potential for treating UM in the clinic.
Collapse
Affiliation(s)
- Xudong Jiu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730020, P.R. China
| | - Jin Wen
- Department of Ophthalmology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
6
|
Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B 2021; 11:322-339. [PMID: 33643815 PMCID: PMC7893118 DOI: 10.1016/j.apsb.2020.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- ASP, aspartate aminotransferase
- Artemisia
- Artemisinin
- Artesunate
- BAD, BCL-2-associated agonist of cell death
- BDL, bile duct ligation
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- CCl4, carbon tetrachloride
- CTGF, connective tissue growth factor
- Col I, type I collagen
- DHA, dihydroartemisinin
- DLA, dried leaf Artemisia
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- FLS, fibroblast-like synoviocyte
- Fibroblast
- Fibrosis
- HA, hyaluronic acid
- HSC, hepatic stellate cell
- HUVEC, human umbilical vein endothelial cell
- LAP, latency-associated peptide
- LDH, lactate dehydrogenase
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- Myofibroblast
- NAG, N-acetyl-β-d-glucosaminidase
- NICD, Notch intracellular domain
- PCNA, proliferating cell nuclear antigen
- PHN, passive heymann nephritis
- ROS, reactive oxygen species
- STZ, streptozotocin
- Scar
- TGF, β-transforming growth factor-β
- TGF-β
- TIMP, tissue inhibitor of metalloproteinase
- UUO, unilateral ureteral obstruction
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- sCr, serum creatinine
- α-SMA, smooth muscle α-actin
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
7
|
Uzun T, Toptaş O, Aydın Türkoğlu Ş. Could Artesunate Have a Positive Effect on the Neurological Complications Related to Infection When It Is Used in the Treatment of COVID-19? ACS Chem Neurosci 2020; 11:4001-4006. [PMID: 33269910 DOI: 10.1021/acschemneuro.0c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artesunate is a safe noncytotoxic drug with low side effects which is used in the treatment of chloroquine-resistant malaria. In addition to being an antimalarial drug, artesunate also has immunomodulatory, anticarcinogenic, and antiviral activity. There are in vivo and in vitro studies reporting that artesunate may have a positive effect on the treatment of COVID-19. Artesunate may be effective based on its effect on the anti-inflammatory activity, chloroquine-like endocytosis inhibition mechanism, and nuclear factor kappa B (NF-κB) signal pathway. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause neurological complications in addition to targeting the respiratory system. In this study, we have discussed the possible neuroprotective action mechanisms of artesunate. We think that systemic and intranasal topical artesunate administration may have a positive effect on neurological complications resulting from COVID-19.
Collapse
Affiliation(s)
- Tuğçenur Uzun
- Department of Oral and Maxillofacial Surgery, Trabzon Oral and Dental Health Hospital, Trabzon 61000, Turkey
| | - Orçun Toptaş
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Abant Izzet Baysal University, Bolu 14000, Turkey
| | | |
Collapse
|
8
|
Afshari K, Momeni Roudsari N, Lashgari NA, Haddadi NS, Haj-Mirzaian A, Hassan Nejad M, Shafaroodi H, Ghasemi M, Dehpour AR, Abdolghaffari AH. Antibiotics with therapeutic effects on spinal cord injury: a review. Fundam Clin Pharmacol 2020; 35:277-304. [PMID: 33464681 DOI: 10.1111/fcp.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/06/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that a considerable number of antibiotics exert anti-inflammatory and neuroprotective effects in different central and peripheral nervous system diseases including spinal cord injury (SCI). Both clinical and preclinical studies on SCI have found therapeutic effects of antibiotics from different families on SCI. These include macrolides, minocycline, β-lactams, and dapsone, all of which have been found to improve SCI sequels and complications. These antibiotics may target similar signaling pathways such as reducing inflammatory microglial activity, promoting autophagy, inhibiting neuronal apoptosis, and modulating the SCI-related mitochondrial dysfunction. In this review paper, we will discuss the mechanisms underlying therapeutic effects of these antibiotics on SCI, which not only could supply vital information for investigators but also guide clinicians to consider administering these antibiotics as part of a multimodal therapeutic approach for management of SCI and its complications.
Collapse
Affiliation(s)
- Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Nazgol-Sadat Haddadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Malihe Hassan Nejad
- Department of Infectious Diseases, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, 01655, USA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 31375-1369, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| |
Collapse
|
9
|
Bolandghamat S, Behnam-Rassouli M. Recent Findings on the Effects of Pharmacological Agents on the Nerve Regeneration after Peripheral Nerve Injury. Curr Neuropharmacol 2020; 18:1154-1163. [PMID: 32379588 PMCID: PMC7709152 DOI: 10.2174/1570159x18666200507084024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are accompanied with neuropathic pain and functional disability. Despite improvements in surgical repair techniques in recent years, the functional recovery is yet unsatisfied. Indeed a successful nerve repair depends not only on the surgical strategy but also on the cellular and molecular mechanisms involved in traumatic nerve injury. In contrast to all strategies suggested for nerve repair, pharmacotherapy is a cheap, accessible and non-invasive treatment that can be used immediately after nerve injury. This study aimed to review the effects of some pharmacological agents on the nerve regeneration after traumatic PNI evaluated by functional, histological and electrophysiological assessments. In addition, some cellular and molecular mechanisms responsible for their therapeutic actions, restricted to neural tissue, are suggested. These findings can not only help to find better strategies for peripheral nerve repair, but also to identify the neuropathic effects of various medications and their mechanisms of action.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
10
|
Saffari TM, Bedar M, Zuidam JM, Shin AY, Baan CC, Hesselink DA, Hundepool CA. Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol 2019; 12:1047-1057. [DOI: 10.1080/17512433.2019.1675507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- T. M. Saffari
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - M. Bedar
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J. M. Zuidam
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. Y. Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - C. C. Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D. A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C. A. Hundepool
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|