1
|
Drinovac Vlah V, Bach-Rojecky L. Mirror-Image Pain Update: Complex Interactions Between Central and Peripheral Mechanisms. Mol Neurobiol 2024; 61:1-18. [PMID: 38602655 DOI: 10.1007/s12035-024-04102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The appearance of contralateral effects after unilateral injury has been shown in various experimental pain models, as well as in clinics. They consist of a diversity of phenomena in contralateral peripheral nerves, sensory ganglia, or spinal cord: from structural changes and altered gene or protein expression to functional consequences such as the development of mirror-image pain (MP). Although MP is a well-documented phenomenon, the exact molecular mechanism underlying the induction and maintenance of mirror-like spread of pain is still an unresolved challenge. MP has generally been explained by central sensitization mechanisms leading to facilitation of pain impulse transfer through neural connections between the two sides of the central nervous system. On the contrary, the peripheral nervous system (PNS) was usually regarded unlikely to evoke such a symmetrical phenomenon. However, recent findings provided evidence that events in the PNS could play a significant role in MP induction. This manuscript provides an updated and comprehensive synthesis of the MP phenomenon and summarizes the available data on the mechanisms. A more detailed focus is placed on reported evidence for peripheral mechanisms behind the MP phenomenon, which were not reviewed up to now.
Collapse
Affiliation(s)
- Višnja Drinovac Vlah
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
3
|
Plumb AN, Lesnak JB, Kolling LJ, Marcinkiewcz CA, Sluka KA. Local Synthesis of Estradiol in the Rostral Ventromedial Medulla Protects against Widespread Muscle Pain in Male Mice. eNeuro 2024; 11:ENEURO.0332-24.2024. [PMID: 39111835 PMCID: PMC11360981 DOI: 10.1523/eneuro.0332-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
Animal studies consistently demonstrate that testosterone is protective against pain in multiple models, including an animal model of activity-induced muscle pain. In this model, females develop widespread muscle hyperalgesia, and reducing testosterone levels in males results in widespread muscle hyperalgesia. Widespread pain is believed to be mediated by changes in the central nervous system, including the rostral ventromedial medulla (RVM). The enzyme that converts testosterone to estradiol, aromatase, is highly expressed in the RVM. Therefore, we hypothesized that testosterone is converted by aromatase to estradiol locally in the RVM to prevent development of widespread muscle hyperalgesia in male mice. This was tested through pharmacological inhibition of estrogen receptors (ERs), aromatase, or ER-α in the RVM which resulted in contralateral hyperalgesia in male mice (C57BL/6J). ER inhibition in the RVM had no effect on hyperalgesia in female mice. As prior studies show modulation of estradiol signaling alters GABA receptor and transporter expression, we examined if removal of testosterone in males would decrease mRNA expression of GABA receptor subunits and vesicular GABA transporter (VGAT). However, there were no differences in mRNA expression of GABA receptor subunits of VGAT between gonadectomized and sham control males. Lastly, we used RNAscope to determine expression of ER-α in the RVM and show expression in inhibitory (VGAT+), serotonergic (tryptophan hydroxylase 2+), and μ-opioid receptor expressing (MOR+) cells. In conclusion, testosterone protects males from development of widespread hyperalgesia through aromatization to estradiol and activation of ER-α which is widely expressed in multiple cell types in the RVM.
Collapse
Affiliation(s)
- Ashley N Plumb
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
| | - Joseph B Lesnak
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
| | - Louis J Kolling
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, 52242
| | | | - Kathleen A Sluka
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
4
|
Talluri B, Addya S, Terashvili M, Medda BK, Banerjee A, Shaker R, Sengupta JN, Banerjee B. Adult zymosan re-exposure exacerbates the molecular alterations in the brainstem rostral ventromedial medulla of rats with early life zymosan-induced cystitis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100160. [PMID: 39252992 PMCID: PMC11381896 DOI: 10.1016/j.ynpai.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Recent evidence suggests that the descending modulatory pathways from the brainstem rostral ventromedial medulla (RVM) are important for bladder inflammatory pain. This study aimed to identify the long-term molecular changes in RVM neurons due to early life cystitis during neuronal development and the effect of reexposure later in adulthood. RVM tissues from two treatment protocols were used: (1) neonatal zymosan exposures with acute adult rechallenge (RC) and (2) only neonatal zymosan exposures (NRC). RNAseq analysis showed upregulation of several genes associated with synaptic plasticity (Grin1, Grip2, Notch1, Arc, and Scn2b) in the cystitis groups compared to controls in both protocols. The RC protocol exhibited a stronger treatment effect with significantly higher fold differences between the groups compared to the NRC protocol (p < 0.001, fold differences RC vs NRC). In microarrays, miR-34a-5p showed cystitis-induced downregulation in both protocols. Bioinformatics analysis identified multiple 3'UTRs complementary binding sites for miR-34a-5p on Grin2b, Notch1, Grip2, Scn2b, and Arc genes. The enhanced response in the RC protocol indicates a possible priming effect of early life cystitis on rechallenge in adulthood. These long-term molecular alterations may play a critical role in the development of chronic bladder pain conditions as seen in patients with Interstitial Cystitis/Bladder pain syndrome.
Collapse
Affiliation(s)
- Bhavana Talluri
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sankar Addya
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maia Terashvili
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bidyut K Medda
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Reza Shaker
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jyoti N Sengupta
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Banani Banerjee
- Gastroenterology & Hepatology Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Pimenta DC, Cardenas-Rojas A, Camargo L, Lima D, Kelso J, Navarro-Flores A, Pacheco-Barrios K, Fregni F. Exercise effects on cortical excitability in pain populations: A systematic review and meta-analysis. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2102. [PMID: 38861661 DOI: 10.1002/pri.2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Transcranial Magnetic Stimulation (TMS) studies examining exercise-induced neuroplasticity in pain populations have produced contradictory findings. We conducted a systematic review to explore how exercise impacts cortical excitability in pain populations using TMS metrics. This review aims to summarize the effect sizes and to understand their sources of heterogeneity. METHODS We searched multiple databases from inception to December 2022. We included randomized controlled trials (RCTs) with any type of pain population, including acute and chronic pain; exercise interventions were compared to sham exercise or other active interventions. The primary outcomes were TMS metrics, and pain intensity was the secondary outcome. Risk of bias assessment was conducted using the Cochrane tool. RESULTS This review included five RCTs (n = 155). The main diagnoses were fibromyalgia and cervical dystonia. The interventions included submaximal contractions, aerobic exercise, physical therapy, and exercise combined with transcranial direct current stimulation. Three studies are considered to have a high risk of bias. All five studies showed significant pain improvement with exercise. The neurophysiological data revealed improvements in cortical excitability measured by motor-evoked potentials; standardized mean difference = 2.06, 95% confidence interval 1.35-2.78, I2 = 19%) but no significant differences in resting motor threshold. The data on intracortical inhibition/facilitation (ICI/ICF) was not systematically analyzed, but one study (n = 45) reported higher ICI and lower ICF after exercise. CONCLUSIONS These findings suggest that exercise interventions positively affect pain relief by modifying corticospinal excitability, but their effects on ICI/ICF are still unclear. While the results are inconclusive, they provide a basis for further exploration in this area of research; future studies should focus on establishing standardized TMS measurements and exercise protocols to ensure consistent and reliable findings. A large-scale RCT that examines various exercise interventions and their effects on cortical excitability could offer valuable insights to optimize its application in promoting neuroplasticity in pain populations.
Collapse
Affiliation(s)
- Danielle Carolina Pimenta
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucas Camargo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Lima
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Kelso
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alba Navarro-Flores
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Stroman PW, Umraw M, Keast B, Algitami H, Hassanpour S, Merletti J. Structural and Physiological Modeling (SAPM) for the Analysis of Functional MRI Data Applied to a Study of Human Nociceptive Processing. Brain Sci 2023; 13:1568. [PMID: 38002528 PMCID: PMC10669617 DOI: 10.3390/brainsci13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel method has been developed for analyzing connectivity between regions based on functional magnetic resonance imaging (fMRI) data. This method, termed structural and physiological modeling (SAPM), combines information about blood oxygenation-level dependent (BOLD) responses, anatomy, and physiology to model coordinated signaling across networks of regions, including input and output signaling from each region and whether signaling is predominantly inhibitory or excitatory. The present study builds on a prior proof-of-concept demonstration of the SAPM method by providing evidence for the choice of network model and anatomical sub-regions, demonstrating the reproducibility of the results and identifying statistical thresholds needed to infer significance. The method is further validated by applying it to investigate human nociceptive processing in the brainstem and spinal cord and comparing the results to the known neuroanatomy, including anatomical regions and inhibitory and excitatory signaling. The results of this analysis demonstrate that it is possible to obtain reliable information about input and output signaling from anatomical regions and to identify whether this signaling has predominantly inhibitory or excitatory effects. SAPM provides much more detailed information about neuroanatomy than was previously possible based on fMRI data.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Maya Umraw
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Brieana Keast
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Hannan Algitami
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Shima Hassanpour
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Jessica Merletti
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| |
Collapse
|
7
|
Peng B, Jiao Y, Zhang Y, Li S, Chen S, Xu S, Gao P, Fan Y, Yu W. Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters. Front Pharmacol 2023; 14:1159753. [PMID: 37153792 PMCID: PMC10157642 DOI: 10.3389/fphar.2023.1159753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The rostral ventromedial medulla (RVM) is a bulbospinal nuclei in the descending pain modulation system, and directly affects spinal nociceptive transmission through pronociceptive ON cells and antinociceptive OFF cells in this area. The functional status of ON and OFF neurons play a pivotal role in pain chronification. As distinct pain modulative information converges in the RVM and affects ON and OFF cell excitability, neural circuits and transmitters correlated to RVM need to be defined for an in-depth understanding of central-mediated pain sensitivity. In this review, neural circuits including the role of the periaqueductal gray, locus coeruleus, parabrachial complex, hypothalamus, amygdala input to the RVM, and RVM output to the spinal dorsal horn are discussed. Meanwhile, the role of neurotransmitters is concluded, including serotonin, opioids, amino acids, cannabinoids, TRPV1, substance P and cholecystokinin, and their dynamic impact on both ON and OFF cell activities in modulating pain transmission. Via clarifying potential specific receptors of ON and OFF cells, more targeted therapies can be raised to generate pain relief for patients who suffer from chronic pain.
Collapse
Affiliation(s)
- Bingxue Peng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shian Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| |
Collapse
|
8
|
Song JS, Yamada Y, Kataoka R, Wong V, Spitz RW, Bell ZW, Loenneke JP. Training-induced hypoalgesia and its potential underlying mechanisms. Neurosci Biobehav Rev 2022; 141:104858. [PMID: 36096206 DOI: 10.1016/j.neubiorev.2022.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
It is well-established that a single bout of exercise can reduce pain sensitivity (i.e., exercise-induced hypoalgesia) in healthy individuals. However, exercise-induced hypoalgesia is often impaired in individuals with chronic pain. This might suggest that repeated bouts of exercise (i.e., exercise training) are needed in order to induce a reduction in pain sensitivity (i.e., training-induced hypoalgesia) among individuals with chronic pain, given that a single bout of exercise seems to be insufficient to alter pain. However, the effect of repeated bouts of exercise on pain sensitivity and its underlying mechanisms remain poorly understood. Therefore, the purpose of this review was to provide an overview of the existing literature on training-induced hypoalgesia, as well as discuss potential mechanisms of training-induced hypoalgesia and offer considerations for future research. Existing literature suggests that training interventions may induce hypoalgesic adaptations potentially driven by central nervous system and immune system factors. However, the limited number of randomized controlled trials available, along with the lack of understanding of underlying mechanisms, provides a rationale for future research.
Collapse
Affiliation(s)
- Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, MS, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, MS, USA
| | - Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, MS, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, MS, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, MS, USA
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, MS, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, MS, USA.
| |
Collapse
|
9
|
Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med 2022; 11:jcm11092609. [PMID: 35566735 PMCID: PMC9101840 DOI: 10.3390/jcm11092609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain is a condition that characterises several diseases and represents a constantly growing issue with enormous socio-economic burdens, highlighting the importance of developing treatment algorithms appropriate to the patient’s needs and effective management strategies. Indeed, the algic condition must be assessed and treated independently of the underlying pathological process since it has an extremely negative impact on the emotional and psychic aspects of the individual, leading to isolation and depression. A full understanding of the pathophysiological mechanisms involved in nociceptive stimulation and central sensitization is an important step in improving approaches to musculoskeletal pain. In this context, the bidirectional relationship between immune cells and neurons involved in nociception could represent a key point in the understanding of these mechanisms. Therefore, we provide an updated overview of the magnitude of the musculoskeletal pain problem, in terms of prevalence and costs, and summarise the role of the most important molecular players involved in the development and maintenance of pain. Finally, based on the pathophysiological mechanisms, we propose a model, called the “musculoskeletal pain cycle”, which could be a useful tool to counteract resignation to the algic condition and provide a starting point for developing a treatment algorithm for the patient with musculoskeletal pain.
Collapse
|
10
|
Brum ES, Becker G, Fialho MFP, Oliveira SM. Animal models of fibromyalgia: What is the best choice? Pharmacol Ther 2021; 230:107959. [PMID: 34265360 DOI: 10.1016/j.pharmthera.2021.107959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia (FM) is a complex syndrome, with an indefinite aetiology and intricate pathophysiology that affects 2 - 3% of the world population. From the beginning of the 2000s, experimental animal models have been developed to mimic clinical FM and help obtain a better understanding of the relevant neurobiology. These animal models have enabled a broad study of FM symptoms and mechanisms, as well as new treatment strategies. Current experimental FM models include the reserpine-induced systemic depletion of biogenic amines, muscle application of acid saline, and stress-based (cold, sound, or swim) approaches, among other emerging models. FM models should: (i) mimic the cardinal symptoms and complaints reported by FM patients (e.g., spontaneous nociception, muscle pain, hypersensitivity); (ii) mimic primary comorbidities that can aggravate quality of life and lead to worse outcomes (e.g., fatigue, sleep disturbance, depression, anxiety); (iii) mimic the prevalent pathological mechanisms (e.g., peripheral and central sensitization, inflammation/neuroinflammation, change in the levels of the excitatory and inhibitory neurotransmitters); and (iv) demonstrate a pharmacological profile similar to the clinical treatment of FM. However, it is difficult for any one of these models to include the entire spectrum of clinical FM features once even FM patients are highly heterogeneous. In the past six years (2015 - 2020), a wide range of experimental FM studies has amounted to the literature reinforcing the need for an updated review. Here we have described, in detail, several approaches used to experimentally study FM, with a focus on recent studies in the field and in previously less discussed mechanisms. We highlight each model's challenges, limitations, and future directions, intending to help preclinical researchers establish the correct experimental FM model to use depending on their goals.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int J Mol Sci 2021; 22:ijms22083891. [PMID: 33918736 PMCID: PMC8068842 DOI: 10.3390/ijms22083891] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Fibromyalgia is a syndrome characterized by chronic and widespread musculoskeletal pain, often accompanied by other symptoms, such as fatigue, intestinal disorders and alterations in sleep and mood. It is estimated that two to eight percent of the world population is affected by fibromyalgia. From a medical point of view, this pathology still presents inexplicable aspects. It is known that fibromyalgia is caused by a central sensitization phenomenon characterized by the dysfunction of neuro-circuits, which involves the perception, transmission and processing of afferent nociceptive stimuli, with the prevalent manifestation of pain at the level of the locomotor system. In recent years, the pathogenesis of fibromyalgia has also been linked to other factors, such as inflammatory, immune, endocrine, genetic and psychosocial factors. A rheumatologist typically makes a diagnosis of fibromyalgia when the patient describes a history of pain spreading in all quadrants of the body for at least three months and when pain is caused by digital pressure in at least 11 out of 18 allogenic points, called tender points. Fibromyalgia does not involve organic damage, and several diagnostic approaches have been developed in recent years, including the analysis of genetic, epigenetic and serological biomarkers. Symptoms often begin after physical or emotional trauma, but in many cases, there appears to be no obvious trigger. Women are more prone to developing the disease than men. Unfortunately, the conventional medical therapies that target this pathology produce limited benefits. They remain largely pharmacological in nature and tend to treat the symptomatic aspects of various disorders reported by the patient. The statistics, however, highlight the fact that 90% of people with fibromyalgia also turn to complementary medicine to manage their symptoms.
Collapse
|
12
|
Regular physical activity reduces the percentage of spinally projecting neurons that express mu-opioid receptors from the rostral ventromedial medulla in mice. Pain Rep 2020; 5:e857. [PMID: 33294758 PMCID: PMC7717783 DOI: 10.1097/pr9.0000000000000857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Regular physical activity/exercise is an effective nonpharmacological treatment for individuals with chronic pain. Central inhibitory mechanisms, involving serotonin and opioids, are critical to analgesia produced by regular physical activity. The rostral ventromedial medulla (RVM) sends projections to the spinal cord to inhibit or facilitate nociceptive neurons and plays a key role in exercise-induced analgesia. Objective The goal of these studies was to examine if regular physical activity modifies RVM-spinal cord circuitry. Methods Male and female mice received Fluoro-Gold placed on the spinal cord to identify spinally projecting neurons from the RVM and the nucleus raphe obscurus/nucleus raphe pallidus, dermorphin-488 into caudal medulla to identify mu-opioid receptors, and were immunohistochemically stained for either phosphorylated-N-methyl-d-aspartate subunit NR1 (p-NR1) to identify excitatory neurons or tryptophan hydroxylase (TPH) to identify serotonin neurons. The percentage of dermorphin-488-positive cells that stained for p-NR1 (or TPH), and the percentage of dermorphin-488-positive cells that stained for p-NR1 (or TPH) and Fluoro-Gold was calculated. Physically active animals were provided running wheels in their cages for 8 weeks and compared to sedentary animals without running wheels. Animals with chronic muscle pain, induced by 2 intramuscular injections of pH 4.0, were compared to sham controls (pH 7.2). Results Physically active animals had less mu-opioid-expressing neurons projecting to the spinal cord when compared to sedentary animals in the RVM, but not the nucleus raphe obscurus/nucleus raphe pallidus. No changes were observed for TPH. Conclusions These data suggest that regular exercise alters central facilitation so that there is less descending facilitation to result in a net increase in inhibition.
Collapse
|
13
|
Drinovac Vlah V, Bach-Rojecky L. What have we learned about antinociceptive effect of botulinum toxin type A from mirror-image pain models? Toxicon 2020; 185:164-173. [DOI: 10.1016/j.toxicon.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
|
14
|
Viisanen H, Lilius TO, Sagalajev B, Rauhala P, Kalso E, Pertovaara A. Neurophysiological response properties of medullary pain-control neurons following chronic treatment with morphine or oxycodone: modulation by acute ketamine. J Neurophysiol 2020; 124:790-801. [DOI: 10.1152/jn.00343.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Morphine and oxycodone are two clinically used strong opioids. Chronic treatment with oxycodone as well as morphine can lead to analgesic tolerance and paradoxical hyperalgesia. Here we show that an N-methyl-d-aspartate receptor-dependent pronociceptive change in discharge properties of rostroventromedial medullary neurons controlling spinal nociception has an important role in antinociceptive tolerance to morphine but not oxycodone. Interestingly, chronic oxycodone did not induce pronociceptive changes in the rostroventromedial medulla.
Collapse
Affiliation(s)
- Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boriss Sagalajev
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Lesnak JB, Sluka KA. Mechanism of exercise-induced analgesia: what we can learn from physically active animals. Pain Rep 2020; 5:e850. [PMID: 33490844 PMCID: PMC7808683 DOI: 10.1097/pr9.0000000000000850] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Physical activity has become a first-line treatment in rehabilitation settings for individuals with chronic pain. However, research has only recently begun to elucidate the mechanisms of exercise-induced analgesia. Through the study of animal models, exercise has been shown to induce changes in the brain, spinal cord, immune system, and at the site of injury to prevent and reduce pain. Animal models have also explored beneficial effects of exercise through different modes of exercise including running, swimming, and resistance training. This review will discuss the central and peripheral mechanisms of exercise-induced analgesia through different modes, intensity, and duration of exercise as well as clinical applications of exercise with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Heimfarth L, Dos Anjos KS, de Carvalho YMBG, Dos Santos BL, Serafini MR, de Carvalho Neto AG, Nunes PS, Beserra Filho JIA, da Silva SP, Ribeiro AM, Bezerra DP, Marreto RN, de Souza Siqueira Quintans J, de Souza Araújo AA, Melo Coutinho HD, Scotti MT, Scotti L, Quintans-Júnior LJ. Characterization of β-cyclodextrin/myrtenol complex and its protective effect against nociceptive behavior and cognitive impairment in a chronic musculoskeletal pain model. Carbohydr Polym 2020; 244:116448. [PMID: 32536383 DOI: 10.1016/j.carbpol.2020.116448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Myrtenol has gained wide interest because of its pharmacological profiles, mainly for treatment of chronic diseases. To improve the solubility of myrtenol, the formation of inclusion complexes with β-cyclodextrin was performed by physical mixture, kneading process or slurry complexation (SC) methods and characterized using thermal analysis, XRD, SEM and NMR. From these results, myrtenol complexed by SC was successfully complexed into β-cyclodextrin cavity. The interaction between myrtenol and β-cyclodextrin was confirmed by molecular docking. Hence, the SC β-cyclodextrin-myrtenol complex was evaluate for its anti-hyperalgesic, anxiolytic and antioxidant activity in a fibromyalgia model. Results show that myrtenol and β-cyclodextrin form a stable complex and have anti-hyperalgesic effect, improve the cognitive impairment caused and have an anxiolytic-like effect. Furthermore, the β-cyclodextrin/myrtenol complex decrease lipoperoxidation, increased catalase activity and a reduce SOD/CAT ratio. Therefore, β-cyclodextrin/myrtenol complex reduce painful behavior, improves motor skills and emotional behavior and decreases oxidative stress in a fibromyalgia model.
Collapse
Affiliation(s)
- Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | | | | | - Paula Santos Nunes
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Sara Pereira da Silva
- Department of Biosciences, Federal University of São Paulo/UNIFESP, Santos, SP, Brazil
| | | | - Daniel Pereira Bezerra
- Oswaldo Cruz Foundation, Laboratory of Tissue Engineering and Immunopharmacology, Salvador, BA, Brazil
| | | | | | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri, URCA, Av Cel. Antonio Luiz, 1161, Pimenta, Crato, CE, 63105-000, Brazil.
| | - Marcus T Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| | | |
Collapse
|
17
|
Lesnak J, Sluka KA. Chronic non-inflammatory muscle pain: central and peripheral mediators. CURRENT OPINION IN PHYSIOLOGY 2019; 11:67-74. [PMID: 31998857 PMCID: PMC6988739 DOI: 10.1016/j.cophys.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Conditions with chronic widespread non-inflammatory muscle pain, such as fibromyalgia, have complex etiologies with numerous proposed mechanisms for their pathophysiology of underlying chronic pain. Advancements in neuroimaging have allowed for the study of brain function and connectivity in humans with these conditions, while development of animal models have allowed for the study of both peripheral and central factors that lead to chronic pain. This article reviews the current literature surrounding the pathophysiology of chronic widespread non-inflammatory muscle pain focusing on both peripheral and central nervous system, as well as immune system, contributions to the development and maintenance of pain. A better understanding of the mechanisms underlying these conditions can allow for improvements in patient education, treatment and outcomes.
Collapse
Affiliation(s)
- Joseph Lesnak
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, 1-242 MEB, University of Iowa, Iowa City, IA 52252, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, 1-242 MEB, University of Iowa, Iowa City, IA 52252, USA
| |
Collapse
|
18
|
Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins (Basel) 2019; 11:E459. [PMID: 31387301 PMCID: PMC6723487 DOI: 10.3390/toxins11080459] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Already a well-established treatment for different autonomic and movement disorders, the use of botulinum toxin type A (BoNT/A) in pain conditions is now continuously expanding. Currently, the only approved use of BoNT/A in relation to pain is the treatment of chronic migraines. However, controlled clinical studies show promising results in neuropathic and other chronic pain disorders. In comparison with other conventional and non-conventional analgesic drugs, the greatest advantages of BoNT/A use are its sustained effect after a single application and its safety. Its efficacy in certain therapy-resistant pain conditions is of special importance. Novel results in recent years has led to a better understanding of its actions, although further experimental and clinical research is warranted. Here, we summarize the effects contributing to these advantageous properties of BoNT/A in pain therapy, specific actions along the nociceptive pathway, consequences of its central activities, the molecular mechanisms of actions in neurons, and general pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000 Zagreb, Croatia
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
19
|
|
20
|
Affiliation(s)
- Lucy F Donaldson
- School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, UK
| | - Bridget M Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK
| |
Collapse
|
21
|
Acid-induced experimental knee pain and hyperalgesia in healthy humans. Exp Brain Res 2017; 236:587-598. [PMID: 29250706 DOI: 10.1007/s00221-017-5155-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/14/2017] [Indexed: 01/08/2023]
Abstract
Inflammation and the related acidity in peri-articular structures may be involved in pain generation and hyperalgesia in knee osteoarthritis. This study investigated pain and associated hyperalgesia provoked by infusion of acidic saline into the infrapatellar fat pad. Twenty-eight subjects participated in two sessions in which acidic saline (AS, pH 5) or neutral saline (NS, pH 7.4) were infused into the infrapatellar fat pad for 15 min. Pain intensity, pain area, mechanical and thermal sensitivity, and maximal voluntary knee extension force were recorded. Repeated infusions were performed in 14 subjects. Infusion of AS caused significantly higher pain intensity, larger pain areas, induced hyperalgesia around the infused knee, and reduced extension force. No significant pain facilitation or spreading of hyperalgesia was found after repeated infusions as compared with single infusions. Acidic saline infused into the infrapatellar fat pad provoked pain and localized mechanical hyperalgesia. Thus, this acid-induced pain model may mimic the early-stage responses to tissue injury of knee osteoarthritis.
Collapse
|
22
|
Cesário FRAS, de Albuquerque TR, de Lacerda GM, de Oliveira MRC, Rodrigues LB, Martins AOBPB, Boligon AA, Júnior LJQ, de Souza Araújo AA, Vale ML, Coutinho HDM, de Menezes IRA. Phytochemical profile and mechanisms involved in the anti-nociception caused by the hydroethanolic extract obtained from Tocoyena formosa (Cham. & Schltdl.) K. Schum (Jenipapo-bravo) leaves in mice. Biomed Pharmacother 2017; 97:321-329. [PMID: 29091881 DOI: 10.1016/j.biopha.2017.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Tocoyena formosa, a small ornamental tree growing in the dry regions of central Brazil, is commonly known as 'genipapo do bravo'. This is a medicinal plant traditionally used as an analgesic for rheumatic pain, lower back pain and myalgia, however its use is carried out without scientific evidence, which thus justifies the development of studies to investigate and prove its therapeutic potential. Therefore, the objective of this study was to evaluate the phytochemical profile of Tocoyena formosa (Cham. & Schlecht.) K. Schum (TFLHE) and the mechanisms involved in its anti-nociceptive effect. The TFLHE revealed the presence of gallic acid, catechin, chlorogenic acid, caffeic acid, ellagic acid, rutin, quercetin and luteolin. The TFLHE at doses of 200 and 400mg/kg significantly decreased acetic acid-induced abdominal contortions, the reaction time for the formalin test in both phases and increased the paw withdrawal time in the hot plate thermal stimulus test. The 200mg/kg dose also significantly inhibited the plantar mechanical hyperalgesia intensity induced by formalin within 24h. TREATMENT with the TFLHE did not cause significant changes in motor performance and coordination in the Rota Rod test. The investigation on the possible mechanism of antinociceptive action of TFLHE indicates the involvement of opioid, glutamatergic, nitric oxide/cGMP and vanilloid systems. It is concluded that the TFLHE has an antinociceptive effect promoted by the aforementioned mechanisms.
Collapse
Affiliation(s)
- Francisco Rafael Alves Santana Cesário
- Department of Biological Chemistry, Postgraduate Program in Molecular Bioprospecting Program, Regional University of Cariri, 63.105-000, Crato, CE, Brazil
| | - Thaís Rodrigues de Albuquerque
- Department of Biological Chemistry, Postgraduate Program in Molecular Bioprospecting Program, Regional University of Cariri, 63.105-000, Crato, CE, Brazil
| | - Giovana Mendes de Lacerda
- Department of Biological Chemistry, Postgraduate Program in Molecular Bioprospecting Program, Regional University of Cariri, 63.105-000, Crato, CE, Brazil
| | - Maria Rayane Correia de Oliveira
- Department of Biological Chemistry, Postgraduate Program in Molecular Bioprospecting Program, Regional University of Cariri, 63.105-000, Crato, CE, Brazil
| | - Lindaiane Bezerra Rodrigues
- Department of Biological Chemistry, Postgraduate Program in Molecular Bioprospecting Program, Regional University of Cariri, 63.105-000, Crato, CE, Brazil
| | | | - Aline Augusti Boligon
- Laboratory of Phytochemical Research of the Department of Industrial Pharmacy, Federal University of Santa Maria, 97.105-900, Santa Maria, RS, Brazil
| | - Lucindo José Quintans Júnior
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Sergipe, 49.100-000, Aracaju, SE, Brazil
| | - Adriano Antunes de Souza Araújo
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Sergipe, 49.100-000, Aracaju, SE, Brazil
| | - Mariana Lima Vale
- Postgraduate Program in Health Sciences. Federal University of Sergipe, 49.100-000, Aracaju, SE, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Postgraduate Program in Molecular Bioprospecting Program, Regional University of Cariri, 63.105-000, Crato, CE, Brazil.
| | - Irwin Rose Alencar de Menezes
- Department of Biological Chemistry, Postgraduate Program in Molecular Bioprospecting Program, Regional University of Cariri, 63.105-000, Crato, CE, Brazil.
| |
Collapse
|
23
|
Wang W, Zou Z, Tan X, Zhang RW, Ren CZ, Yao XY, Li CB, Wang WZ, Shi XY. Enhancement in Tonically Active Glutamatergic Inputs to the Rostral Ventrolateral Medulla Contributes to Neuropathic Pain-Induced High Blood Pressure. Neural Plast 2017; 2017:4174010. [PMID: 29158920 PMCID: PMC5660794 DOI: 10.1155/2017/4174010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain increases the risk of cardiovascular diseases including hypertension with the characteristic of sympathetic overactivity. The enhanced tonically active glutamatergic input to the rostral ventrolateral medulla (RVLM) contributes to sympathetic overactivity and blood pressure (BP) in cardiovascular diseases. We hypothesize that neuropathic pain enhances tonically active glutamatergic inputs to the RVLM, which contributes to high level of BP and sympathetic outflow. Animal model with the trigeminal neuropathic pain was induced by the infraorbital nerve-chronic constriction injury (ION-CCI). A significant increase in BP and renal sympathetic nerve activity (RSNA) was found in rats with ION-CCI (BP, n = 5, RSNA, n = 7, p < 0.05). The concentration of glutamate in the RVLM was significantly increased in the ION-CCI group (n = 4, p < 0.05). Blockade of glutamate receptors by injection of kynurenic acid into the RVLM significantly decreased BP and RSNA in the ION-CCI group (n = 5, p < 0.05). In two major sources (the paraventricular nucleus and periaqueductal gray) for glutamatergic inputs to the RVLM, the ION-CCI group (n = 5, p < 0.05) showed an increase in glutamate content and expression of glutaminase 2, vesicular glutamate transporter 2 proteins, and c-fos. Our results suggest that enhancement in tonically active glutamatergic inputs to the RVLM contributes to neuropathic pain-induced high blood pressure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and SICU, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xing Tan
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Ru-Wen Zhang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Chang-Zhen Ren
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xue-Ya Yao
- Hebei North University, Zhangjiakou, Hebei Province 075000, China
| | - Cheng-Bao Li
- Hebei North University, Zhangjiakou, Hebei Province 075000, China
| | - Wei-Zhong Wang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xue-Yin Shi
- Department of Anesthesiology and SICU, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
24
|
Lima LV, DeSantana JM, Rasmussen LA, Sluka KA. Short-duration physical activity prevents the development of activity-induced hyperalgesia through opioid and serotoninergic mechanisms. Pain 2017; 158:1697-1710. [PMID: 28621702 PMCID: PMC5561491 DOI: 10.1097/j.pain.0000000000000967] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regular physical activity prevents the development of chronic muscle pain through the modulation of central mechanisms that involve rostral ventromedial medulla (RVM). We tested if pharmacological blockade or genetic deletion of mu-opioid receptors in physically active mice modulates excitatory and inhibitory systems in the RVM in an activity-induced hyperalgesia model. We examined response frequency to mechanical stimulation of the paw, muscle withdrawal thresholds, and expression of phosphorylation of the NR1 subunit of the N-methyl-D-aspartate receptor (p-NR1) and serotonin transporter (SERT) in the RVM. Mice that had performed 5 days of voluntary wheel running prior to the induction of the model were compared with sedentary mice. Sedentary mice showed significant increases in mechanical paw withdrawal frequency and a reduction in muscle withdrawal threshold; wheel running prevented the increase in paw withdrawal frequency. Naloxone-treated and MOR mice had increases in withdrawal frequency that were significantly greater than that in physically active control mice and similar to sedentary mice. Immunohistochemistry in the RVM showed increases in p-NR1 and SERT expression in sedentary mice 24 hours after the induction of the model. Wheel running prevented the increase in SERT, but not p-NR1. Physically active, naloxone-treated, and MOR mice showed significant increases in SERT immunoreactivity when compared with wild-type physically active control mice. Blockade of SERT in the RVM in sedentary mice reversed the activity-induced hyperalgesia of the paw and muscle. These results suggest that analgesia induced by 5 days of wheel running is mediated by mu-opioid receptors through the modulation of SERT, but not p-NR1, in RVM.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Gene Expression Regulation/physiology
- Hyperalgesia/etiology
- Hyperalgesia/prevention & control
- Male
- Medulla Oblongata/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/metabolism
- Pain Measurement
- Pain Threshold/physiology
- Physical Conditioning, Animal/methods
- Physical Stimulation/adverse effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Statistics, Nonparametric
- Time Factors
Collapse
Affiliation(s)
- Lucas V Lima
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju/Se, Brazil
| | - Josimari M DeSantana
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju/Se, Brazil
- Department of Physical Therapy, Federal University of Sergipe, Aracaju/Se, Brazil
| | - Lynn A Rasmussen
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Regular physical activity prevents development of chronic muscle pain through modulation of supraspinal opioid and serotonergic mechanisms. Pain Rep 2017; 2:e618. [PMID: 29392233 PMCID: PMC5777681 DOI: 10.1097/pr9.0000000000000618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022] Open
Abstract
The current study shows that blockade of opioid receptors systemically in the periaqueductal gray and the rostral ventromedial medulla prevents analgesia by 8 weeks of wheel running in a chronic muscle pain model. We further show increases in serotonin transporter expression and reversal of hyperalgesia with a selective reuptake inhibitor in the rostral ventromedial medulla in the chronic muscle pain model, and exercise normalizes serotonin transporter expression. Introduction: It is generally believed that exercise produces its effects by activating central opioid receptors; there are little data that support this claim. The periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) are key nuclei in opioid-induced analgesia, and opioids interact with serotonin to produce analgesia. Objectives: The purpose was to examine central inhibitory mechanisms involved in analgesia produced by wheel running. Methods: C57/Black6 mice were given access to running wheels in their home cages before induction of chronic muscle hyperalgesia and compared with those without running wheels. Systemic, intra-PAG, and intra-RVM naloxone tested the role of central opioid receptors in the antinociceptive effects of wheel running in animals with muscle insult. Immunohistochemistry for the serotonin transporter (SERT) in the spinal cord and RVM, and pharmacological blockade of SERT, tested whether the serotonin system was modulated by muscle insult and wheel running. Results: Wheel running prevented the development of muscle hyperalgesia. Systemic naloxone, intra-PAG naloxone, and intra-RVM naloxone reversed the antinociceptive effect of wheel running in animals that had received muscle insult. Induction of chronic muscle hyperalgesia increased SERT in the RVM, and blockade of SERT reversed the hyperalgesia in sedentary animals. Wheel running reduced SERT expression in animals with muscle insult. The serotonin transporter in the superficial dorsal horn of the spinal cord was unchanged after muscle insult, but increased after wheel running. Conclusion: These data support the hypothesis that wheel running produced analgesia through central inhibitory mechanisms involving opioidergic and serotonergic systems.
Collapse
|
26
|
Lima LV, Abner TSS, Sluka KA. Does exercise increase or decrease pain? Central mechanisms underlying these two phenomena. J Physiol 2017; 595:4141-4150. [PMID: 28369946 PMCID: PMC5491894 DOI: 10.1113/jp273355] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/07/2017] [Indexed: 01/13/2023] Open
Abstract
Exercise is an integral part of the rehabilitation of patients suffering a variety of chronic musculoskeletal conditions, such as fibromyalgia, chronic low back pain and myofascial pain. Regular physical activity is recommended for treatment of chronic pain and its effectiveness has been established in clinical trials for people with a variety of pain conditions. However, exercise can also increase pain making participation in rehabilitation challenging for the person with pain. Animal models of exercise-induced pain have been developed and point to central mechanisms underlying this phenomena, such as increased activation of NMDA receptors in pain-modulating areas. Meanwhile, a variety of basic science studies testing different exercise protocols, show exercise-induced analgesia involves activation of central inhibitory pathways. Opioid, serotonin and NMDA mechanisms acting in rostral ventromedial medulla promote analgesia associated with exercise. This review explores and discusses current evidence on central mechanisms underlying exercised-induced pain and analgesia.
Collapse
Affiliation(s)
- Lucas V. Lima
- Department of Physical Therapy and Rehabilitation Science, Pain Research ProgramUniversity of IowaIowa CityIA52242USA
| | - Thiago S. S. Abner
- Department of Physical Therapy and Rehabilitation Science, Pain Research ProgramUniversity of IowaIowa CityIA52242USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research ProgramUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
27
|
Gong WY, Wang R, Liu Y, Jin H, Zhao ZW, Wang YL, Li HY, Zhang X, Ni JX. Chronic Monoarthritis Pain Accelerates the Processes of Cognitive Impairment and Increases the NMDAR Subunits NR2B in CA3 of Hippocampus from 5-month-old Transgenic APP/PS1 Mice. Front Aging Neurosci 2017; 9:123. [PMID: 28553223 PMCID: PMC5427068 DOI: 10.3389/fnagi.2017.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023] Open
Abstract
Many factors impact cognitive impairment; however, the effects of chronic pain and the mechanisms underlying these effects on cognitive impairment are currently unknown. Here we tested the hypothesis that chronic pain accelerates the transition from normal cognition to mild cognitive impairment (MCI) in 5-month-old transgenic APP/PS1 mice, an animal model of Alzheimer’s disease (AD), and that neurotoxicity induced by N-methyl-D-aspartic acid receptor (NMDAR) subunits may be involved in this process. Chronic monoarthritis pain was induced in transgenic APP/PS1 mice and 5-month-old wild-type (WT) mice by intra- and pre-articular injections of Freund’s complete adjuvant (FCA) into one knee joint. Pain behavior, learning and memory function, and the distribution and quantity of NMDAR subunits (NR1, NR2A and NR2B) in hippocampal CA1 and CA3 regions were assessed. Our results showed that although persistent and robust monoarthritis pain was induced by the FCA injections, only the transgenic APP/PS1 mice with chronic monoarthritis pain exhibited marked learning and memory impairments. This result suggested that chronic monoarthritis pain accelerated the cognitive impairment process. Furthermore, only transgenic APP/PS1 mice with chronic monoarthritis pain exhibited an overexpression of NR2B and an increased NR2B/NR2A ratio in the hippocampus CA3. These findings suggest that chronic pain is a risk factor for cognitive impairment and that increased neurotoxicity associated with NMDAR subunit activation may underpin the impairment. Thus, NMDARs may be a therapeutic target for the prevention of chronic pain-induced cognitive impairment.
Collapse
Affiliation(s)
- Wei-Yi Gong
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China.,Department of Pain Management, Xuanwu Hospital, Capital Medical UniversityBeijing, China.,Department of Anesthesiology, Fujian Medical University Union HospitalFuzhou, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Yuan Liu
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Zhi-Wei Zhao
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Yu-Lan Wang
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Hong-Yan Li
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China.,Department of Pain Management, Xuanwu Hospital, Capital Medical UniversityBeijing, China
| | - Xu Zhang
- Central Laboratory, Xuanwu Hospital of Capital Medical University, Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain DisordersBeijing, China
| | - Jia-Xiang Ni
- Department of Pain Management, Xuanwu Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
28
|
Neto MLP, Maciel LYS, Cruz KML, Filho VJS, Bonjardim LR, DeSantana JM. Does electrode placement influence tens-induced antihyperalgesia in experimental inflammatory pain model? Braz J Phys Ther 2017; 21:92-99. [PMID: 28460716 PMCID: PMC5537470 DOI: 10.1016/j.bjpt.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/08/2015] [Accepted: 05/09/2016] [Indexed: 11/25/2022] Open
Abstract
This study challenges the notion that TENS can only be applied at the site of pain. The study supports the use of TENS in patients with significant skin injuries. This helps to understand the action of TENS in edema.
Background Transcutaneous electrical nerve stimulation (TENS) is a treatment commonly used for managing pain; however, the ideal placement of the electrodes is not fully understood. Objective To investigate the best way to apply TENS electrodes in an experimental inflammatory pain model. Method Knee joint inflammation was induced in rats, followed by administration of low-frequency TENS (4 Hz) under anesthesia for five days. Animals were randomly allocated to five groups according to electrode placement (n = 6, each): dermatome, contralateral, paraspinal, acupoint, and control. Interventions: Low-frequency TENS at sensory intensity and 100 μs pulse duration. Withdrawal thresholds to mechanical (von Frey) and thermal stimuli and joint edema were assessed before induction of inflammation and immediately before and after application of TENS. Results Reduced paw withdrawal threshold and thermal latency that occur 24 h after the induction of inflammation were significantly reversed by the administration of TENS in all groups when compared with sham treatment or with the condition before TENS treatment. No difference was observed in the edema measurement. Conclusion These results offer more options for practitioners to choose the area of the body most commodious for electrode placement, depending on the clinical condition of the patient, because the effect was similar at all sites. In addition, there was a loss of the effectiveness of TENS in reversing mechanical and thermal hyperalgesia on the fifth day, suggesting the development of the tolerance phenomenon.
Collapse
Affiliation(s)
- Maurício L Poderoso Neto
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil
| | - Leonardo Y S Maciel
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil
| | - Kamilla M L Cruz
- Departamento de Fisioterapia, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil
| | - Valter J Santana Filho
- Departamento de Fisioterapia, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil; Programa de Pós-graduação em Ciências Fisiologicas, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil
| | - Leonardo R Bonjardim
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil; Programa de Pós-graduação em Ciências Fisiologicas, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil
| | - Josimari M DeSantana
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil; Departamento de Fisioterapia, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil; Programa de Pós-graduação em Ciências Fisiologicas, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil.
| |
Collapse
|
29
|
Exercise prevents development of autonomic dysregulation and hyperalgesia in a mouse model of chronic muscle pain. Pain 2016; 157:387-398. [PMID: 26313406 DOI: 10.1097/j.pain.0000000000000330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic musculoskeletal pain (CMP) conditions, like fibromyalgia, are associated with widespread pain and alterations in autonomic functions. Regular physical activity prevents the development of CMP and can reduce autonomic dysfunction. We tested if there were alterations in autonomic function of sedentary mice with CMP, and whether exercise reduced the autonomic dysfunction and pain induced by CMP. Chronic musculoskeletal pain was induced by 2 intramuscular injections of pH 5.0 in combination with a single fatiguing exercise task. A running wheel was placed into cages so that the mouse had free access to it for either 5 days or 8 weeks (exercise groups) and these animals were compared to sedentary mice without running wheels. Autonomic function and nociceptive withdrawal thresholds of the paw and muscle were assessed before and after induction of CMP in exercised and sedentary mice. In sedentary mice, we show decreased baroreflex sensitivity, increased blood pressure variability, decreased heart rate variability, and decreased withdrawal thresholds of the paw and muscle 24 hours after induction of CMP. There were no sex differences after induction of the CMP in any outcome measure. We further show that both 5 days and 8 weeks of physical activity prevent the development of autonomic dysfunction and decreases in withdrawal threshold induced by CMP. Thus, this study uniquely shows the development of autonomic dysfunction in animals with chronic muscle hyperalgesia, which can be prevented with as little as 5 days of physical activity, and suggest that physical activity may prevent the development of pain and autonomic dysfunction in people with CMP.
Collapse
|
30
|
Abdelhamid RE, Sluka KA. ASICs Mediate Pain and Inflammation in Musculoskeletal Diseases. Physiology (Bethesda) 2016; 30:449-59. [PMID: 26525344 DOI: 10.1152/physiol.00030.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic musculoskeletal pain is debilitating and affects ∼ 20% of adults. Tissue acidosis is present in painful musculoskeletal diseases like rheumatoid arthritis. ASICs are located on skeletal muscle and joint nociceptors as well as on nonneuronal cells in the muscles and joints, where they mediate nociception. This review discusses the properties of different types of ASICs, factors affecting their pH sensitivity, and their role in musculoskeletal hyperalgesia and inflammation.
Collapse
Affiliation(s)
- Ramy E Abdelhamid
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa
| |
Collapse
|
31
|
Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:948-57. [PMID: 27387403 DOI: 10.1016/j.phymed.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Citronellal (CT) is a monoterpene with antinociceptive acute effect. β-Cyclodextrin (βCD) has enhanced the analgesic effect of various substances. HYPOTHESIS/PURPOSE To evaluate the effect of CT both complexed in β-cyclodextrin (CT-βCD) and non-complexed, in a chronic muscle pain model (CMP) in mice. STUDY DESIGN The complex containing CT in βCD was obtained and characterized in the laboratory. The anti-hyperalgesic effect of CT and CT-βCD was evaluated in a pre-clinical in vivo study in a murine CMP. METHODS The complex was characterized through differential scanning calorimetry, derivative thermogravimetry, moisture determination, infrared spectroscopy and scanning electron microscopy. Male Swiss mice were pre-treated with CT (50mg/kg, po), CT-βCD (50mg/kg, po), vehicle (isotonic saline, po) or standard drug (tramadol4 mg/kg, ip). 60 min after the treatment and then each 1h, the mechanic hyperalgesia was evaluated to obtain the time effect. In addition, the muscle strength using grip strength meter and hyperalgesia were also performed daily, for 7 days. We assessed by immunofluorescence for Fos protein on brains and spinal cords of mice. The involvement of the CT with the glutamatergic system was studied with molecular docking. RESULTS All characterization methods showed the CT-βCD complexation. CT-induced anti-hyperalgesic effect lasted until 6h (p <0.001) while CT-βCD lasted until 8h (p <0.001vs vehicle and p <0.001vs CT from the 6th h). CT-βCD reduced mechanical hyperalgesia on all days of treatment (p <0.05), without changing muscle strength. Periaqueductal gray (p <0.01) and rostroventromedular area (p <0.05) showed significant increase in the Fos protein expression while in the spinal cord, there was a reduction (p <0.001). CT showed favorable energy binding (-5.6 and -6.1) to GluR2-S1S2J protein based in the docking score function. CONCLUSION We can suggest that βCD improved the anti-hyperalgesic effect of CT, and that effect seems to involve the descending pain-inhibitory mechanisms, with a possible interaction of the glutamate receptors, which are considered as promising molecules for the management of chronic pain such as CMP.
Collapse
Affiliation(s)
- Priscila L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Adriana G Guimarães
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Márcio R V Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil..
| | | |
Collapse
|
32
|
Drinovac Vlah V, Bach-Rojecky L, Lacković Z. Antinociceptive action of botulinum toxin type A in carrageenan-induced mirror pain. J Neural Transm (Vienna) 2016; 123:1403-1413. [DOI: 10.1007/s00702-016-1605-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
|
33
|
Resident Macrophages in Muscle Contribute to Development of Hyperalgesia in a Mouse Model of Noninflammatory Muscle Pain. THE JOURNAL OF PAIN 2016; 17:1081-1094. [PMID: 27377621 DOI: 10.1016/j.jpain.2016.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Macrophages play a role in innate immunity within the body, are located in muscle tissue, and can release inflammatory cytokines that sensitize local nociceptors. In this study we investigate the role of resident macrophages in the noninflammatory muscle pain model induced by 2 pH 4.0 preservative-free sterile saline (pH 4.0) injections 5 days apart in the gastrocnemius muscle. We showed that injecting 2 pH 4.0 injections into the gastrocnemius muscle increased the number of local muscle macrophages, and depleting muscle macrophages with clodronate liposomes before acid injections attenuated the hyperalgesia produced by this model. To further examine the contribution of local macrophages to this hyperalgesia, we injected mice intramuscularly with C34, a toll-like receptor 4 (TLR4) antagonist. When given before the first pH 4.0 injection, C34 attenuated the muscle and tactile hyperalgesia produced by the model. However, when given before the second injection C34 had no effect on the development of hyperalgesia. Then to test whether activation of local macrophages sensitizes nociceptors to normally non-nociceptive stimuli we replaced either the first or second acid injection with the immune cell activator lipopolysaccharide, or the inflammatory cytokine interleukin (IL)-6. Injecting LPS or IL-6 instead of the either the first or second pH 4.0 injection resulted in a dose-dependent increase in paw withdrawal responses and decrease in muscle withdrawal thresholds. The highest doses of LPS and IL-6 resulted in development of hyperalgesia bilaterally. The present study showed that resident macrophages in muscle are key to development of chronic muscle pain. PERSPECTIVE This article presents evidence for the role of macrophages in the development of chronic muscle pain using a mouse model. These data suggest that macrophages could be a potential therapeutic target to prevent transition of acute to chronic muscle pain particularly in tissue acidosis conditions.
Collapse
|
34
|
Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 2016; 338:114-129. [PMID: 27291641 DOI: 10.1016/j.neuroscience.2016.06.006] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
Fibromyalgia is the current term for chronic widespread musculoskeletal pain for which no alternative cause can be identified. The underlying mechanisms, in both human and animal studies, for the continued pain in individuals with fibromyalgia will be explored in this review. There is a substantial amount of support for alterations of central nervous system nociceptive processing in people with fibromyalgia, and that psychological factors such as stress can enhance the pain experience. Emerging evidence has begun exploring other potential mechanisms including a peripheral nervous system component to the generation of pain and the role of systemic inflammation. We will explore the data and neurobiology related to the role of the CNS in nociceptive processing, followed by a short review of studies examining potential peripheral nervous system changes and cytokine involvement. We will not only explore the data from human subjects with fibromyalgia but will relate this to findings from animal models of fibromyalgia. We conclude that fibromyalgia and related disorders are heterogenous conditions with a complicated pathobiology with patients falling along a continuum with one end a purely peripherally driven painful condition and the other end of the continuum is when pain is purely centrally driven.
Collapse
|
35
|
Soliemani N, Moslem A, Shamsizadeh A, Azhdari-Zarmehri H. Administration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:542-9. [PMID: 27403261 PMCID: PMC4923475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/24/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). MATERIALS AND METHODS Forced swim stress in water was employed to adult male rats (200-250 g). Nociceptive responses were measured by formalin test (50 µl injection of formalin 2% subcutaneously into hind paw) and, pain related behaviors were monitored for 90 min following intra-microinjection of SB-334867 (orexin receptor 1 antagonist) into RVM. RESULTS Exposure to swimming stress test after administration of SB-334867 into RVM significantly reduces the formalin-induced nociceptive behaviors in phase1, interphase, and phase 2 in rats. CONCLUSION The result demonstrated the involvement of OXR1 in antinociceptive behaviors induced by swim stress in RVM.
Collapse
Affiliation(s)
- Neda Soliemani
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Moslem
- Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
36
|
Quintans-Júnior LJ, Araújo AA, Brito RG, Santos PL, Quintans JS, Menezes PP, Serafini MR, Silva GF, Carvalho FM, Brogden NK, Sluka KA. β-caryophyllene, a dietary cannabinoid, complexed with β-cyclodextrin produced anti-hyperalgesic effect involving the inhibition of Fos expression in superficial dorsal horn. Life Sci 2016; 149:34-41. [DOI: 10.1016/j.lfs.2016.02.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
|
37
|
Boadas-Vaello P, Castany S, Homs J, Álvarez-Pérez B, Deulofeu M, Verdú E. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 2016; 54:330-40. [DOI: 10.1038/sc.2015.225] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
38
|
Gregory NS, Brito RG, Fusaro MCGO, Sluka KA. ASIC3 Is Required for Development of Fatigue-Induced Hyperalgesia. Mol Neurobiol 2015; 53:1020-1030. [PMID: 25577172 DOI: 10.1007/s12035-014-9055-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/08/2014] [Indexed: 12/23/2022]
Abstract
An acute bout of exercise can exacerbate pain, hindering participation in regular exercise and daily activities. The mechanisms underlying pain in response to acute exercise are poorly understood. We hypothesized that proton accumulation during muscle fatigue activates acid-sensing ion channel 3 (ASIC3) on muscle nociceptors to produce hyperalgesia. We investigated the role of ASIC3 using genetic and pharmacological approaches in a model of fatigue-enhanced hyperalgesia. This model uses two injections of pH 5.0 saline into muscle in combination with an electrically induced fatigue of the same muscle just prior to the second injection of acid to induce mechanical hyperalgesia. We show a significant decrease in muscle force and decrease in muscle pH after 6 min of electrical stimulation. Genetic deletion of ASIC3 using knockout mice and pharmacological blockade of ASIC3 with APETx2 in muscle prevents the fatigue-enhanced hyperalgesia. However, ASIC3(-/-) mice and APETx2 have no effect on the fatigue response. Genetic deletion of ASIC3 in primary afferents innervating muscle using an HSV-1 expressing microRNA (miRNA) to ASIC3 surprisingly had no effect on the development of the hyperalgesia. Muscle fatigue increased the number of macrophages in muscle, and removal of macrophages from muscle with clodronate liposomes prevented the development of fatigue-enhanced hyperalgesia. Thus, these data suggest that fatigue reduces pH in muscle that subsequently activates ASIC3 on macrophages to enhance hyperalgesia to muscle insult.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Neuroscience Graduate Program, Pain Research Program, Department of Physical Therapy and Rehabilitation Science, University of Iowa, 1-248 MEB, Iowa City, IA, 52242, USA
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, Aracaju, Brazil
| | | | - Kathleen A Sluka
- Neuroscience Graduate Program, Pain Research Program, Department of Physical Therapy and Rehabilitation Science, University of Iowa, 1-248 MEB, Iowa City, IA, 52242, USA.
| |
Collapse
|
39
|
Abstract
Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles.
Collapse
|
40
|
Gong W, Johanek LM, Sluka KA. Spinal Cord Stimulation Reduces Mechanical Hyperalgesia and Restores Physical Activity Levels in Animals with Noninflammatory Muscle Pain in a Frequency-Dependent Manner. Anesth Analg 2014; 119:186-195. [DOI: 10.1213/ane.0000000000000239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Cleary DR, Roeder Z, Elkhatib R, Heinricher MM. Neuropeptide Y in the rostral ventromedial medulla reverses inflammatory and nerve injury hyperalgesia in rats via non-selective excitation of local neurons. Neuroscience 2014; 271:149-59. [PMID: 24792711 PMCID: PMC4071144 DOI: 10.1016/j.neuroscience.2014.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Abstract
Chronic pain reflects not only sensitization of the ascending nociceptive pathways, but also changes in descending modulation. The rostral ventromedial medulla (RVM) is a key structure in a well-studied descending pathway, and contains two classes of modulatory neurons, the ON-cells and the OFF-cells. Disinhibition of OFF-cells depresses nociception; increased ON-cell activity facilitates nociception. Multiple lines of evidence show that sensitization of ON-cells contributes to chronic pain, and reversing or blocking this sensitization is of interest as a treatment of persistent pain. Neuropeptide Y (NPY) acting via the Y1 receptor has been shown to attenuate hypersensitivity in nerve-injured animals without affecting normal nociception when microinjected into the RVM, but the neural basis for this effect was unknown. We hypothesized that behavioral anti-hyperalgesia was due to selective inhibition of ON-cells by NPY at the Y1 receptor. To explore the possibility of Y1 selectivity on ON-cells, we stained for the NPY-Y1 receptor in the RVM, and found it broadly expressed on both serotonergic and non-serotonergic neurons. In subsequent behavioral experiments, NPY microinjected into the RVM in lightly anesthetized animals reversed signs of mechanical hyperalgesia following either nerve injury or chronic hindpaw inflammation. Unexpectedly, rather than decreasing ON-cell activity, NPY increased spontaneous activity of both ON- and OFF-cells without altering noxious-evoked changes in firing. Based on these results, we conclude that the anti-hyperalgesic effects of NPY in the RVM are not explained by selective inhibition of ON-cells, but rather by increased spontaneous activity of OFF-cells. Although ON-cells undoubtedly facilitate nociception and contribute to hypersensitivity, the present results highlight the importance of parallel OFF-cell-mediated descending inhibition in limiting the expression of chronic pain.
Collapse
Affiliation(s)
- D R Cleary
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States.
| | - Z Roeder
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - R Elkhatib
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States; Department of Anesthesia, Cairo University Hospital, Cairo, Egypt
| | - M M Heinricher
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
42
|
Matak I, Lacković Z. Botulinum toxin A, brain and pain. Prog Neurobiol 2014; 119-120:39-59. [PMID: 24915026 DOI: 10.1016/j.pneurobio.2014.06.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/25/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins known and a potential biological threat. At the same time, it is among the most widely used therapeutic proteins used yearly by millions of people, especially for cosmetic purposes. Currently, its clinical use in certain types of pain is increasing, and its long-term duration of effects represents a special clinical value. Efficacy of BoNT/A in different types of pain has been found in numerous clinical trials and case reports, as well as in animal pain models. However, sites and mechanisms of BoNT/A actions involved in nociception are a matter of controversy. In analogy with well known neuroparalytic effects in peripheral cholinergic synapses, presently dominant opinion is that BoNT/A exerts pain reduction by inhibiting peripheral neurotransmitter/inflammatory mediator release from sensory nerves. On the other hand, growing number of behavioral and immunohistochemical studies demonstrated the requirement of axonal transport for BoNT/A's antinociceptive action. In addition, toxin's enzymatic activity in central sensory regions was clearly identified after its peripheral application. Apart from general pharmacology, this review summarizes the clinical and experimental evidence for BoNT/A antinociceptive activity and compares the data in favor of peripheral vs. central site and mechanism of action. Based on literature review and published results from our laboratory we propose that the hypothesis of peripheral site of BoNT/A action is not sufficient to explain the experimental data collected up to now.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
43
|
Coupling of serotonergic input to NMDA receptor-phosphorylation following peripheral nerve injury via rapid, synaptic up-regulation of ND2. Exp Neurol 2014; 255:86-95. [DOI: 10.1016/j.expneurol.2014.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
|
44
|
Chopade A, Sayyad F. Antifibromyalgic activity of standardized extracts of Phyllanthus amarus and Phyllanthus fraternus in acidic saline induced chronic muscle pain. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Gregory NS, Sluka KA. Anatomical and physiological factors contributing to chronic muscle pain. Curr Top Behav Neurosci 2014; 20:327-48. [PMID: 24633937 PMCID: PMC4294469 DOI: 10.1007/7854_2014_294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic muscle pain remains a significant source of suffering and disability despite the adoption of pharmacologic and physical therapies. Muscle pain is mediated by free nerve endings distributed through the muscle along arteries. These nerves project to the superficial dorsal horn and are transmitted primarily through the spinothalamic tract to several cortical and subcortical structures, some of which are more active during the processing of muscle pain than other painful conditions. Mechanical forces, ischemia, and inflammation are the primary stimuli for muscle pain, which is reflected in the array of peripheral receptors contributing to muscle pain-ASIC, P2X, and TRP channels. Sensitization of peripheral receptors and of central pain processing structures are both critical for the development and maintenance of chronic muscle pain. Further, variations in peripheral receptors and central structures contribute to the significantly greater prevalence of chronic muscle pain in females.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Neuroscience Graduate Program, University of Iowa, 3144 Med Labs, Iowa City, IA, 52246, USA,
| | | |
Collapse
|
46
|
Electroacupuncture reduces hyperalgesia after injections of acidic saline in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:485043. [PMID: 24772181 PMCID: PMC3977512 DOI: 10.1155/2014/485043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 11/17/2022]
Abstract
Background. Injections of acidic saline into the gastrocnemius muscle in rats produce a bilateral long-lasting hyperalgesia similar to fibromyalgia in humans. No previous study investigated the effect of electroacupuncture (EA) on this acidic saline model. This study aimed to identify the effects of EA in the hyperalgesia produced by repeated intramuscular injections of acidic saline. Methods. Rats were divided into four groups (n = 6, each group): control, acupuncture, EA 15 Hz, and 100 Hz. Left gastrocnemius muscle was injected with 100 μL of pH 4.0 sterile saline twice five days apart. EA, acupuncture, or control therapy was daily administered (20 min) for 5 consecutive days under anesthesia. Needles were placed in the St36 and Sp6 acupoints. The assessment of secondary mechanical hyperalgesia, thermal hyperalgesia, and motor performance was performed before injections and before and after the treatment performed on each day. The paw withdrawal threshold was tested using the nonparametric Kruskal-Wallis test and differences within the group Wilcoxon Matched Pairs. The latency and motor performance were tested for ANOVA parametric test for independent measures, and for differences in the group, we used t-test for paired samples. Post hoc Tukey test was used for multiple corrections. P values less than 0.05 were considered statistically significant. Results. Indicate that there was a significant reduction of mechanical withdrawal threshold and paw withdrawal latency 24 hours following the second injection. Moreover, mechanical and thermal hyperalgesia were significantly reversed by EA 15, 100 Hz, and acupuncture. Conclusions. The results suggest that EA high and low frequency as well as acupuncture are effective in reducing hyperalgesia in chronic muscle pain model.
Collapse
|
47
|
Sutton BC, Opp MR. Musculoskeletal sensitization and sleep: chronic muscle pain fragments sleep of mice without altering its duration. Sleep 2014; 37:505-13. [PMID: 24587573 DOI: 10.5665/sleep.3486] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Musculoskeletal pain in humans is often associated with poor sleep quality. We used a model in which mechanical hypersensitivity was induced by injection of acidified saline into muscle to study the impact of musculoskeletal sensitization on sleep of mice. DESIGN A one month pre-clinical study was designed to determine the impact of musculoskeletal sensitization on sleep of C57BL/6J mice. METHODS We instrumented mice with telemeters to record the electroencephalogram (EEG) and body temperature. We used an established model of musculoskeletal sensitization in which mechanical hypersensitivity was induced using two unilateral injections of acidified saline (pH 4.0). The injections were given into the gastrocnemius muscle and spaced five days apart. EEG and body temperature recordings started prior to injections (baseline) and continued for three weeks after musculoskeletal sensitization was induced by the second injection. Mechanical hypersensitivity was assessed using von Frey filaments at baseline (before any injections) and on days 1, 3, 7, 14, and 21 after the second injection. RESULTS Mice injected with acidified saline developed bilateral mechanical hypersensitivity at the hind paws as measured by von Frey testing and as compared to control mice and baseline data. Sleep during the light period was fragmented in experimental mice injected with acidified saline, and EEG spectra altered. Musculoskeletal sensitization did not alter the duration of time spent in wakefulness, non-rapid eye movement sleep, or rapid eye movement sleep. CONCLUSIONS Musculoskeletal sensitization in this model results in a distinct sleep phenotype in which sleep is fragmented during the light period, but the overall duration of sleep is not changed. This study suggests the consequences of musculoskeletal pain include sleep disruption, an observation that has been made in the clinical literature but has yet to be studied using preclinical models.
Collapse
Affiliation(s)
- Blair C Sutton
- Anesthesiology & Pain Medicine University of Washington, Seattle, WA ; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Mark R Opp
- Anesthesiology & Pain Medicine University of Washington, Seattle, WA ; Program of Neurobiology and Behavior University of Washington, Seattle, WA
| |
Collapse
|
48
|
Shamsizadeh A, Soliemani N, Mohammad-Zadeh M, Azhdari-Zarmehri H. Permanent lesion in rostral ventromedial medulla potentiates swim stress-induced analgesia in formalin test. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:209-15. [PMID: 24847424 PMCID: PMC4016692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/28/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE(S) There are many reports about the role of rostral ventromedial medulla (RVM) in modulating stress-induced analgesia (SIA). In the previous study we demonstrated that temporal inactivation of RVM by lidocaine potentiated stress-induced analgesia. In this study, we investigated the effect of permanent lesion of the RVM on SIA by using formalin test as a model of acute inflammatory pain. MATERIALS AND METHODS Three sets of experiments were conducted: (1) Application of stress protocol (2) Formalin injection after exposing the animals to the swim stress (3) Either the relevant vehicle or dopamine receptor 1 (D1) agonist R-SKF38393 was injected into the RVM to cause a lesion. For permanent lesion of RVM, R-SKF38393 was injected into the RVM. Forced swim stress in water was employed in adult male rats. Nociceptive responses were measured by formalin test (50µl injection of formalin 2% subcutaneously into hind paw) and pain related behaviors were monitored for 90 min. RESULTS In the unstressed rats, permanent lesion of the RVM by R-SKF38393 decreased formalin-induced nociceptive behaviors in phase 1, while in stressed rats, injection of R-SKF38393 into the RVM potentiated swim stress-induced antinociception in phase 1 and interphase, phase 2A of formalin test. Furthermore, R-SKF38393 had pronociceptive effects in phase2B whereas injections of R-SKF38393 resulted in significant difference in nociceptive bahaviours in all phases of formalin test (P<0.05). CONCLUSION The result of the present study demonstrated that permanent inactivation of RVM can potentiate stress-induced analgesia in formalin test.
Collapse
Affiliation(s)
- Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Neda Soliemani
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Mohammad-Zadeh
- Department of Physiology & Pharmacology, Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran,Corresponding author: Hassan Azhdari-Zarmehri. Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. Tel/fax: +98-531-22226011;
| |
Collapse
|
49
|
Aira Z, Buesa I, García del Caño G, Bilbao J, Doñate F, Zimmermann M, Azkue JJ. Transient, 5-HT2B receptor–mediated facilitation in neuropathic pain: Up-regulation of PKCγ and engagement of the NMDA receptor in dorsal horn neurons. Pain 2013; 154:1865-1877. [DOI: 10.1016/j.pain.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/22/2022]
|
50
|
Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain 2013; 154:2668-2676. [PMID: 23906552 DOI: 10.1016/j.pain.2013.07.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 01/27/2023]
Abstract
Chronic muscle pain affects 20-50% of the population, is more common in women than men, and is associated with increased pain during physical activity and exercise. Muscle fatigue is common in people with chronic muscle pain, occurs in response to exercise, and is associated with release of fatigue metabolites. Fatigue metabolites can sensitize muscle nociceptors, which could enhance pain with exercise. Using a mouse model we tested whether fatigue of a single muscle, induced by electrical stimulation, resulted in enhanced muscle hyperalgesia and if the enhanced hyperalgesia was more pronounced in female mice. Muscle fatigue was induced in combination with a sub-threshold muscle insult (2 injections of pH 5.0 saline) in male and female mice. We show that male and female mice, fatigued immediately prior to muscle insult in the same muscle, develop similar muscle hyperalgesia 24 hours later. However, female mice also develop hyperalgesia when muscle fatigue and muscle insult occur in different muscles, and when muscle insult is administered 24 hours after fatigue in the same muscle. Further, hyperalgesia lasts significantly longer in females. Finally, muscle insult with or without muscle fatigue results in minimal inflammatory changes in the muscle itself, and sex differences are not related to estradiol (ovariectomy) or changes in brainstem activity (pNR1). Thus, the current model mimics muscle fatigue-induced enhancement of pain observed in chronic muscle pain conditions in the human population. Interactions between fatigue and muscle insult may underlie the development of chronic widespread pain with an associated female predominance observed in human subjects.
Collapse
|