1
|
Ma L, Yue L, Liu S, Xu S, Tong J, Sun X, Su L, Cui S, Liu FY, Wan Y, Yi M. A distinct neuronal ensemble of prelimbic cortex mediates spontaneous pain in rats with peripheral inflammation. Nat Commun 2024; 15:7922. [PMID: 39256428 PMCID: PMC11387830 DOI: 10.1038/s41467-024-52243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The absence of a comprehensive understanding of the neural basis of spontaneous pain limits the development of therapeutic strategies targeting this primary complaint of patients with chronic pain. Here we report a distinct neuronal ensemble within the prelimbic cortex which processes signals related to spontaneous pain in rats with chronic inflammatory pain. This neuronal ensemble specifically encodes spontaneous pain-related behaviors, independently of other locomotive and evoked behaviors. Activation of this neuronal ensemble elicits marked spontaneous pain-like behaviors and enhances nociceptive responses, whereas prolonged silencing of its activities alleviates spontaneous pain and promotes overall recovery from inflammatory pain. Notably, afferents from the primary somatosensory cortex and infralimbic cortex bidirectionally modulate the activities of the spontaneous pain-responsive prelimbic cortex neuronal ensemble and pain behaviors. These findings reveal the cortical basis of spontaneous pain at the neuronal level, highlighting a distinct neuronal ensemble within the prelimbic cortex and its associated pain-regulatory brain networks.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shi Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, China.
| |
Collapse
|
2
|
Bencze N, Scheich B, Szőke É, Wilhelm I, Körmöndi S, Botz B, Helyes Z. Osteosarcoma-Induced Pain Is Mediated by Glial Cell Activation in the Spinal Dorsal Horn, but Not Capsaicin-Sensitive Nociceptive Neurons: A Complex Functional and Morphological Characterization in Mice. Cancers (Basel) 2024; 16:1788. [PMID: 38791867 PMCID: PMC11120600 DOI: 10.3390/cancers16101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Bone cancer and its related chronic pain are huge clinical problems since the available drugs are often ineffective or cannot be used long term due to a broad range of side effects. The mechanisms, mediators and targets need to be identified to determine potential novel therapies. Here, we characterize a mouse bone cancer model induced by intratibial injection of K7M2 osteosarcoma cells using an integrative approach and investigate the role of capsaicin-sensitive peptidergic sensory nerves. The mechanical pain threshold was assessed by dynamic plantar aesthesiometry, limb loading by dynamic weight bearing, spontaneous pain-related behaviors via observation, knee diameter with a digital caliper, and structural changes by micro-CT and glia cell activation by immunohistochemistry in BALB/c mice of both sexes. Capsaicin-sensitive peptidergic sensory neurons were defunctionalized by systemic pretreatment with a high dose of the transient receptor potential vanilloid 1 (TRPV1) agonist resiniferatoxin (RTX). During the 14- and 28-day experiments, weight bearing on the affected limb and the paw mechanonociceptive thresholds significantly decreased, demonstrating secondary mechanical hyperalgesia. Signs of spontaneous pain and osteoplastic bone remodeling were detected both in male and female mice without any sex differences. Microglia activation was shown by the increased ionized calcium-binding adapter molecule 1 (Iba1) immunopositivity on day 14 and astrocyte activation by the enhanced glial fibrillary acidic protein (GFAP)-positive cell density on day 28 in the ipsilateral spinal dorsal horn. Interestingly, defunctionalization of the capsaicin-sensitive afferents representing approximately 2/3 of the nociceptive fibers did not alter any functional parameters. Here, we provide the first complex functional and morphological characterization of the K7M2 mouse osteosarcoma model. Bone-cancer-related chronic pain and hyperalgesia are likely to be mediated by central sensitization involving neuroinflammation via glial cell activation in the spinal dorsal horn, but not the capsaicin-sensitive sensory neuronal system.
Collapse
Affiliation(s)
- Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary;
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
| | - Sándor Körmöndi
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- Department of Medical Imaging, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
- PharmInVivo Ltd., Szondy György Str. 10, 7629 Pécs, Hungary
| |
Collapse
|
3
|
Choi D, Goodwin G, Stevens EB, Soliman N, Namer B, Denk F. Spontaneous activity in peripheral sensory nerves: a systematic review. Pain 2024; 165:983-996. [PMID: 37991272 PMCID: PMC11017746 DOI: 10.1097/j.pain.0000000000003115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT In the peripheral nervous system, spontaneous activity in sensory neurons is considered to be one of the 2 main drivers of chronic pain states, alongside neuronal sensitization. Despite this, the precise nature and timing of this spontaneous activity in neuropathic pain is not well-established. Here, we have performed a systematic search and data extraction of existing electrophysiological literature to shed light on which fibre types have been shown to maintain spontaneous activity and over what time frame. We examined both in vivo recordings of preclinical models of neuropathic pain, as well as microneurography recordings in humans. Our analyses reveal that there is broad agreement on the presence of spontaneous activity in neuropathic pain conditions, even months after injury or years after onset of neuropathic symptoms in humans. However, because of the highly specialised nature of the electrophysiological methods used to measure spontaneous activity, there is also a high degree of variability and uncertainty around these results. Specifically, there are very few directly controlled experiments, with less directly comparable data between human and animals. Given that spontaneous peripheral neuron activity is considered to be a key mechanistic feature of chronic pain conditions, it may be beneficial to conduct further experiments in this space.
Collapse
Affiliation(s)
- Dongchan Choi
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, United Kingdom
| | - George Goodwin
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, United Kingdom
| | - Edward B. Stevens
- Metrion Biosciences Ltd, Building 2 Granta Centre, Granta Park, Cambridge, United Kingdom
| | - Nadia Soliman
- Imperial College London, Pain Research Group, Chelsea and Westminster Hospital, London, United Kingdom
| | - Barbara Namer
- Research Group Neuroscience of the Interdisziplinary Center for Clinical Research, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute for Physiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Hebert A, MacDermid J, Harris J, Packham T. How should we treat painful sensitivity in the hand? An international e-Delphi study. J Hand Ther 2024; 37:12-21. [PMID: 37778879 DOI: 10.1016/j.jht.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Evidence synthesis suggests allodynia resulting from neuropathic pain has few interventions with clear effectiveness. As research continues to build this needed evidence base, expert consensus recommendations can address the conflicting approaches within current hand therapy practice. PURPOSE This study aimed to develop consensus recommendations for the clinical management of allodynia from an international panel of hand therapists. STUDY DESIGN This was an international e-Delphi survey study. METHODS We recruited international hand rehabilitation experts to participate in an e-Delphi survey. Consensus was defined as 75% or more of participants agreeing with a recommendation, and at least 3 rounds of consensus building were anticipated. Experts were identified from 21 countries, and clinical vignettes describing a spectrum of patients with painful sensitivity in the hand were provided to elicit treatment recommendations. Initial recommendations were summarized, and consensus sought for clinical practice recommendations. RESULTS Sixty-eight participants were invited, with 44 more added through peer nominations. Fifty-four participants from 19 countries completed the initial survey and were invited to participate in all subsequent rounds. Over 900 treatment suggestions were provided from the initial vignettes across domains, including sensory, physical, and functional interventions, education, and cortical representation techniques: 46 ultimately reached consensus. However, important discrepancies in justification (eg, why allodynia should be covered) and implementation of techniques (eg, desensitization, sensory reeducation) were identified as the consensus exercise progressed. CONCLUSIONS Experts recommend individually tailored programs to treat allodynia using a variety of physical/movement, sensory-based, and "top-down" approaches; this is highly aligned with contemporary theories, such as the Neuromatrix Model of Pain. However, consensus was not reached on the justification and implementation of some of these approaches, reflecting the lack of a taxonomy and supporting evidence for tactile stimulation approaches in the current literature. Trials directly comparing the effectiveness of these approaches are needed.
Collapse
Affiliation(s)
- Andrea Hebert
- School of Rehabilitation Sciences, McMaster University, Institute for Applied Health Sciences, Hamilton, Ontario, Canada
| | - Joy MacDermid
- School of Rehabilitation Sciences, McMaster University, Institute for Applied Health Sciences, Hamilton, Ontario, Canada; School of Physiotherapy, Western University, Elborn College, London, Ontario, Canada
| | - Jocelyn Harris
- School of Rehabilitation Sciences, McMaster University, Institute for Applied Health Sciences, Hamilton, Ontario, Canada
| | - Tara Packham
- School of Rehabilitation Sciences, McMaster University, Institute for Applied Health Sciences, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Idlett-Ali S, Kloefkorn H, Goolsby W, Hochman S. Relating Spinal Injury-Induced Neuropathic Pain and Spontaneous Afferent Activity to Sleep and Respiratory Dysfunction. J Neurotrauma 2023; 40:2654-2666. [PMID: 37212274 PMCID: PMC11093096 DOI: 10.1089/neu.2022.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Abstract Spinal cord injury (SCI) can induce dysfunction in a multitude of neural circuits including those that lead to impaired sleep, respiratory dysfunction, and neuropathic pain. We used a lower thoracic rodent contusion SCI model of neuropathic pain that has been shown to associate with increased spontaneous activity in primary afferents and hindlimb mechanosensory stimulus hypersensitivity. Here we paired capture of these variables with chronic capture of three state sleep and respiration to more broadly understand SCI-induced physiological dysfunction and to assess possible interrelations. Noncontact electric field sensors were embedded into home cages to non-invasively capture the temporal evolution of sleep and respiration changes for six weeks after SCI in naturally behaving mice. Hindlimb mechanosensitivity was assessed weekly, and terminal experiments measured primary afferent spontaneous activity in situ from intact lumbar dorsal root ganglia (DRG). We observed that SCI led to increased spontaneous primary afferent activity (both firing rate and the number of spontaneously active DRGs) that correlated with increased respiratory rate variability and measures of sleep fragmentation. This is the first study to measure and link sleep dysfunction and variability in respiratory rate in a SCI model of neuropathic pain, and thereby provide broader insight into the magnitude of overall stress burden initiated by neural circuit dysfunction after SCI.
Collapse
Affiliation(s)
- Shaquia Idlett-Ali
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Physiology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Heidi Kloefkorn
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - William Goolsby
- Department of Physiology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shawn Hochman
- Department of Physiology, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Andreasson A, Tognetti A, Jones M, Lekander M, Lasselin J. Assessing sickness behavior in the French: Validation of the French translation of the sickness questionnaire (SicknessQ) in a non-clinical French population. Brain Behav Immun Health 2023; 34:100708. [PMID: 38058984 PMCID: PMC10695833 DOI: 10.1016/j.bbih.2023.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
The Sickness Questionnaire (SicknessQ) is a questionnaire developed to assess symptoms of sickness behavior, including somatic, behavioral, and affective dimensions. To promote cross-cultural assessments of sickness behavior, we aim to expand the use of this questionnaire to other populations and languages. The aim of the present study was to evaluate the French translation of SicknessQ in a French-speaking general population during the COVID-19 pandemic. One hundred and thirty-nine individuals completed the SicknessQ online, along with the construct criteria measures of self-rated health, state anxiety (STAI-S), and depressive symptoms (PHQ-9). The principal component analyses revealed two components: the first component included seven items concerning mood, motivation and experiences of fatigue and pain; the second component included three items concerning somatic sickness symptoms. Higher scores on the total scale and the two component subscales were associated with poorer self-rated health and higher STAI-S and PHQ-9 scores. Since the associations with construct criteria variables were relatively similar between the single- and the two-dimensional solutions, both the total scale and the subscales of the two components of the French SicknessQ can be used in future studies to measure sickness behavior in French-speaking populations.
Collapse
Affiliation(s)
- Anna Andreasson
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - Arnaud Tognetti
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- CEE-M, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Mike Jones
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - Mats Lekander
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lasselin
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Dent JO, Segal JP, Brécier A, Gowdy HGM, Dubois RM, Bannerman CA, Halievski K, Silva JR, Ghasemlou N. Advanced Dynamic Weight Bearing as an Observer-independent Measure of Hyperacute Hypersensitivity in Mice. Can J Pain 2023; 7:2249060. [PMID: 37885834 PMCID: PMC10599184 DOI: 10.1080/24740527.2023.2249060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/16/2023] [Indexed: 10/28/2023]
Abstract
Background Standard methods assessing pain in rodents are often observer dependent, potentially resulting in biased outcomes. Advanced dynamic weight bearing (ADWB) offers an observer-independent approach that can provide objective, reliable data in preclinical pain research. Aims The aim of this study was to characterize the use of ADWB in assessing murine responses to allyl isothiocyanate (AITC)-induced hyperacute hypersensitivity and identify best practices for use of the device. Methods Male C57BL/6J mice received intraplantar injections of saline or 0.1% AITC solution and were assessed using the ADWB system; simultaneous observer-dependent durations of paw licking and biting were measured. ADWB data were analyzed using the proprietary software from Bioseb and correlated to observer-dependent results, with parameters assessed to optimize data collected. Results ADWB detected pain-directed changes in weight and surface area distribution in AITC-treated mice, with paw weight and surface area placement correlating to paw licking and biting. Optimization of adjustable threshold parameters allowed for reduced coefficients of variability and increased duration of validated data. Conclusions The ADWB assay provides an efficient and unbiased measure of chemical-induced hyperacute hypersensitivity in mice. ADWB detection parameters influence amount of validated data and variability, a consideration for data analysis in future studies.
Collapse
Affiliation(s)
- Jayne O. Dent
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Julia P. Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Aurélie Brécier
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Hailey G. M. Gowdy
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rosalin M. Dubois
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Courtney A. Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R. Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1099282. [PMID: 36926544 PMCID: PMC10013045 DOI: 10.3389/fnetp.2023.1099282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
In a healthy state, pain plays an important role in natural biofeedback loops and helps to detect and prevent potentially harmful stimuli and situations. However, pain can become chronic and as such a pathological condition, losing its informative and adaptive function. Efficient pain treatment remains a largely unmet clinical need. One promising route to improve the characterization of pain, and with that the potential for more effective pain therapies, is the integration of different data modalities through cutting edge computational methods. Using these methods, multiscale, complex, and network models of pain signaling can be created and utilized for the benefit of patients. Such models require collaborative work of experts from different research domains such as medicine, biology, physiology, psychology as well as mathematics and data science. Efficient work of collaborative teams requires developing of a common language and common level of understanding as a prerequisite. One of ways to meet this need is to provide easy to comprehend overviews of certain topics within the pain research domain. Here, we propose such an overview on the topic of pain assessment in humans for computational researchers. Quantifications related to pain are necessary for building computational models. However, as defined by the International Association of the Study of Pain (IASP), pain is a sensory and emotional experience and thus, it cannot be measured and quantified objectively. This results in a need for clear distinctions between nociception, pain and correlates of pain. Therefore, here we review methods to assess pain as a percept and nociception as a biological basis for this percept in humans, with the goal of creating a roadmap of modelling options.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Susanne Becker
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
- Integrative Spinal Research, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Wei H, Chen Z, Lei J, You HJ, Pertovaara A. Reduced mechanical hypersensitivity by inhibition of the amygdala in experimental neuropathy: Sexually dimorphic contribution of spinal neurotransmitter receptors. Brain Res 2022; 1797:148128. [PMID: 36265669 DOI: 10.1016/j.brainres.2022.148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
Abstract
Here we studied spinal neurotransmitter mechanisms involved in the reduction of mechanical hypersensitivity by inhibition of the amygdaloid central nucleus (CeA) in male and female rats with spared nerve injury (SNI) model of neuropathy. SNI induced mechanical hypersensitivity that was stronger in females. Reversible blocking of the CeA with muscimol (GABAA receptor agonist) induced a reduction of mechanical hypersensitivity that did not differ between males and females. Following spinal co-administration of atipamezole (α2-adrenoceptor antagonist), the reduction of mechanical hypersensitivity by CeA muscimol was attenuated more in males than females. In contrast, following spinal co-administration of raclopride (dopamine D2 receptor antagonist) the reduction of hypersensitivity by CeA muscimol was attenuated more in females than males. The reduction of mechanical hypersensitivity by CeA muscimol was equally attenuated in males and females by spinal co-administration of WAY-100635 (5-HT1A receptor antagonist) or bicuculline (GABAA receptor antagonist). The CeA muscimol induced attenuation of ongoing pain-like behavior (conditioned place preference test) that was reversed by spinal co-administration of atipamezole in both sexes. The results support the hypothesis that CeA contributes to mechanical hypersensitivity and ongoing pain-like behavior in SNI males and females. Disinhibition of descending controls acting on spinal α2-adrenoceptors, 5-HT1A, dopamine D2 and GABAA receptors provides a plausible explanation for the reduction of mechanical hypersensitivity by CeA block in SNI. The involvement of spinal dopamine D2 receptors and α2-adrenoceptors in the CeA muscimol-induced reduction of mechanical hypersensitivity is sexually dimorphic, unlike that of spinal α2-adrenoceptors in the reduction of ongoing neuropathic pain.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, PR China
| | - Jing Lei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Mogil JS. The history of pain measurement in humans and animals. FRONTIERS IN PAIN RESEARCH 2022; 3:1031058. [PMID: 36185770 PMCID: PMC9522466 DOI: 10.3389/fpain.2022.1031058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Pain needs to be measured in order to be studied and managed. Pain measurement strategies in both humans and non-human animals have varied widely over the years and continue to evolve. This review describes the historical development of human and animal algesiometry.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Department of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Kobayashi S, O'Hashi K, Kobayashi M. Repetitive nociceptive stimulation increases spontaneous neural activation similar to nociception-induced activity in mouse insular cortex. Sci Rep 2022; 12:15190. [PMID: 36071208 PMCID: PMC9452502 DOI: 10.1038/s41598-022-19562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent noninvasive neuroimaging technology has revealed that spatiotemporal patterns of cortical spontaneous activity observed in chronic pain patients are different from those in healthy subjects, suggesting that the spontaneous cortical activity plays a key role in the induction and/or maintenance of chronic pain. However, the mechanisms of the spontaneously emerging activities supposed to be induced by nociceptive inputs remain to be established. In the present study, we investigated spontaneous cortical activities in sessions before and after electrical stimulation of the periodontal ligament (PDL) by applying wide-field and two-photon calcium imaging to anesthetized GCaMP6s transgenic mice. First, we identified the sequential cortical activation patterns from the primary somatosensory and secondary somatosensory cortices to the insular cortex (IC) by PDL stimulation. We, then found that spontaneous IC activities that exhibited a similar spatiotemporal cortical pattern to evoked activities by PDL stimulation increased in the session after repetitive PDL stimulation. At the single-cell level, repetitive PDL stimulation augmented the synchronous neuronal activity. These results suggest that cortical plasticity induced by the repetitive stimulation leads to the frequent PDL stimulation-evoked-like spontaneous IC activation. This nociception-induced spontaneous activity in IC may be a part of mechanisms that induces chronic pain.
Collapse
Affiliation(s)
- Shutaro Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazunori O'Hashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. .,Molecular Imaging Research Center, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
13
|
The Effect of Ginger and Its Sub-Components on Pain. PLANTS 2022; 11:plants11172296. [PMID: 36079679 PMCID: PMC9460519 DOI: 10.3390/plants11172296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Zingiber officinale Roscoe (ginger) has long been used as an herbal medicine to treat various diseases, and its main sub-components, [6]-gingerol and [6]-shogaol, were also reported to have anti-inflammatory, anti-oxidant, and anti-tumor effects. However, their effects on various types of pain and their underlying mechanisms of action have not been clearly analyzed and understood yet. Thus, in this review, by analyzing 16 studies that used Z. officinale, [6]-gingerol, and [6]-shogaol on mechanical, spontaneous and thermal pain, their effects and mechanisms of action have been analyzed. Pain was induced by either nerve injury or chemical injections in rodents. Nine studies analyzed the analgesic effect of Z. officinale, and four and three studies focused on [6]-gingerol and [6]-shogaol, respectively. Seven papers have demonstrated the underlying mechanism of action of their analgesic effects. Studies have focused on the spinal cord and one on the dorsal root ganglion (DRG) neurons. Involvement and change in the function of serotonergic receptors (5-HT1A, B, D, and 5A), transient receptor potential vanilloid 1 (TRPV1), N-methyl-D-aspartate (NMDA) receptors, phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), histone deacetylase 1 (HDAC1), voltage-gated sodium channel 1.8 (Nav1.8), substance P (SP), and sciatic nerve’s morphology have been observed.
Collapse
|
14
|
Landmann G, Stockinger L, Gerber B, Benrath J, Schmelz M, Rukwied R. Local hyperexcitability of C-nociceptors may predict responsiveness to topical lidocaine in neuropathic pain. PLoS One 2022; 17:e0271327. [PMID: 35834539 PMCID: PMC9282664 DOI: 10.1371/journal.pone.0271327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
We explored whether increased C-nociceptor excitability predicts analgesic effects of topical lidocaine in 33 patients with mono- (n = 15) or poly-neuropathy (n = 18). Excitability of C-nociceptors was tested by transcutaneous electrical sinusoidal (4 Hz) and half sine wave (single 500 ms pulse) stimulation delivered to affected and non-affected sites. Analgesic effects of 24 hrs topical lidocaine were recorded. About 50% of patients reported increased pain from symptomatic skin upon continuous 4 Hz sinusoidal and about 25% upon 500 ms half sine wave stimulation. Electrically-evoked half sine wave pain correlated to their clinical pain level (r = 0.37, p < 0.05). Lidocaine-patches reduced spontaneous pain by >1-point NRS in 8 of 28 patients (p < 0.0001, ANOVA). Patients with increased pain to 2.5 sec sinusoidal stimulation at 0.2 and 0.4 mA intensity had significantly stronger analgesic effects of lidocaine and in reverse, patients with a pain reduction of >1 NRS had significantly higher pain ratings to continuous 1 min supra-threshold sinusoidal stimulation. In the assessed control skin areas of the patients, enhanced pain upon 1 min 4 Hz stimulation correlated to increased depression scores (HADS). Electrically assessed C-nociceptor excitability identified by slowly depolarizing electrical stimuli might reflect the source of neuropathic pain in some patients and can be useful for patient stratification to predict potential success of topical analgesics. Central neuronal circuitry assessment reflected by increased pain in control skin associated with higher HADS scores suggest central sensitization phenomena in a sub-population of neuropathic pain patients.
Collapse
Affiliation(s)
- Gunther Landmann
- Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Lenka Stockinger
- Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Benjamin Gerber
- Department of Anesthesiology and Intensive Care, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Justus Benrath
- Department of Anesthesiology and Intensive Care, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
15
|
Andrade-Gonzalez RD, Perrusquia-Hernández E, Zepeda-Reyes KI, Campos Me H, Perez-Martinez IO. Sensory-motor response elicited by first time intraoral administered ethanol after trigeminal neuropathic injury. Alcohol 2022; 103:9-17. [PMID: 35714863 DOI: 10.1016/j.alcohol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Recent findings have shown a relationship between alcohol use disorders (AUD) and chronic pain. Preclinical models have demonstrated that chronic pain, including trigeminal nerve injury, increases ethanol consumption throughout extended administration periods. Nevertheless, it remains unclear whether chronic pain induces a greater susceptibility to developing AUD by altering motor control consumption regardless of the symptomatology of neuropathic pain and if sex influences this susceptibility. We used a former prolonged pain experience model induced by a constriction of the mental nerve (mNC) to answer this question. We analyzed ethanol consumption in a short access protocol to reduce the post-ingestional effects and compared licking microstructure between groups. The constriction of the mental nerve induced evoked and spontaneous pain and reduction in the hedonic value of sucrose. The differences in alcohol consumption were not reflective of the former prolonged pain experience. Female mice showed a more efficient dynamic of consumption of alcohol reflected in a long burst of licking and a less variable licking rate within a cluster.
Collapse
Affiliation(s)
- R D Andrade-Gonzalez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - E Perrusquia-Hernández
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - K I Zepeda-Reyes
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Bioquímica Diagnóstica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Av. 1ro. De Mayo S/N, Col. Santa María De Las Torres Cuautitlán Izcalli, 54740, Mexico
| | - Hernandez Campos Me
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - I O Perez-Martinez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México.
| |
Collapse
|
16
|
Ma L, Liu S, Yi M, Wan Y. Spontaneous pain as a challenge of research and management in chronic pain. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:308-319. [PMID: 37724190 PMCID: PMC10388751 DOI: 10.1515/mr-2022-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
17
|
Sadler KE, Mogil JS, Stucky CL. Innovations and advances in modelling and measuring pain in animals. Nat Rev Neurosci 2022; 23:70-85. [PMID: 34837072 PMCID: PMC9098196 DOI: 10.1038/s41583-021-00536-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Best practices in preclinical algesiometry (pain behaviour testing) have shifted over the past decade as a result of technological advancements, the continued dearth of translational progress and the emphasis that funding institutions and journals have placed on rigour and reproducibility. Here we describe the changing trends in research methods by analysing the methods reported in preclinical pain publications from the past 40 years, with a focus on the last 5 years. We also discuss how the status quo may be hampering translational success. This discussion is centred on four fundamental decisions that apply to every pain behaviour experiment: choice of subject (model organism), choice of assay (pain-inducing injury), laboratory environment and choice of outcome measures. Finally, we discuss how human tissues, which are increasingly accessible, can be used to validate the translatability of targets and mechanisms identified in animal pain models.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Jonas R, Schmelz M. Sensitization of supra-threshold pain responses-Translational aspects and mechanisms. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:1078890. [PMID: 36926107 PMCID: PMC10013001 DOI: 10.3389/fnetp.2022.1078890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
A substantial translational gap in pain research has been reflected by a mismatch of relevant primary pain assessment endpoints in preclinical vs. clinical trials. Since activity-dependent mechanisms may be neglected during reflexive tests, this may add as a confounding factor during preclinical pain assessment. In this perspective, we consider the evidence for a need for supra-threshold pain assessment in the pain research literature. In addition to that, we focus on previous results that may demonstrate an example mechanism, where the detection of neuron-glial interactions on pain seems to be substantially depending on the assessment of pain intensity beyond threshold levels.
Collapse
Affiliation(s)
- Robin Jonas
- Department of Translational Pharmacology, Medical School EWL, Bielefeld University, Bielefeld, Germany.,UMCG Pain Center, Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
19
|
Hoffmann T, Kistner K, Joksimovic SLJ, Todorovic SM, Reeh PW, Sauer SK. Painful diabetic neuropathy leads to functional Ca V3.2 expression and spontaneous activity in skin nociceptors of mice. Exp Neurol 2021; 346:113838. [PMID: 34450183 PMCID: PMC8549116 DOI: 10.1016/j.expneurol.2021.113838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022]
Abstract
Painful diabetic neuropathy occurs in approximately 20% of diabetic patients with underlying pathomechanisms not fully understood. We evaluated the contribution of the CaV3.2 isoform of T-type calcium channel to hyperglycemia-induced changes in cutaneous sensory C-fiber functions and neuropeptide release employing the streptozotocin (STZ) diabetes model in congenic mouse strains including global knockouts (KOs). Hyperglycemia established for 3-5 weeks in male C57BL/6J mice led to major reorganizations in peripheral C-fiber functions. Unbiased electrophysiological screening of mechanosensitive single-fibers in isolated hairy hindpaw skin revealed a relative loss of (polymodal) heat sensing in favor of cold sensing. In healthy CaV3.2 KO mice both heat and cold sensitivity among the C-fibers seemed underrepresented in favor of exclusive mechanosensitivity, low-threshold in particular, which deficit became significant in the diabetic KOs. Diabetes also led to a marked increase in the incidence of spontaneous discharge activity among the C-fibers of wildtype mice, which was reduced by the specific CaV3.2 blocker TTA-P2 and largely absent in the KOs. Evaluation restricted to the peptidergic class of nerve fibers - measuring KCl-stimulated CGRP release - revealed a marked reduction in the sciatic nerve by TTA-P2 in healthy but not diabetic wildtypes, the latter showing CGRP release that was as much reduced as in healthy and, to the same extent, in diabetic CaV3.2 KOs. These data suggest that diabetes abrogates all CaV3.2 functionality in the peripheral nerve axons. In striking contrast, diabetes markedly increased the KCl-stimulated CGRP release from isolated hairy skin of wildtypes but not KO mice, and TTA-P2 reversed this increase, strongly suggesting a de novo expression of CaV3.2 in peptidergic cutaneous nerve endings which may contribute to the enhanced spontaneous activity. De-glycosylation by neuraminidase showed clear desensitizing effects, both in regard to spontaneous activity and stimulated CGRP release, but included actions independent of CaV3.2. However, as diabetes-enhanced glycosylation is decisive for intra-axonal trafficking, it may account for the substantial reorganizations of the CaV3.2 distribution. The results may strengthen the validation of CaV3.2 channel as a therapeutic target of treating painful diabetic neuropathy.
Collapse
Affiliation(s)
- Tal Hoffmann
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Katrin Kistner
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Sonja L J Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter W Reeh
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Susanne K Sauer
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
20
|
Chen ZS. Decoding pain from brain activity. J Neural Eng 2021; 18. [PMID: 34608868 DOI: 10.1088/1741-2552/ac28d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| |
Collapse
|
21
|
Peripheral nerve injury and sensitization underlie pain associated with oral cancer perineural invasion. Pain 2021; 161:2592-2602. [PMID: 32658150 DOI: 10.1097/j.pain.0000000000001986] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer invading into nerves, termed perineural invasion (PNI), is associated with pain. Here, we show that oral cancer patients with PNI report greater spontaneous pain and mechanical allodynia compared with patients without PNI, suggesting that unique mechanisms drive PNI-induced pain. We studied the impact of PNI on peripheral nerve physiology and anatomy using a murine sciatic nerve PNI model. Mice with PNI exhibited spontaneous nociception and mechanical allodynia. Perineural invasion induced afterdischarge in A high-threshold mechanoreceptors (HTMRs), mechanical sensitization (ie, decreased mechanical thresholds) in both A and C HTMRs, and mechanical desensitization in low-threshold mechanoreceptors. Perineural invasion resulted in nerve damage, including axon loss, myelin damage, and axon degeneration. Electrophysiological evidence of nerve injury included decreased conduction velocity, and increased percentage of both mechanically insensitive and electrically unexcitable neurons. We conclude that PNI-induced pain is driven by nerve injury and peripheral sensitization in HTMRs.
Collapse
|
22
|
Schmelz M. What can we learn from the failure of quantitative sensory testing? Pain 2021; 162:663-664. [PMID: 32868753 DOI: 10.1097/j.pain.0000000000002059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Schmelz
- Department Experimental Pain Research, MCTN, Mannheim, Heidelberg University, Germany
| |
Collapse
|
23
|
Song Y, Yao M, Kemprecos H, Byrne A, Xiao Z, Zhang Q, Singh A, Wang J, Chen ZS. Predictive coding models for pain perception. J Comput Neurosci 2021; 49:107-127. [PMID: 33595765 DOI: 10.1007/s10827-021-00780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.
Collapse
Affiliation(s)
- Yuru Song
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Department of Biology, University of California, San Diego, USA
| | - Mingchen Yao
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Helen Kemprecos
- Department of Biochemistry, New York University, New York, USA
| | - Aine Byrne
- Center for Neural Science, New York University, New York, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Amrita Singh
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Jing Wang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA.,Neuroscience Institute, New York University School of Medicine, New York, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, USA. .,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA. .,Neuroscience Institute, New York University School of Medicine, New York, USA.
| |
Collapse
|
24
|
Kantarovich D, Dillane KE, Garrison EF, Oladosu FA, Schroer MS, Roth GE, Tu FF, Hellman KM. Development and validation of a real-time method characterizing spontaneous pain in women with dysmenorrhea. J Obstet Gynaecol Res 2021; 47:1472-1480. [PMID: 33590541 DOI: 10.1111/jog.14663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022]
Abstract
AIM Prior research has primarily focused on static pain assessment, largely ignoring the dynamic nature of pain over time. We used a novel assessment tool for characterizing pain duration, frequency, and amplitude in women with dysmenorrhea and evaluated how these metrics were affected by naproxen treatment. METHODS Dysmenorrheic women (n = 25) rated their menstrual pain by squeezing a pressure bulb proportional to the magnitude of their pain. To evaluate whether bulb squeezing was affected by naproxen, we compared parameters before and after naproxen. We also analyzed the correlation between pain relief on a numerical rating scale to changes in bulb squeezing parameters. Random bulb-squeezing activity in pain-free participants (n = 14) was used as a control for nonspecific effects or bias. RESULTS In dysmenorrheic women, naproxen reduced the duration of the squeezing during a painful bout, the number of painful bouts and bout intensity. Before naproxen, the correlation between these bulb squeeze parameters and self-reported pain on numeric rating scale was not significant (R2 = 0.12, p = 0.304); however, there was a significant correlation between changes in bulb squeeze activity and self-reported pain relief after naproxen (R2 = 0.55, p < 0.001). CONCLUSION Our study demonstrates a convenient technique for continuous pain assessment, capturing three different dimensions: duration, frequency, and magnitude. Naproxen may act by reducing the duration and frequency of episodic pain in addition to reducing the severity. After further validation, these methods could be used for other pain conditions for deeper phenotyping and assessing novel treatments.
Collapse
Affiliation(s)
- Diana Kantarovich
- Chicago Medical School, Rosalind Franklin University, Chicago, Illinois, USA
| | - Katlyn E Dillane
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Ellen F Garrison
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Folabomi A Oladosu
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA.,Department of Obstetrics and Gynecology, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Margaret S Schroer
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Genevieve E Roth
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Frank F Tu
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA.,Department of Obstetrics and Gynecology, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Kevin M Hellman
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois, USA.,Department of Obstetrics and Gynecology, Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
25
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
26
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Atmaramani RR, Black BJ, de la Peña JB, Campbell ZT, Pancrazio JJ. Conserved Expression of Nav1.7 and Nav1.8 Contribute to the Spontaneous and Thermally Evoked Excitability in IL-6 and NGF-Sensitized Adult Dorsal Root Ganglion Neurons In Vitro. Bioengineering (Basel) 2020; 7:bioengineering7020044. [PMID: 32429423 PMCID: PMC7356605 DOI: 10.3390/bioengineering7020044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory neurons respond to noxious stimuli by relaying information from the periphery to the central nervous system via action potentials driven by voltage-gated sodium channels, specifically Nav1.7 and Nav1.8. These channels play a key role in the manifestation of inflammatory pain. The ability to screen compounds that modulate voltage-gated sodium channels using cell-based assays assumes that key channels present in vivo is maintained in vitro. Prior electrophysiological work in vitro utilized acutely dissociated tissues, however, maintaining this preparation for long periods is difficult. A potential alternative involves multi-electrode arrays which permit long-term measurements of neural spike activity and are well suited for assessing persistent sensitization consistent with chronic pain. Here, we demonstrate that the addition of two inflammatory mediators associated with chronic inflammatory pain, nerve growth factor (NGF) and interleukin-6 (IL-6), to adult DRG neurons increases their firing rates on multi-electrode arrays in vitro. Nav1.7 and Nav1.8 proteins are readily detected in cultured neurons and contribute to evoked activity. The blockade of both Nav1.7 and Nav1.8, has a profound impact on thermally evoked firing after treatment with IL-6 and NGF. This work underscores the utility of multi-electrode arrays for pharmacological studies of sensory neurons and may facilitate the discovery and mechanistic analyses of anti-nociceptive compounds.
Collapse
Affiliation(s)
- Rahul R. Atmaramani
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
| | - Bryan J. Black
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
| | - June Bryan de la Peña
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zachary T. Campbell
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Correspondence: ; Tel.: +1-972-883-2138
| |
Collapse
|
28
|
Song Y, Kemprecos H, Wang J, Chen Z. A Predictive Coding Model for Evoked and Spontaneous Pain Perception. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2964-2967. [PMID: 31946512 DOI: 10.1109/embc.2019.8857298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pain is a complex multidimensional experience, and pain perception is still incompletely understood. Here we combine animal behavior, electrophysiology, and computer modeling to dissect mechanisms of evoked and spontaneous pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) of freely behaving rats during pain episodes, and develop a predictive coding model to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Our preliminary results from computational simulations support the experimental findings and provide new predictions.
Collapse
|
29
|
Ma J, Stefanoska D, Grad S, Alini M, Peroglio M. Direct and Intervertebral Disc-Mediated Sensitization of Dorsal Root Ganglion Neurons by Hypoxia and Low pH. Neurospine 2020; 17:42-59. [PMID: 32252154 PMCID: PMC7136118 DOI: 10.14245/ns.2040052.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Ischemia-related risk factors are consistently correlated with discogenic pain, but it remains unclear how the ischemia-associated hypoxia and acidosis influence the peripheral sensory nervous system, namely the dorsal root ganglion (DRG), either directly or indirectly via intervertebral disc (IVD) mediation.
Methods Bovine tail IVD organ cultures were preconditioned in different hypoxic and/or acidic conditions for 3 days to collect the conditioned medium (CM). The DRG-derived ND7/23 cells were either treated by the IVD CM or directly stimulated by hypoxic and/or acidic conditions. Neuronal sensitization was evaluated using calcium imaging (Fluo-4) after 3 days.
Results We found that direct exposure of DRG cell line to hypoxia and acidosis increased both spontaneous and bradykinin-stimulated calcium response compared to normoxia-neutral pH cultures. Hypoxia and low pH in combination showed stronger effect than either parameter on its own. Indirect exposure of DRG to hypoxia-acidosis-stressed IVD CM also increased spontaneous and bradykinin-stimulated response, but to a lower extent than direct exposure. The impact of direct hypoxia and acidosis on DRG was validated in a primary sheep DRG cell culture, showing the same trend.
Conclusion Our data suggest that targeting hypoxia and acidosis stresses both in IVD and DRG could be a relevant objective in discogenic pain treatment.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | | | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
30
|
Matthey A, Daali Y, Curtin F, Poncet A, Desmeules J, Besson M. GABAergic modulation of secondary hyperalgesia: A randomized controlled 4-way crossover trial with the α2-subunit preferring GABA positive allosteric modulator, N-desmethyl-clobazam in healthy volunteers. Eur J Pain 2020; 24:1094-1106. [PMID: 32171038 DOI: 10.1002/ejp.1554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022]
Abstract
The antihyperalgesic and sedative effects of the α2-subunit preferring GABAA positive allosteric modulator (GAM), N-desmethyl-clobazam (NDMC), 20 and 60 mg, were assessed in a randomized, placebo and active-controlled (clonazepam 1,5 mg), 4-way crossover study, in healthy volunteers, using the ultraviolet B-induced experimental pain model. Single (20, 40, 60 mg) and repeated doses (20 mg over 15 days) of NDMC pharmacokinetics were evaluated. Thirty-two subjects participated in the study. Primary outcome parameter was maximal change in the area of cutaneous UVB irradiation-induced secondary hyperalgesia (ASH). ASH decreased under all treatments. Mean (SD) relative change was 79 (22)%, 83 (24)%, 77 (30)% and 92 (16)% for placebo, NDMC20, NDMC60 and clonazepam, respectively. Neither absolute change nor relative change in ASH was significantly different between NDMC60 and placebo (mean difference = 2.3 cm2 [95% CI 4.0-8.5], p = .462 and 0.4% [-11.9 to 12.6], p = .952, respectively). An overall treatment effect was found on level of sedation. Compared to placebo, sedation was higher under clonazepam (mean difference = 39 mm [30-49] on a visual analogue scale, p < .001) while NDMC was free of sedative effect. NDMC pharmacokinetics after single doses showed poor absorption, but was linear. Steady-state plasma concentrations of NDMC20 were attained within 14 days, with low between-subjects variability. Mean steady-state concentration (CS-S , SD) reached 209 (22) ng/ml. NDMC absence of sedative effect and its overall well-characterized safety coming from years of utilization as a metabolite from clobazam, raise the prospect of dose escalating trials in patients to quantify its clinical utility. SIGNIFICANCE: This article, presenting the Phase I data of the new antihyperalgesic compound, α2-subunit GABAA positive allosteric modulator, N-desmethyl-clobazam (NDMC) is exploring the modulation of a new target in the treatment of neuropathic pain. Based on these results and on its preclinical properties NDMC would qualify as a good tool compound to seek confirmation of the clinical utility of selective GABA allosteric modulators in neuropathic pain patients.
Collapse
Affiliation(s)
- Alain Matthey
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - François Curtin
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Antoine Poncet
- Division of Clinical Epidemiology, Geneva University Hospitals, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Marie Besson
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
31
|
Guo X, Zhang Q, Singh A, Wang J, Chen ZS. Granger causality analysis of rat cortical functional connectivity in pain. J Neural Eng 2020; 17:016050. [PMID: 31945754 DOI: 10.1088/1741-2552/ab6cba] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) are two of the most important cortical brain regions encoding the sensory-discriminative and affective-emotional aspects of pain, respectively. However, the functional connectivity of these two areas during pain processing remains unclear. Developing methods to dissect the functional connectivity and directed information flow between cortical pain circuits can reveal insight into neural mechanisms of pain perception. APPROACH We recorded multichannel local field potentials (LFPs) from the S1 and ACC in freely behaving rats under various conditions of pain stimulus (thermal versus mechanical) and pain state (naive versus chronic pain). We applied Granger causality (GC) analysis to the LFP recordings and inferred frequency-dependent GC statistics between the S1 and ACC. MAIN RESULTS We found an increased information flow during noxious pain stimulus presentation in both S1[Formula: see text]ACC and ACC[Formula: see text]S1 directions, especially at theta and gamma frequency bands. Similar results were found for thermal and mechanical pain stimuli. The chronic pain state shares common observations, except for further elevated GC measures especially in the gamma band. Furthermore, time-varying GC analysis revealed a negative correlation between the direction-specific and frequency-dependent GC and animal's paw withdrawal latency. In addition, we used computer simulations to investigate the impact of model mismatch, noise, missing variables, and common input on the conditional GC estimate. We also compared the GC results with the transfer entropy (TE) estimates. SIGNIFICANCE Our results reveal functional connectivity and directed information flow between the S1 and ACC during various pain conditions. The dynamic GC analysis support the hypothesis of cortico-cortical information loop in pain perception, consistent with the computational predictive coding paradigm.
Collapse
Affiliation(s)
- Xinling Guo
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. Department of Psychiatry, New York University School of Medicine, New York, NY 10016, United States of America
| | | | | | | | | |
Collapse
|
32
|
A novel rat model of extremity trauma for prehospital pain management research. J Trauma Acute Care Surg 2019; 85:S49-S56. [PMID: 29443860 DOI: 10.1097/ta.0000000000001833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pain management is important in prehospital care of patients with extremity trauma (ET). The goal of this study was to establish a rat model of ET for prehospital pain research and validate it using pain behaviors and analgesics. METHODS Rats were anesthetized using isoflurane, and ET was induced in one hindlimb via clamping retrofemoral tissues for 30 seconds, followed by closed fibula fracture. Rats regained consciousness after ET. Pain responses in the injured hindlimb to thermal hyperalgesia (paw withdrawal latency [PWL]), mechanical allodynia (paw withdrawal pressure [PWP]), and weight bearing (WB) were determined before and 90 minutes after ET. Morphine (2 mg/kg), fentanyl (10 μg/kg), sufentanil (1 μg/kg), ketamine (5 mg/kg), or vehicle (saline) were then administered via intravenous (i.v.) injection, followed by PWL, PWP, and WB assessments at 10 minutes, 40 minutes, 80 minutes, and 120 minutes after analgesia. RESULTS After ET, PWL, PWP, and WB were significantly decreased by 61 ± 4%, 64 ± 8%, and 65 ± 4%, respectively, compared with pre-ET values. These pain behaviors were maintained for 3 hours to 4 hours. Compared with the saline group, opioid analgesics significantly increased PWL for at least 80 minutes, with sufentanil exhibiting the highest analgesic effect. An increase in PWL was only observed at 10 minutes after ketamine. The PWP was transiently increased with opioid analgesics for 10 minutes to 40 minutes, but was not changed with ketamine. Weight bearing was improved with opioid analgesics for at least 2 hours, but only for up to 80 minutes with ketamine. CONCLUSION Our ET model includes long bone fracture and soft tissue injury, but no fixation surgery, mimicking prehospital ET. Our model produces acute, steady, and reproducible trauma-related pain behaviors, and is clinically relevant regarding the pain behaviors and established responses to common analgesics. This model of acute pain due to ET is ideal for prehospital pain management research.
Collapse
|
33
|
Williams MD, Sommer SL, Meyers RC, Valdivia J, Nolan MW, Lascelles BDX. A novel device to measure static hindlimb weight-bearing forces in pronograde rodents. J Neurosci Methods 2019; 328:108405. [PMID: 31465781 DOI: 10.1016/j.jneumeth.2019.108405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Joint pain is composed of both spontaneous and movement-induced pain. In animal models, static bodyweight distribution is a surrogate for spontaneous joint pain. However, there are no commercially-available instruments that measure static bodyweight distribution in normal, pronograde rodents. NEW METHOD We designed a Static Horizontal Incapacitance Meter (SHIM) to measure bodyweight distribution in pronograde standing rodents. We assessed the device for feasibility, repeatability, and sensitivity to quantify hindlimb bodyweight distribution. Mice and rats with unilateral inflammatory pain induced by subcutaneous injections of capsaicin or Complete Freund's Adjuvant (CFA) into the plantar surface of the left hind paw were used to measure static weight-bearing. The ability to attenuate inflammatory pain-associated weight-bearing asymmetry was tested by administering a non-steroidal anti-inflammatory drug, meloxicam. RESULTS The SHIM's ability to detect significant reductions in limb loading on the injected hindlimb in mice and rats was validated using both acute and sub-chronic pain models. Treatment with meloxicam partially reversed CFA-induced effects. COMPARISON WITH EXISTING METHODS In contrast with assays that measure kinetic or static weight-bearing forces (e.g., walking, or standing at a 45 ° incline), the SHIM allows evaluation of weight-bearing in rodents that are standing at rest in their normal pronograde position. CONCLUSIONS The SHIM successfully detected: (a) asymmetric weight-bearing in acute and sub-chronic pain models; and (b) the analgesic effects of meloxicam. This study provides a novel tool to objectively evaluate limb use dysfunction in rodents.
Collapse
Affiliation(s)
- Morika D Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Samantha L Sommer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Rachel C Meyers
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
| | | | - Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.
| | - B Duncan X Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States; Thurston Arthritis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
34
|
Hoheisel U, Chacur M, Treede RD, Mense S. Action potentials and subthreshold potentials of dorsal horn neurons in a rat model of myositis: a study employing intracellular recordings in vivo. J Neurophysiol 2019; 122:632-643. [PMID: 31166805 DOI: 10.1152/jn.00338.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intracellular in vivo recordings from rat dorsal horn neurons were made to study the contribution of microglia to the central sensitization of spinal synapses induced by a chronic muscle inflammation. To block microglia activation, minocycline was continuously administered intrathecally during development of the inflammation. The aim was to test whether an inflammation-induced sensitization of dorsal horn neurons is mediated by changes in synaptic strength or other synaptic changes and how activated microglia influence these processes. Intracellular recordings were used to measure subthreshold excitatory postsynaptic potentials (EPSPs) and suprathreshold action potentials (APs). The muscle inflammation significantly increased the proportion of dorsal horn neurons responding with APs or EPSPs to electrical stimulation of the muscle nerve from 27 to 56% (P < 0.01) and to noxious muscle stimulation (3 vs. 44%, P < 0.01). Neurons showing spontaneous ongoing AP or EPSP activity increased from 28 to 74% (P < 0.01). Generally, the increases in suprathreshold AP responses did not occur at the expense of subthreshold EPSPs, because EPSP-only responses also increased. Intrathecal minocycline prevented the inflammation-induced increase in responsiveness to electrical (24%, P < 0.02) and mechanical stimulation (14%, P < 0.02); the effect was stronger on suprathreshold APs than on subthreshold EPSPs. The increase in ongoing activity was only partly suppressed. These data suggest that the myositis-induced hypersensitivity of the dorsal horn neurons to peripheral input and its prevention by intrathecal minocycline treatment were due to both an increase in the number of active synapses and an increased synaptic strength.NEW & NOTEWORTHY During a chronic muscle inflammation (myositis), activated microglia controls both the increase in the number of active synapses and the increase in synaptic strength.
Collapse
Affiliation(s)
- Ulrich Hoheisel
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marucia Chacur
- Department of Anatomy, Institute of Biomedical Science-ICB III, University of São Paulo, São Paulo, Brazil
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Siegfried Mense
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
35
|
Klune CB, Larkin AE, Leung VSY, Pang D. Comparing the Rat Grimace Scale and a composite behaviour score in rats. PLoS One 2019; 14:e0209467. [PMID: 31150408 PMCID: PMC6544219 DOI: 10.1371/journal.pone.0209467] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/12/2019] [Indexed: 12/31/2022] Open
Abstract
There is a growing interest in the use of voluntarily displayed ongoing behaviours in laboratory animals to assess the pain experience. In rats, two behavioural pain scales, the Rat Grimace Scale (RGS, a facial expression scale) and a composite behaviour score (CBS, a behavioural ethogram reliant on postural changes), are both promising pain assessment methods. Both scales have been used to assess pain in a laparotomy model, however, they have never been compared directly and the knowledge of how different analgesics may affect these two scales is limited. This study aimed to provide a comparison to discriminate the temporal and analgesic response in a laparotomy model. Female Wistar (n = 26) and Sprague Dawley rats (n = 26) were block randomized to receive saline, meloxicam (2 mg/kg) or buprenorphine (0.05 mg/kg) 30 minutes before laparotomy. Rats were video-recorded before surgery (BL) and at 30, 150, 270, and 390 minutes post-operatively. Videos were assessed according to both scales by a trained, blinded observer. Both CBS and RGS scores increased significantly at all post surgical timepoints in the saline group. Both buprenorphine and meloxicam reduced CBS scores to baseline levels following laparotomy; however, RGS scores were only reduced following buprenorphine. RGS scores in the meloxicam group remained similar to scores of the saline group. These findings suggest that the CBS and RGS differ in their sensitivity to discriminating analgesic effects.
Collapse
Affiliation(s)
- Cassandra B. Klune
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Amy E. Larkin
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada
| | - Vivian S. Y. Leung
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Daniel Pang
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
36
|
Kuć J, Szarejko KD, Sierpińska T. Evaluation of Orofacial and General Pain Location in Patients With Temporomandibular Joint Disorder-Myofascial Pain With Referral. Front Neurol 2019; 10:546. [PMID: 31191438 PMCID: PMC6549135 DOI: 10.3389/fneur.2019.00546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: Pain is an emotional experience. As a subjective feeling, it is associated with pathophysiological processes occurring in the central nervous system, which in turn may negatively affect the psychophysical function, cognitive abilities, level of functioning and quality of life. The Aim: The aim of the study was to assess orofacial and general pain location in patients with temporomandibular joint disorder—myofascial pain with referral. Materials and Methods: The study group consisted of 50 randomly selected, generally healthy people with complete natural dentition (37 women and 13 men) at the age of 23.36 ± 2.14 years, referred to the Department of Prosthodontics of the Medical University. All patients underwent clinical examination according to the Diagnostic Criteria for Temporomandibular Disorders (Axes I and II). The subjects were classified as people with myofascial pain with referral. The evaluation of severity of temporomandibular disorders was based on the Temporomandibular Disorder Pain Screener and the Graded Chronic Pain Scale. In order to assess orofacial and general pain location, a bodychart drawing of pain was used. Results: The study group indicated 40 different areas of the body affected by pain. 2–3 isolated pain locations were declared by a total of six subjects. One person identified 17 affected areas. Forty four people reported pain in at least four regions of the body. 70% of patients suffered from pain within the right masseter muscle. Pain of the left masseter muscle was noted in 68% of cases. Cervical ailments were reported by 56% of people. Pain of the left temporomandibular joint was observed in 68% of patients, and of the right one in 54%. Conclusion: The patients with myofascial pain with referral suffer from general ailments in different regions of the body. Only the frequency of pain in the right masseter muscle and right temporomandibular joint differed with respect to gender. The suggestion that the prevalence of pain in other areas of the body varies between men and women has not been confirmed. Due to a small sample size, such differences cannot be excluded. Further studies in this area are needed.
Collapse
Affiliation(s)
- Joanna Kuć
- Department of Prosthodontics, Medical University of Bialystok, Bialystok, Poland
| | | | - Teresa Sierpińska
- Department of Prosthodontics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
37
|
Xiao Z, Martinez E, Kulkarni PM, Zhang Q, Hou Q, Rosenberg D, Talay R, Shalot L, Zhou H, Wang J, Chen ZS. Cortical Pain Processing in the Rat Anterior Cingulate Cortex and Primary Somatosensory Cortex. Front Cell Neurosci 2019; 13:165. [PMID: 31105532 PMCID: PMC6492531 DOI: 10.3389/fncel.2019.00165] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Pain is a complex multidimensional experience encompassing sensory-discriminative, affective-motivational and cognitive-emotional components mediated by different neural mechanisms. Investigations of neurophysiological signals from simultaneous recordings of two or more cortical circuits may reveal important circuit mechanisms on cortical pain processing. The anterior cingulate cortex (ACC) and primary somatosensory cortex (S1) represent two most important cortical circuits related to sensory and affective processing of pain. Here, we recorded in vivo extracellular activity of the ACC and S1 simultaneously from male adult Sprague-Dale rats (n = 5), while repetitive noxious laser stimulations were delivered to animalÕs hindpaw during pain experiments. We identified spontaneous pain-like events based on stereotyped pain behaviors in rats. We further conducted systematic analyses of spike and local field potential (LFP) recordings from both ACC and S1 during evoked and spontaneous pain episodes. From LFP recordings, we found stronger phase-amplitude coupling (theta phase vs. gamma amplitude) in the S1 than the ACC (n = 10 sessions), in both evoked (p = 0.058) and spontaneous pain-like behaviors (p = 0.017, paired signed rank test). In addition, pain-modulated ACC and S1 neuronal firing correlated with the amplitude of stimulus-induced event-related potentials (ERPs) during evoked pain episodes. We further designed statistical and machine learning methods to detect pain signals by integrating ACC and S1 ensemble spikes and LFPs. Together, these results reveal differential coding roles between the ACC and S1 in cortical pain processing, as well as point to distinct neural mechanisms between evoked and putative spontaneous pain at both LFP and cellular levels.
Collapse
Affiliation(s)
- Zhengdong Xiao
- Department of Instrument Science and Technology, Zhejiang University, Hangzhou, China.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Erik Martinez
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States.,Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Prathamesh M Kulkarni
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Qianning Hou
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States.,Department of Biophysics, University of Science and Technology of China, Hefei, China
| | - David Rosenberg
- New York University School of Medicine, New York, NY, United States
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Leor Shalot
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Haocheng Zhou
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States.,Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
38
|
Odem MA, Bavencoffe AG, Cassidy RM, Lopez ER, Tian J, Dessauer CW, Walters ET. Isolated nociceptors reveal multiple specializations for generating irregular ongoing activity associated with ongoing pain. Pain 2018; 159:2347-2362. [PMID: 30015712 PMCID: PMC6193853 DOI: 10.1097/j.pain.0000000000001341] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ongoing pain has been linked to ongoing activity (OA) in human C-fiber nociceptors, but rodent models of pain-related OA have concentrated on allodynia rather than ongoing pain, and on OA generated in non-nociceptive Aβ fibers rather than C-fiber nociceptors. Little is known about how ongoing pain or nociceptor OA is generated. To define neurophysiological alterations underlying nociceptor OA, we have used isolated dorsal root ganglion neurons that continue to generate OA after removal from animals displaying ongoing pain. We subclassify OA as either spontaneous activity generated solely by alterations intrinsic to the active neuron or as extrinsically driven OA. Both types of OA were implicated previously in nociceptors in vivo and after isolation following spinal cord injury, which produces chronic ongoing pain. Using novel automated algorithms to analyze irregular changes in membrane potential, we have found, in a distinctive, nonaccommodating type of probable nociceptor, induction by spinal cord injury of 3 alterations that promote OA: (1) prolonged depolarization of resting membrane potential, (2) a hyperpolarizing shift in the voltage threshold for action potential generation, and (3) an increase in the incidence of large depolarizing spontaneous fluctuations (DSFs). Can DSFs also be enhanced acutely to promote OA in neurons from uninjured animals? A low dose of serotonin failed to change resting membrane potential but lowered action potential threshold. When combined with artificial depolarization to model inflammation, serotonin also strongly potentiated DSFs and OA. These findings reveal nociceptor specializations for generating OA that may promote ongoing pain in chronic and acute conditions.
Collapse
Affiliation(s)
- Max A. Odem
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Ryan M. Cassidy
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
39
|
Knowing the Neuronal Mechanism of Spontaneous Pain to Treat Chronic Pain in the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:115-124. [DOI: 10.1007/978-981-13-1756-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
40
|
LaRowe LR, Kosiba JD, Zale EL, Ditre JW. Effects of nicotine deprivation on current pain intensity among daily cigarette smokers. Exp Clin Psychopharmacol 2018; 26:448-455. [PMID: 30035576 PMCID: PMC6162159 DOI: 10.1037/pha0000218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Animal research has consistently demonstrated increased pain in the context of nicotine deprivation, and there is cross-sectional evidence that tobacco smokers may experience greater pain following periods of smoking abstinence. This study aimed to examine current pain intensity as a function of nicotine deprivation among 137 daily tobacco smokers who did not endorse chronic pain and were recruited to participate in a primary study of the effects of smoking abstinence on experimental pain reactivity. Participants were randomized to either deprivation (12-24 hr abstinence) or continued ad lib smoking conditions. Compliance with the manipulation was biochemically verified via expired carbon monoxide (CO). Current pain intensity was assessed at baseline (Session 1) and following the deprivation manipulation (Session 2) using a single item that asked participants to indicate their current level of pain on a scale ranging from 0 (no pain) to 10 (pain as bad as you can imagine). At baseline, the majority of participants (51.1%) reported no pain (M = 1.75). As hypothesized, participants randomized to nicotine deprivation (vs. continued smoking) reported greater current pain intensity following the manipulation. Among smokers who reported no pain at baseline, those who abstained from smoking were nearly 3.5 times more likely to endorse pain at Session 2. These results suggest that daily tobacco smokers may experience greater pain during the first 12-24 hr of smoking abstinence. Future research should examine the role of pain in nicotine withdrawal, and whether tailored interventions may be needed to account for nicotine deprivation-induced amplification of pain. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
- Lisa R. LaRowe
- Department of Psychology, Syracuse University, Syracuse, NY 13244, United States
| | - Jesse D. Kosiba
- Department of Psychology, Syracuse University, Syracuse, NY 13244, United States
| | - Emily L. Zale
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, United States
| | - Joseph W. Ditre
- Department of Psychology, Syracuse University, Syracuse, NY 13244, United States
| |
Collapse
|
41
|
Dua AB, Neogi T, Mikolaitis RA, Block JA, Shakoor N. Somatosensation in OA: exploring the relationships of pain sensitization, vibratory perception and spontaneous pain. BMC Musculoskelet Disord 2018; 19:307. [PMID: 30144797 PMCID: PMC6109299 DOI: 10.1186/s12891-018-2206-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background Pain in osteoarthritis (OA) remains poorly understood. Different types of somatosensory alterations exist in OA including hyperesthesia and increased sensitivity to painful stimuli as well as those of decreased sensitivity to cutaneous stimuli including vibratory perception threshold. The relationship between these different somatosensory measures has not been previously evaluated in OA. In this observational study, we evaluated relationships between vibratory perception (VPT), pressure pain detection thresholds (PPT), allodynia and subjective pain in knee OA. Methods Forty-two persons with moderate to severe knee OA and 12 controls without OA were evaluated. VPT was measured using a biothesiometer. Allodynia was measured by application of a 60 g Von Frey monofilament repeatedly to predetermined sites. PPTs were measured using a pressure algometer. Results Increased vibratory acuity was associated with lower PPTs and presence of allodynia. Allodynia was more common in OA than controls (54.8% vs 16.6%, p = 0.024 in the ipsilateral knee, and 42.9% vs 0%, p = 0.005 in the contralateral knee). OA participants with allodynia had lower PPTs than those without allodynia. In those with OA, spontaneous knee pain was associated with lower PPTs and with allodynia. Conclusion This study confirms the presence of somatosensory alterations in OA. Sensory alterations (vibratory perception) were shown to be related to nociceptive alterations (sensitization) in OA, showing a general increased sensitivity to cutaneous mechanical stimulation. Understanding these relationships is an important step in delineating the complicated pathophysiology of pain processing in OA.
Collapse
Affiliation(s)
- Anisha B Dua
- Section of Rheumatology, University of Chicago, 5841 S Maryland Ave, MC0930, Chicago, IL, 60637, USA.
| | - Tuhina Neogi
- Section of Rheumatology, University of Chicago, 5841 S Maryland Ave, MC0930, Chicago, IL, 60637, USA.,Section of Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, MA, USA
| | | | - Joel A Block
- Division of Rheumatology, Rush Medical College, Chicago, IL, USA
| | - Najia Shakoor
- Division of Rheumatology, Rush Medical College, Chicago, IL, USA
| |
Collapse
|
42
|
Long-Term Outcomes in the Management of Central Neuropathic Pain Syndromes: A Prospective Observational Cohort Study. Can J Neurol Sci 2018; 45:545-552. [DOI: 10.1017/cjn.2018.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractBackground:Central neuropathic pain syndromes are a result of central nervous system injury, most commonly related to stroke, traumatic spinal cord injury, or multiple sclerosis. These syndromes are distinctly less common than peripheral neuropathic pain, and less is known regarding the underlying pathophysiology, appropriate pharmacotherapy, and long-term outcomes. The objective of this study was to determine the long-term clinical effectiveness of the management of central neuropathic pain relative to peripheral neuropathic pain at tertiary pain centers.Methods:Patients diagnosed with central (n=79) and peripheral (n=710) neuropathic pain were identified for analysis from a prospective observational cohort study of patients with chronic neuropathic pain recruited from seven Canadian tertiary pain centers. Data regarding patient characteristics, analgesic use, and patient-reported outcomes were collected at baseline and 12-month follow-up. The primary outcome measure was the composite of a reduction in average pain intensity and pain interference. Secondary outcome measures included assessments of function, mood, quality of life, catastrophizing, and patient satisfaction.Results:At 12-month follow-up, 13.5% (95% confidence interval [CI], 5.6-25.8) of patients with central neuropathic pain and complete data sets (n=52) achieved a ≥30% reduction in pain, whereas 38.5% (95% CI, 25.3-53.0) achieved a reduction of at least 1 point on the Pain Interference Scale. The proportion of patients with central neuropathic pain achieving both these measures, and thus the primary outcome, was 9.6% (95% CI, 3.2-21.0). Patients with peripheral neuropathic pain and complete data sets (n=463) were more likely to achieve this primary outcome at 12 months (25.3% of patients; 95% CI, 21.4-29.5) (p=0.012).Conclusion:Patients with central neuropathic pain syndromes managed in tertiary care centers were less likely to achieve a meaningful improvement in pain and function compared with patients with peripheral neuropathic pain at 12-month follow-up.
Collapse
|
43
|
de Azambuja G, Hortscht U, Hoheisel U, Oliveira Fusaro MC, Mense S, Treede RD. Short-term swimming exercise attenuates the sensitization of dorsal horn neurons in rats with NGF-induced low back pain. Eur J Pain 2018; 22:1409-1418. [PMID: 29635722 DOI: 10.1002/ejp.1230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Physical exercise has been shown to be an effective therapy for non-specific low back pain. The study investigated if swimming exercise is a means to reduce the spinal sensitization in an animal model of non-specific low back pain. METHODS In deeply anesthetized rats, dorsal horn neurons were recorded in spinal segment L2. To induce sensitization of dorsal horn neurons, two injections of nerve growth factor were made into the lumbar multifidus muscle at an interval of 5 days. Swimming exercise for 30 min was performed on the 5 days between both NGF injections. A control group received the NGF injections without exercise treatment. RESULTS Swimming exercise caused a significant decrease in the NGF-induced hyperexcitability of dorsal horn neurons. Compared to control, the proportion of neurons with input from deep somatic tissues and of convergent neurons with input from at least two types of different tissues decreased significantly (50% vs. 25% and 37% vs. 15%; both p < 0.05). Swimming exercise also reduced the NGF-induced increase in neuronal resting activity. Both the proportion of active neurons and the mean discharge frequency of all neurons decreased significantly (60%, 76.3 ± 23.1 imp/min; vs. 25%, 51.7 ± 35.1 imp/min; both p < 0.01). CONCLUSIONS In our animal model of low back pain, short-term swimming exercise effectively reduced the latent sensitization of spinal dorsal horn neurons. Swimming exercise decreased the hyperexcitability of the neurons to low back input and lowered the resting activity of sensitized neurons. SIGNIFICANCE Physical exercise is a common treatment for low back pain. The possible mechanisms underlying the effects of exercise are probably multifold. This work shows that swimming exercise prevents sensitization of dorsal horn neurons, which may be one mechanism for the positive effects of exercise.
Collapse
Affiliation(s)
- G de Azambuja
- Department of Neurophysiology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Laboratory of Pain and Inflammation Research, School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - U Hortscht
- Department of Neurophysiology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - U Hoheisel
- Department of Neurophysiology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M C Oliveira Fusaro
- Laboratory of Pain and Inflammation Research, School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - S Mense
- Department of Neurophysiology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - R-D Treede
- Department of Neurophysiology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
44
|
Hawley K, Huang JS, Goodwin M, Diaz D, de Sa VR, Birnie KA, Chambers CT, Craig KD. Youth and Parent Appraisals of Participation in a Study of Spontaneous and Induced Pediatric Clinical Pain. ETHICS & BEHAVIOR 2018; 29:259-273. [PMID: 31768092 DOI: 10.1080/10508422.2018.1463163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The current study examined youths' and their parents' perceptions concerning participation in an investigation of spontaneous and induced pain during recovery from laparoscopic appendectomy. Youth (age range 5-17 years) and their parents independently completed surveys about their study participation. On a 0 (very negative) -to-10 (very positive) scale, both parents 9.4(1.3) [mean(SD)] and youth 7.9(2.4) rated their experience as positive. Among youth, experience ratings did not differ by pain severity and survey responses did not differ by age. Most youth (83%) reported they would tell another youth to participate. Ethical issues regarding instigation of pain in youth for research purposes are examined.
Collapse
Affiliation(s)
- Kara Hawley
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jeannie S Huang
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093.,Division of Gastroenterology, Rady Children's Hospital, San Diego, CA 92123
| | - Matthew Goodwin
- Department of Health Sciences, Northeastern University, Boston, MA, 02115
| | - Damaris Diaz
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Virginia R de Sa
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093
| | - Kathryn A Birnie
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON.,Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON
| | - Christine T Chambers
- Departments of Pediatrics, and Psychology & Neuroscience, Dalhousie University, Halifax, NS.,Centre for Pediatric Pain Research, IWK Health Centre, Halifax, NS
| | - Kenneth D Craig
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
45
|
How central is central poststroke pain? The role of afferent input in poststroke neuropathic pain: a prospective, open-label pilot study. Pain 2018; 159:1317-1324. [DOI: 10.1097/j.pain.0000000000001213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
|
47
|
Widerström-Noga E, Loeser JD, Jensen TS, Finnerup NB. AAPT Diagnostic Criteria for Central Neuropathic Pain. THE JOURNAL OF PAIN 2017; 18:1417-1426. [DOI: 10.1016/j.jpain.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 01/21/2023]
|
48
|
Akintola T, Raver C, Studlack P, Uddin O, Masri R, Keller A. The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. NEUROBIOLOGY OF PAIN 2017; 2:13-17. [PMID: 29450305 PMCID: PMC5808980 DOI: 10.1016/j.ynpai.2017.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facial expressions were analyzed after constriction injury of infraorbital nerve. The grimace score reliably assesses ongoing pain in a this model. The grimace score can be used in both rats and mice with trigeminal neuropathic pain.
The limited success in translating basic science findings into effective pain management therapies reflects, in part, the difficulty in reliably assessing pain in experimental animals. This shortcoming is particularly acute in the field of chronic, ongoing pain. Quantitative analysis of facial expressions—the grimace score—was introduced as a promising tool, however, it is thought to reliably assess only pain of short or medium duration (minutes to hours). Here, we test the hypothesis that grimace scores are a reliable metric of ongoing neuropathic pain, by testing the prediction that chronic constriction injury of the infraorbital nerve (CCI-ION) will evoke significant increases in grimace scale scores. Mice and rats were subjected to CCI-ION, and tested for changes in mechanical hypersensitivity and in grimace scores, 10 or more days after surgery. Both rats and mice with CCI-ION had significantly higher grimace scores, and significantly lower thresholds for withdrawal from mechanical stimuli applied to the face, compared to sham-operated animals. Fentanyl reversed the changes in rat grimace scale scores, suggesting that these scores reflect pain perception. These findings validate the grimace scale as a reliable and sensitive metric for the assessment of ongoing pain in a rodent model of chronic, trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Titilola Akintola
- Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Raver
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paige Studlack
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Olivia Uddin
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Radi Masri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, Baltimore, MD, USA
| | - Asaf Keller
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Wang YJ, Zuo ZX, Wu C, Liu L, Feng ZH, Li XY. Cingulate Alpha-2A Adrenoceptors Mediate the Effects of Clonidine on Spontaneous Pain Induced by Peripheral Nerve Injury. Front Mol Neurosci 2017; 10:289. [PMID: 28955200 PMCID: PMC5600928 DOI: 10.3389/fnmol.2017.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
The anterior cingulate cortex (ACC) is an important brain area for the regulation of neuropathic pain. The α2A adrenoceptor is a good target for pain management. However, the role of cingulate α2A adrenoceptors in the regulation of neuropathic pain has been less studied. In this study, we investigated the involvement of cingulate α2A adrenoceptors in the regulation of neuropathic pain at different time points after peripheral nerve injury in mice. The application of clonidine, either systemically (0.5 mg/kg intraperitoneally) or specifically to the ACC, increased paw withdrawal thresholds (PWTs) and induced conditioned place preference (CPP) at day 7 after nerve injury, suggesting that cingulate α2 adrenoceptors are involved in the regulation of pain-like behaviors. Quantitative real-time PCR data showed that α2A adrenoceptors are the dominant α2 adrenoceptors in the ACC. Furthermore, the expression of cingulate α2A adrenoceptors was increased at day 3 and day 7 after nerve injury, but decreased at day 14, while no change was detected in the concentration of adrenaline or noradrenaline. BRL-44408 maleate, a selective antagonist of α2A adrenoceptors, was microinfused into the ACC. This blocking of cingulate α2A adrenoceptors activity abolished the CPP induced by clonidine (0.5 mg/kg intraperitoneally) but not the effects on PWTs at day 7. However, clonidine applied systemically or specifically to the ACC at day 14 increased the PWTs but failed to induce CPP; this negative effect was reversed by the overexpression of cingulate α2A adrenoceptors. These results suggest that cingulate α2A adrenoceptors are necessary for the analgesic effects of clonidine on spontaneous pain.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China.,The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Zhen-Xing Zuo
- Department of Surgery, Tongji Hospital, School of Medicine, Tongji UniversityShanghai, China
| | - Cheng Wu
- Department of Physiology, Institute of Neuroscience, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Li Liu
- Core Facility of School of Medicine, Zhejiang UniversityHangzhou, China
| | - Zhi-Hui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China.,The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Xiang-Yao Li
- Department of Physiology, Institute of Neuroscience, School of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
50
|
Biggs EE, Meulders A, Kaas AL, Goebel R, Vlaeyen JWS. The Acquisition and Extinction of Fear of Painful Touch: A Novel Tactile Fear Conditioning Paradigm. THE JOURNAL OF PAIN 2017; 18:1505-1516. [PMID: 28842367 DOI: 10.1016/j.jpain.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
Fear of touch, due to allodynia and spontaneous pain, is not well understood. Experimental methods to advance this topic are lacking, and therefore we propose a novel tactile conditioning paradigm. Seventy-six pain-free participants underwent acquisition in a predictable as well as an unpredictable pain context. In the predictable context, vibrotactile stimulation was paired with painful electrocutaneous stimulation (simulating allodynia). In the unpredictable context, vibrotactile stimulation was unpaired with pain (simulating spontaneous pain). During an extinction phase, a cue exposure and context exposure group continued in the predictable and unpredictable context, respectively, without pain. A control group received continued acquisition in both contexts. Self-reported fear and skin conductance responses, but not startle responses, showed fear of touch was acquired in the predictable context. Context-related startle responses showed contextual fear emerged in the unpredictable context, together with elevated self-reported fear and skin conductance responses evoked by the unpaired vibrotactile stimulations. Cue exposure reduced fear of touch, whereas context exposure reduced contextual fear. Thus, painful touch leads to increased fear, as does touch in the same context as unpredictable pain, and extinction protocols can reduce this fear. We conclude that tactile conditioning is valuable for investigating fear of touch and can advance our understanding of chronic pain. PERSPECTIVES The acquisition and extinction of fear of touch was investigated in a clinical analog study using a novel tactile fear conditioning paradigm. The results have implications for research on the development and treatment of chronic pain conditions characterized by allodynia and spontaneous pain fluctuations.
Collapse
Affiliation(s)
- Emma E Biggs
- Research Group Health Psychology, University of Leuven, Leuven, Belgium; Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands.
| | - Ann Meulders
- Research Group Health Psychology, University of Leuven, Leuven, Belgium; Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands; Center for Excellence Generalization on Research in Health and Psychopathology, University of Leuven, Leuven, Belgium
| | - Amanda L Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Art and Sciences (KNAW), The Netherlands
| | - Johan W S Vlaeyen
- Research Group Health Psychology, University of Leuven, Leuven, Belgium; Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands; Center for Excellence Generalization on Research in Health and Psychopathology, University of Leuven, Leuven, Belgium
| |
Collapse
|