1
|
Neurauter M, Vinzelj JM, Strobl SFA, Kappacher C, Schlappack T, Badzoka J, Rainer M, Huck CW, Podmirseg SM. Exploring near-infrared spectroscopy and hyperspectral imaging as novel characterization methods for anaerobic gut fungi. FEMS MICROBES 2024; 5:xtae025. [PMID: 39301047 PMCID: PMC11412074 DOI: 10.1093/femsmc/xtae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Neocallimastigomycota are a phylum of anaerobic gut fungi (AGF) that inhabit the gastrointestinal tract of herbivores and play a pivotal role in plant matter degradation. Their identification and characterization with marker gene regions has long been hampered due to the high inter- and intraspecies length variability in the commonly used fungal marker gene region internal transcribed spacer (ITS). While recent research has improved methodology (i.e. switch to LSU D2 as marker region), molecular methods will always introduce bias through nucleic acid extraction or PCR amplification. Here, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) are introduced as two nucleic acid sequence-independent tools for the characterization and identification of AGF strains. We present a proof-of-concept for both, achieving an independent prediction accuracy of above 95% for models based on discriminant analysis trained with samples of three different genera. We further demonstrated the robustness of the NIRS model by testing it on cultures of different growth times. Overall, NIRS provides a simple, reliable, and nondestructive approach for AGF classification, independent of molecular approaches. The HSI method provides further advantages by requiring less biomass and adding spatial information, a valuable feature if this method is extended to mixed cultures or environmental samples in the future.
Collapse
Affiliation(s)
- Markus Neurauter
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Julia M Vinzelj
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sophia F A Strobl
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Christoph Kappacher
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Tobias Schlappack
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Sabine M Podmirseg
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Eliuz EE, Ayas D. Developing fish oil emulsion gel enriched with Lentinula edodes single cell protein and its effect on controlling the growth of Acinetobacter baumannii. J Microbiol Methods 2024; 224:107006. [PMID: 39069135 DOI: 10.1016/j.mimet.2024.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, the characterization of fish oil (FO) emulsion gel (EGEL) containing single cell protein (SCP) produced from Lentinula edodes (L. edodes) and its potential inhibition against Acinetobacter baumannii (A. baumannii) were investigated. Oil extracted from the fish liver was emulsified with tween 80 and water, and then gelled using gelatin with the assistance of an ultrasonic homogenizer. The characteristics and surface analysis of SCP-EGEL were examined using FTIR (Fourier-transform infrared spectroscopy) and SEM (Scanning electron microscope). The particle size distribution and zeta potential of SCP-EGEL were measured using a Malvern Zetasizer. When SCP-EGEL was applied to the surface of the medium inoculated with A. baumannii, the inhibition zone (IZ) was 8.2 mm. An expansion of the IZ was observed (10.2 mm) when SCP-EGEL was applied to a fish skin (FS) surface prepared in the shape of a 6-mm diameter disc. In the SEM images, when SCP was added to lipo gel, the gel structure appeared flattened or swollen in some areas. The appearance of SCP cells being covered with gel gave the impression that they have a secondary wall. Therefore, the resulting complex can potentially be used as an additive in animal and human nutrition, in functional food coatings to suppress A. baumannii, and in fish feed to enrich it with protein.
Collapse
Affiliation(s)
- Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
3
|
Richardson PIC, Horsburgh MJ, Goodacre R. Benchmarking classification abilities of novel optical photothermal IR spectroscopy at the single-cell level with bulk FTIR measurements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5419-5425. [PMID: 39037041 PMCID: PMC11308985 DOI: 10.1039/d4ay00810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Fourier-transform infrared (FTIR) spectroscopy is a simple, fast and inexpensive method with a history of use for bacterial analysis. However, due to the limitations placed on spatial resolution inherent to infrared wavelengths, analysis has generally been performed on bulk samples, leading to biological variance among individual cells to be buried in averaged spectra. This also increases the bacterial load necessary for analysis, which can be problematic in clinical settings where limiting incubation time is valuable. Optical photothermal-induced resonance (O-PTIR) spectroscopy is a novel method aiming to bypass this limitation using a secondary lower wavelength laser, allowing for infrared measurements of a single bacterium. Here, using Staphylococcus capitis, Staphylococcus epidermidis and Micrococcus luteus strains as a model and FTIR as a benchmark, we examined O-PTIR's ability to discriminate single-cell samples at the intergenetic, interspecific and intraspecific levels. When combined with chemometric analysis, we showed that O-PTIR is capable of discriminating different between genera, species and strains within species to a degree comparable with FTIR. Furthermore, small variations in the amide bands associated with differences in the protein structure can still be seen in spite of smaller sample sizes. This demonstrates the potential of O-PTIR for single-cell bacterial analysis and classification.
Collapse
Affiliation(s)
- Paul I C Richardson
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown St, Liverpool, UK.
| | - Malcolm J Horsburgh
- Microbiology Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown St, Liverpool, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown St, Liverpool, UK.
| |
Collapse
|
4
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Makharadze D, Kantaria T, Yousef I, del Valle LJ, Katsarava R, Puiggalí J. PEGylated Micro/Nanoparticles Based on Biodegradable Poly(Ester Amides): Preparation and Study of the Core-Shell Structure by Synchrotron Radiation-Based FTIR Microspectroscopy and Electron Microscopy. Int J Mol Sci 2024; 25:6999. [PMID: 39000109 PMCID: PMC11241343 DOI: 10.3390/ijms25136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core-shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core-shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm-1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm-1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core-shell structure, which was further supported by TEM images.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Ibraheem Yousef
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain;
| | - Luis J. del Valle
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
6
|
İzgördü ÖK, Gurbanov R, Darcan C. Understanding the transition to viable but non-culturable state in Escherichia coli W3110: a comprehensive analysis of potential spectrochemical biomarkers. World J Microbiol Biotechnol 2024; 40:203. [PMID: 38753033 PMCID: PMC11098925 DOI: 10.1007/s11274-024-04019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The viable but non-culturable (VBNC) state is considered a survival strategy employed by bacteria to endure stressful conditions, allowing them to stay alive. Bacteria in this state remain unnoticed in live cell counts as they cannot proliferate in standard culture media. VBNC cells pose a significant health risk because they retain their virulence and can revive when conditions normalize. Hence, it is crucial to develop fast, reliable, and cost-effective methods to detect bacteria in the VBNC state, particularly in the context of public health, food safety, and microbial control assessments. This research examined the biomolecular changes in Escherichia coli W3110 induced into the VBNC state in artificial seawater under three different stress conditions (temperature, metal, and antibiotic). Initially, confirmation of VBNC cells under various stresses was done using fluorescence microscopy and plate counts. Subsequently, lipid peroxidation was assessed through the TBARS assay, revealing a notable increase in peroxidation end-products in VBNC cells compared to controls. ATR-FTIR spectroscopy and chemomometrics were employed to analyze biomolecular changes, uncovering significant spectral differences in RNA, protein, and nucleic acid concentrations in VBNC cells compared to controls. Notably, RNA levels increased, while protein and nucleic acid amounts decreased. ROC analyses identified the 995 cm- 1 RNA band as a consistent marker across all studied stress conditions, suggesting its potential as a robust biomarker for detecting cells induced into the VBNC state under various stressors.
Collapse
Affiliation(s)
- Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey.
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
7
|
Croitoru C, Roata IC. Ionic Liquids as Reconditioning Agents for Paper Artifacts. Molecules 2024; 29:963. [PMID: 38474474 DOI: 10.3390/molecules29050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
This research explores the potential of ionic liquids (ILs) in restoring paper artifacts, particularly an aged book sample. Three distinct ILs-1-ethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, 1-methyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-methyl-3-heptylimidazolium bis(trifluoromethylsulfonyl)imide -both in their pure form and isopropanol mixtures, were examined for their specific consumption in conjunction with paper, with 1-ethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide displaying the highest absorption. Notably, the methyl-3-heptylimidazolium ionic liquid displayed pronounced deacidification capabilities, elevating the paper pH close to a neutral 7. The treated paper exhibited significant color enhancements, particularly with 1-heptyl-3-methylimidazolium and 1-pentyl-3-methylimidazolium ILs, as evidenced by CIE-Lab* parameters. An exploration of ILs as potential UV stabilizers for paper unveiled promising outcomes, with 1-heptyl-3-methylimidazolium IL demonstrating minimal yellowing post-UV irradiation. FTIR spectra elucidated structural alterations, underscoring the efficacy of ILs in removing small-molecular additives and macromolecules. The study also addressed the preservation of inked artifacts during cleaning, showcasing ILs' ability to solubilize iron gall ink, particularly the one with the 1-ethyl-3-propylimidazolium cation. While exercising caution for prolonged use on inked supports is still recommended, ILs are shown here to be valuable for cleaning ink-stained surfaces, establishing their effectiveness in paper restoration and cultural heritage preservation.
Collapse
Affiliation(s)
- Catalin Croitoru
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Str., 500039 Brasov, Romania
| | - Ionut Claudiu Roata
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Str., 500039 Brasov, Romania
| |
Collapse
|
8
|
Racić G, Vukelić I, Kordić B, Radić D, Lazović M, Nešić L, Panković D. Screening of Native Trichoderma Species for Nickel and Copper Bioremediation Potential Determined by FTIR and XRF. Microorganisms 2023; 11:microorganisms11030815. [PMID: 36985388 PMCID: PMC10053837 DOI: 10.3390/microorganisms11030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Soil pollution with heavy metals is a serious threat to the environment. However, soils polluted with heavy metals are considered good sources of native metal-resistant Trichoderma strains. Trichoderma spp. are free-living fungi commonly isolated from different ecosystems, establishing endophytic associations with plants. They have important ecological and biotechnological roles due to their production of a wide range of secondary metabolites, thus regulating plant growth and development or inducing resistance to plant pathogens. In this work we used indigenous Trichoderma strains that were previously isolated from different soil types to determine their tolerance to increased copper and nickel concentrations as well as mechanisms of metal removal. The concentrations of bioavailable metal concentrations were determined after extraction with diethylene-triamine pentaacetate (DTPA)-extractable metals (Cd, Cr, Co, Cu, Pb, Mn, Ni, and Zn) from the soil samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). Two indigenous T. harzianum strains were selected for copper tolerance, and three indigenous T. longibrachiatum strains were selected for nickel tolerance tests. Strains were isolated from the soils with the highest and among the lowest DTPA-extractable metal concentrations to determine whether the adaptation to different concentrations of metals affects the mechanisms of remediation. Mechanisms of metal removal were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray fluorescence spectroscopy (XRF), non-destructive methods characterized by high measurement speed with little or no need for sample preparation and very low costs. Increased DTPA-extractable metal content for nickel and copper was detected in the soil samples above the target value (TV), and for nickel above the soil remediation intervention values (SRIVs), for total metal concentrations which were previously determined. The SRIV is a threshold of metal concentrations indicating a serious soil contamination, thus confirming the need for soil remediation. The use of FTIR and XRF methods revealed that the presence of both biosorption and accumulation of metals in the Trichoderma cells, providing good bioremediation potential for Ni and Cu.
Collapse
Affiliation(s)
- Gordana Racić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Igor Vukelić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Branko Kordić
- Faculty of Natural Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Danka Radić
- Institute of General and Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Milana Lazović
- AbioTech Lab, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Ljiljana Nešić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Dejana Panković
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| |
Collapse
|
9
|
Costa T, Cassin E, Moreirinha C, Mendo S, Caetano TS. Towards the Understanding of the Function of Lanthipeptide and TOMM-Related Genes in Haloferax mediterranei. BIOLOGY 2023; 12:biology12020236. [PMID: 36829513 PMCID: PMC9953058 DOI: 10.3390/biology12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Research on secondary metabolites produced by Archaea such as ribosomally synthesized and post-translationally modified peptides (RiPPs) is limited. The genome of Haloferax mediterranei ATCC 33500 encodes lanthipeptide synthetases (medM1, medM2, and medM3) and a thiazole-forming cyclodehydratase (ycaO), possibly involved in the biosynthesis of lanthipeptides and the TOMMs haloazolisins, respectively. Lanthipeptides and TOMMs often have antimicrobial activity, and H. mediterranei has antagonistic activity towards haloarchaea shown to be independent of medM genes. This study investigated (i) the transcription of ycaO and medM genes, (ii) the involvement of YcaO in bioactivity, and (iii) the impact of YcaO and MedM-encoding genes' absence in the biomolecular profile of H. mediterranei. The assays were performed with biomass grown in agar and included RT-qPCR, the generation of knockout mutants, bioassays, and FTIR analysis. Results suggest that ycaO and medM genes are transcriptionally active, with the highest number of transcripts observed for medM2. The deletion of ycaO gene had no effect on H. mediterranei antihaloarchaea activity. FTIR analysis of medM and ycaO knockout mutants suggest that MedMs and YcaO activity might be directly or indirectly related t lipids, a novel perspective that deserves further investigation.
Collapse
Affiliation(s)
- Thales Costa
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Elena Cassin
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina Moreirinha
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.M.); (T.S.C.)
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Sousa Caetano
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.M.); (T.S.C.)
| |
Collapse
|
10
|
Farouk F, Essam S, Abdel-Motaleb A, El-Shimy R, Fritzsche W, Azzazy HMES. Fast detection of bacterial contamination in fresh produce using FTIR and spectral classification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121248. [PMID: 35452899 DOI: 10.1016/j.saa.2022.121248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Screening for microbial contaminants in fresh produce is a lengthy process relative to their short shelf-life. The aim of this study is to develop a comprehensive assay which employs FTIR and spectral classification algorithm for detection of bacterial contamination of fresh produce. The procedure starts by soaking a sample of the fresh produce in broth for 5 h. Then, magnetic nanoparticles are added to capture bacteria which are then collected and prepared for FTIR scanning. The generated FTIR spectra are compared against an in-house database of different bacterial species (n = 6). The ability of the database to discriminate contaminated and uncontaminated samples and to identify the bacterial species was assessed. The compatibility of the FTIR procedures with subsequent DNA extraction and PCR was tested. The developed procedure was applied for assessment of bacterial contamination in fresh produce samples from the market (n = 78). Results were compared to the conventional culture methods. The generated FTIR database coupled to spectral classification was able to detect bacterial contamination with overall accuracy exceeding 90%. The sample processing did not alter the integrity of the bacterial DNA which was suitable for PCR. On application to fresh produce samples collected from the market, the developed method was able to detect bacterial contamination with 94% concordance with the culture method. In conclusion, the developed procedure can be applied for fast detection of microbial contamination in fresh produce with comparable accuracy to conventional microbiological assays and is compatible with subsequent molecular assays.
Collapse
Affiliation(s)
- Faten Farouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Zone, 6th of October City, Giza, Egypt.
| | - Shereen Essam
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, Egypt
| | - Amany Abdel-Motaleb
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, Egypt
| | - Rana El-Shimy
- Microbiology and Immunology Department, Egyptian Drug Authority, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial zone, 6th of October City, Giza, Egypt
| | | | | |
Collapse
|
11
|
Ramirez-Perez JC, A Reis T, Olivera CLP, Rizzutto MA. Impact of silver nanoparticles size on SERS for detection and identification of filamentous fungi. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120980. [PMID: 35168033 DOI: 10.1016/j.saa.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Using the proper size of nanoparticles as an active substrate, Surface-enhanced Raman scattering (SERS) can provide a reliable technique for detecting and identifying fungi, including Alternaria alternata, Aspergillus flavus, Fusarium verticilliodes, and Aspergillus parasiticus that have been associated to biodeterioration and biodegradation of cultural heritage materials. In this research spherical silver nanoparticles (AgNPs) of average size of 10, 30 and 60 nm were synthesized using the wet chemical method with good yield and their size and shape distributions were examined using small-angle X-ray scattering (SAXS). The protocol for fungi sample preparation proved to be critical for producing high-quality and reproducible SERS spectra. We found that the effect of AgNPs on SERS signal enhancement is size dependent under the same experimental conditions; the SERS intensity of fungal strains using 60 nm achieved up to 2.3x105 enhancement, about twice as intense as those produced with 30 nm, and 10 nm produced a minor broad weak peak barely discernible around 1400 cm-1, similar to the NR spectra profile in the 550-1700 cm-1 spectral region, and the SERS signals using 60 nm showed high reproducibility, with less than 20% variance. Furthermore, we used principal component analysis (PCA) to statistically classify the SERS spectrum into four separate clusters with 99 percent variability so that the four fungal strains could be clearly detected and identified. The SERS technique, in combination with the PCA developed in this study, provides a simple, rapid, accurate, and cost-effective analytical tool for detecting and identifying filamentous fungal strains.
Collapse
Affiliation(s)
- Javier Christian Ramirez-Perez
- Institute of Physics, Laboratory of Archaeometry and Science Applied to Cultural Heritage, University of Sao Paulo, Sao Paulo, Brazil.
| | - Tatiana A Reis
- Institute of Biosciences, Laboratory of Mycology of University of Sao Paulo, Sao Paulo, Brazil
| | - Cristiano L P Olivera
- Institute of Physics, Complex Fluids Group of University of Sao Paulo, Sao Paulo, Brazil
| | - Marcia A Rizzutto
- Institute of Physics, Laboratory of Archaeometry and Science Applied to Cultural Heritage, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
12
|
Identification of Biochemical Differences in White and Brown Adipocytes Using FTIR Spectroscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study was conducted to investigate the developmental characteristics of adipocytes and to identify selectively white and brown adipocytes through Fourier transform infrared (FTIR) spectroscopy. For the developmental characterization of adipocytes, cells and conditioned media of white and brown adipocytes were respectively collected and analyzed. A higher amide I/amide II ratio was observed in the conditioned medium of brown adipocyte than in that of white adipocyte, indicating differences in secretory protein profiles. In contrast, an amide I/amide II ratio was higher in white adipocytes than in brown adipocytes, and mature adipocytes have higher lipid amounts than pre-adipocytes. Lipid acyl chain length was the longest in white adipocytes. These differences suggested that FTIR spectroscopy can be used to characterize developmental stages and/or types of adipocytes. To identify the possibility of selectively classifying adipose-derived stem cells, FTIR spectroscopy spectra were obtained in cells before/after white/brown adipocyte differentiation using FTIR spectroscopy and then analyzed by the principal component analysis method. All data indicated that the discrimination between adipocytes was possible in the analysis of the infrared spectroscopy spectrum by the principal component analysis technique. This study suggested the possibility of FTIR spectroscopy as a new type of cell sorting system without tagging.
Collapse
|
13
|
Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol 2022; 173:103915. [PMID: 34863883 PMCID: PMC8634697 DOI: 10.1016/j.resmic.2021.103915] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.
Collapse
|
14
|
Dinçtürk E, Tanrıkul TT. First preliminary study on identification of bacterial fish pathogens with Raman spectroscopy. Anim Biotechnol 2021:1-9. [PMID: 34559037 DOI: 10.1080/10495398.2021.1979567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Accurate and rapid determination of bacterial disease agents of fish is an important step for sustainable and efficient aquaculture production. In general, biochemical and molecular methods are used for pathogen detection but they are usually time-consuming and required qualified personnel. Recently spectroscopic methods are preferred in clinical and food microbiology and declared as a promising alternative method for pathogens diagnosis with many advantages. In this study, the significant spectra of three important bacterial fish pathogens (Lactococcus garvieae, Vibrio anguillarum and Yersinia ruckeri) were determined by Raman spectroscopy. The first data of the pathogens were obtained and the distinctive differences in polysaccharides, nucleic acids, fatty acids and amino acids were identified. This preliminary study aimed to be pioneer for further studies in aquaculture and veterinary microbiology toward developing an alternative method for routine identification.
Collapse
Affiliation(s)
- Ezgi Dinçtürk
- Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Turkey
| | - Tevfik Tansel Tanrıkul
- Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
15
|
Heidrich D, Koehler A, Ramírez-Castrillón M, Pagani DM, Ferrão MF, Scroferneker ML, Corbellini VA. Rapid classification of chromoblastomycosis agents genera by infrared spectroscopy and chemometrics supervised by sequencing of rDNA regions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119647. [PMID: 33744705 DOI: 10.1016/j.saa.2021.119647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Chromoblastomycosis (CBM) is a skin and subcutaneous infection caused by species of seven fungal genera. Identification of CBM species is performed by DNA sequencing of one or more genes, which becomes a time-consuming work. Fourier Transform Infrared Spectroscopy (FTIR) has been used for the identification of other microorganisms, however, only one CBM genus was evaluated by FTIR analysis to date. Therefore, the study is aimed to differentiate the CBM agents for identification at genera level using FTIR supervised by Internal Transcribed Spacer (ITS) rDNA region. Seventy-seven isolates of the main five CBM genera were prepared for Attenuated Total Reflection FTIR (ATR-FTIR) with a new methodology using slices of dry fungus in glass fixing-modeling proposed in this study. The algorithm Hierarchical Cluster Analysis (HCA) was used to analyze the differences and similarities between species through the spectra. Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) allowed to correctly classify all samples of five CBM genera. The ATR-FTIR/OPLS-DA models highlighted important contributions of regions attributed to NH and OH stretching, amide I of proteins, polysaccharides bands and fingerprint region for the complete differentiation of the genera investigated. Thus, FTIR can be a fast and inexpensive alternative for identification of CBM agents.
Collapse
Affiliation(s)
- Daiane Heidrich
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP: 90035-003 Porto Alegre, RS, Brazil
| | - Alessandra Koehler
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP: 90035-003 Porto Alegre, RS, Brazil
| | - Mauricio Ramírez-Castrillón
- Postgraduate Program in Molecular and Cellular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS, Brazil.
| | - Danielle Machado Pagani
- Postgraduate Program in Agricultural and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, CEP: 90050-170 Porto Alegre, RS, Brazil
| | - Marco Flores Ferrão
- Department of Inorganic Chemistry, Chemistry Institute, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP: 91501-970 Porto Alegre, RS, Brazil.
| | - Maria Lúcia Scroferneker
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, CEP: 90035-003 Porto Alegre, RS, Brazil; Department of Microbiology, Immunology and Parasitology, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, CEP: 90050-170 Porto Alegre, RS, Brazil.
| | - Valeriano Antonio Corbellini
- Department of Sciences, Humanities and Education, Postgraduate Program in Health Promotion, Postgraduate Program in Environmental Technology, Universidade de Santa Cruz do Sul, Avenida Independência, 2293, CEP: 96815-900 Santa Cruz do Sul, RS, Brazil.
| |
Collapse
|
16
|
Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA, Chakkumpulakkal Puthan Veettil T, Martin M, Roy S, Pebotuwa S, Heraud P, Wood BR. Infrared Spectroscopy of Blood. APPLIED SPECTROSCOPY 2021; 75:611-646. [PMID: 33331179 DOI: 10.1177/0003702820985856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The magnitude of infectious diseases in the twenty-first century created an urgent need for point-of-care diagnostics. Critical shortages in reagents and testing kits have had a large impact on the ability to test patients with a suspected parasitic, bacteria, fungal, and viral infections. New point-of-care tests need to be highly sensitive, specific, and easy to use and provide results in rapid time. Infrared spectroscopy, coupled to multivariate and machine learning algorithms, has the potential to meet this unmet demand requiring minimal sample preparation to detect both pathogenic infectious agents and chronic disease markers in blood. This focal point article will highlight the application of Fourier transform infrared spectroscopy to detect disease markers in blood focusing principally on parasites, bacteria, viruses, cancer markers, and important analytes indicative of disease. Methodologies and state-of-the-art approaches will be reported and potential confounding variables in blood analysis identified. The article provides an up to date review of the literature on blood diagnosis using infrared spectroscopy highlighting the recent advances in this burgeoning field.
Collapse
Affiliation(s)
- Kamila Kochan
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Diana E Bedolla
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - David Perez-Guaita
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - John A Adegoke
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | | | - Miguela Martin
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Supti Roy
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Savithri Pebotuwa
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Philip Heraud
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Bayden R Wood
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Confield LR, Black GP, Wilson BC, Lowe DJ, Theakstone AG, Baker MJ. Vibrational spectroscopic analysis of blood for diagnosis of infections and sepsis: a review of requirements for a rapid diagnostic test. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:157-168. [PMID: 33284291 DOI: 10.1039/d0ay01991g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infections and sepsis represent a growing global burden. There is a widespread clinical need for a rapid, high-throughput and sensitive technique for the diagnosis of infections and detection of invading pathogens and the presence of sepsis. Current diagnostic methods primarily consist of laboratory-based haematology, biochemistry and microbiology that are time consuming, labour- and resource-intensive, and prone to both false positive and false negative results. Current methods are insufficient for the increasing demands on healthcare systems, causing delays in diagnosis and initiation of treatment, due to the intrinsic time delay in sample preparation, measurement, and analysis. Vibrational spectroscopic techniques can overcome these limitations by providing a rapid, label-free and low-cost method for blood analysis, with limited sample preparation required, potentially revolutionising clinical diagnostics by producing actionable results that enable early diagnosis, leading to improved patient outcomes. This review will discuss the challenges associated with the diagnosis of infections and sepsis, primarily within the UK healthcare system. We will consider the clinical potential of spectroscopic point-of-care technologies to enable blood analysis in the primary-care setting.
Collapse
Affiliation(s)
- L R Confield
- CDT Medical Devices, Department of Biomedical Engineering, Wolfson Centre, 106 Rottenrow, G4 0NW, UK
| | | | | | | | | | | |
Collapse
|
18
|
Pinheiro BG, Hahn RC, de Camargo ZP, Rodrigues AM. Molecular Tools for Detection and Identification of Paracoccidioides Species: Current Status and Future Perspectives. J Fungi (Basel) 2020; 6:E293. [PMID: 33217898 PMCID: PMC7711936 DOI: 10.3390/jof6040293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a mycotic disease caused by the Paracoccidioides species, a group of thermally dimorphic fungi that grow in mycelial form at 25 °C and as budding yeasts when cultured at 37 °C or when parasitizing the host tissues. PCM occurs in a large area of Latin America, and the most critical regions of endemicity are in Brazil, Colombia, and Venezuela. The clinical diagnosis of PCM needs to be confirmed through laboratory tests. Although classical laboratory techniques provide valuable information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratory practice. Recently, taxonomic changes driven by whole-genomic sequencing of Paracoccidioides have highlighted the need to recognize species boundaries, which could better ascertain Paracoccidioides taxonomy. In this scenario, classical laboratory techniques do not have significant discriminatory power over cryptic agents. On the other hand, several PCR-based methods can detect polymorphisms in Paracoccidioides DNA and thus support species identification. This review is focused on the recent achievements in molecular diagnostics of paracoccidioidomycosis, including the main advantages and pitfalls related to each technique. We discuss these breakthroughs in light of taxonomic changes in the Paracoccidioides genus.
Collapse
Affiliation(s)
- Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060900, Brazil;
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| |
Collapse
|
19
|
Locke A, Fitzgerald S, Mahadevan-Jansen A. Advances in Optical Detection of Human-Associated Pathogenic Bacteria. Molecules 2020; 25:E5256. [PMID: 33187331 PMCID: PMC7696695 DOI: 10.3390/molecules25225256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection is a global burden that results in numerous hospital visits and deaths annually. The rise of multi-drug resistant bacteria has dramatically increased this burden. Therefore, there is a clinical need to detect and identify bacteria rapidly and accurately in their native state or a culture-free environment. Current diagnostic techniques lack speed and effectiveness in detecting bacteria that are culture-negative, as well as options for in vivo detection. The optical detection of bacteria offers the potential to overcome these obstacles by providing various platforms that can detect bacteria rapidly, with minimum sample preparation, and, in some cases, culture-free directly from patient fluids or even in vivo. These modalities include infrared, Raman, and fluorescence spectroscopy, along with optical coherence tomography, interference, polarization, and laser speckle. However, these techniques are not without their own set of limitations. This review summarizes the strengths and weaknesses of utilizing each of these optical tools for rapid bacteria detection and identification.
Collapse
Affiliation(s)
- Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Soares AC, Soares JC, Rodrigues VC, Oliveira ON, Capparelli Mattoso LH. Controlled molecular architectures in microfluidic immunosensors for detecting Staphylococcus aureus. Analyst 2020; 145:6014-6023. [PMID: 32779664 DOI: 10.1039/d0an00714e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of pathogenic microorganisms is essential for food quality control and diagnosis of various diseases, which is currently performed with high-cost, sophisticated methods. In this paper, we report on a low-cost detection method based on impedance spectroscopy to detect Staphylococcus aureus (S. aureus). The immunosensors were made with microfluidic devices made of interdigitated electrodes coated with layer-by-layer (LbL) films of chitosan and chondroitin sulfate, on which a layer of anti-S. aureus antibodies was adsorbed. The limit of detection was 2.83 CFU mL-1 with a limit of quantification of 9.42 CFU mL-1 for immunosensors with 10-bilayer LbL films. This level of sensitivity is sufficient to detect traces of bacteria that cause mastitis in milk, which we have confirmed by distinguishing milk samples containing various concentrations of S. aureus from pure milk and milk contaminated with Escherichia coli (E. coli) and Salmonella. Distinction of these samples was made possible by projecting the electrical impedance data with the interactive document mapping (IDMAP) technique. The high sensitivity and selectivity are attributed to the highly specific interaction with anti-S. aureus antibodies captured with polarization-modulated reflection absorption spectroscopy (PM-IRRAS), with adsorption on the antibodies explained with the Langmuir-Freundlich model. Since these immunosensors are stable for up to 25 days and detection measurements can be made within minutes, the methodology proposed is promising for monitoring S. aureus contamination in the food industry and hospitals, and in detecting bovine mastitis.
Collapse
Affiliation(s)
- Andrey Coatrini Soares
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
21
|
Dzurendova S, Zimmermann B, Kohler A, Tafintseva V, Slany O, Certik M, Shapaval V. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS One 2020; 15:e0234870. [PMID: 32569317 PMCID: PMC7307774 DOI: 10.1371/journal.pone.0234870] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Mucoromycota fungi possess a versatile metabolism and can utilize various substrates for production of industrially important products, such as lipids, chitin/chitosan, polyphosphates, pigments, alcohols and organic acids. However, as far as commercialisation is concerned, establishing industrial biotechnological processes based on Mucoromycota fungi is still challenging due to the high production costs compared to the final product value. Therefore, the development of co-production concept is highly desired since more than one valuable product could be produced at the time and the process has a potentially higher viability. To develop such biotechnological strategy, we applied a high throughput approach consisting of micro-titre cultivation and FTIR spectroscopy. This approach allows single-step biochemical fingerprinting of either fungal biomass or growth media without tedious extraction of metabolites. The influence of two types of nitrogen sources and different levels of inorganic phosphorus on the co-production of lipids, chitin/chitosan and polyphosphates for nine different oleaginous Mucoromycota fungi was evaluated. FTIR analysis of biochemical composition of Mucoromycota fungi and biomass yield showed that variation in inorganic phosphorus had higher effect when inorganic nitrogen source-ammonium sulphate-was used. It was observed that: (1) Umbelopsis vinacea reached almost double biomass yield compared to other strains when yeast extract was used as nitrogen source while phosphorus limitation had little effect on the biomass yield; (2) Mucor circinelloides, Rhizopus stolonifer, Amylomyces rouxii, Absidia glauca and Lichtheimia corymbifera overproduced chitin/chitosan under the low pH caused by the limitation of inorganic phosphorus; (3) Mucor circinelloides, Amylomyces rouxii, Rhizopus stolonifer and Absidia glauca were able to store polyphosphates in addition to lipids when high concentration of inorganic phosphorus was used; (4) the biomass and lipid yield of high-value lipid producers Mortierella alpina and Mortierella hyalina were significantly increased when high concentrations of inorganic phosphorus were combined with ammonium sulphate, while the same amount of inorganic phosphorus combined with yeast extract showed negative impact on the growth and lipid accumulation. FTIR spectroscopy revealed the co-production potential of several oleaginous Mucoromycota fungi forming lipids, chitin/chitosan and polyphosphates in a single cultivation process.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail: ,
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ondrej Slany
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Milan Certik
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
22
|
Briassoulis D, Pikasi A, Papardaki NG, Mistriotis A. Aerobic biodegradation of bio-based plastics in the seawater/sediment interface (sublittoral) marine environment of the coastal zone - Test method under controlled laboratory conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137748. [PMID: 32179297 DOI: 10.1016/j.scitotenv.2020.137748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Pollution of the seas due to plastic litter is a rapidly growing environmental problem. Among several actions, legal and technological, undertaken to alleviate this problem, included are the control of single use conventional plastics and the replacement of conventional non-biodegradable plastics with innovative biodegradable-in-the-sea polymers, both aiming at the mitigation of marine litter accumulation. Laboratory tests have been used to characterize plastics regarding their biodegradation in various environments. Biodegradation of plastics depends on the inherent characteristics of the polymer and the particular marine habitat conditions. In the present work, the international standard test method ISO 19679 (2016) for determining the aerobic biodegradation of non-floating plastic materials in a seawater-sediment interface of the coastal marine zone under laboratory simulated conditions is evaluated. Modifications are proposed to improve the reliability of this test method in some aspects. Agitation of the seawater surface in the bioreactor was found to enhance the continuous availability of oxygen at the seawater-sediment interface, thus assuring aerobic biodegradation conditions throughout the test simulating real sublittoral conditions. Additional recommended improvements include the use of larger samples and supplementary nutrients to optimise biodegradation conditions. The laboratory measurements were validated by field experiments. The proposed modifications and refinements optimise the robustness and reliability of the test method for determining aerobic biodegradation of plastic materials in a simulated seawater-sediment interface of the coastal zone.
Collapse
Affiliation(s)
- D Briassoulis
- Department of Natural Resources & Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece.
| | - A Pikasi
- Department of Natural Resources & Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - N G Papardaki
- Department of Natural Resources & Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - A Mistriotis
- Department of Natural Resources & Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
23
|
Abstract
Fourier transform-infrared spectroscopy (FT-IR) represents an attractive molecular diagnostic modality for translation to the clinic, where comprehensive chemical profiling of biological samples may revolutionize a myriad of pathways in clinical settings. Principally, FT-IR provides a rapid, cost-effective platform to obtain a molecular fingerprint of clinical samples based on vibrational transitions of chemical bonds upon interaction with infrared light. To date, considerable research activities have demonstrated competitive to superior performance of FT-IR strategies in comparison to conventional techniques, with particular promise for earlier, accessible disease diagnostics, thereby improving patient outcomes. However, amidst the changing healthcare landscape in times of aging populations and increased prevalence of cancer and chronic disease, routine adoption of FT-IR within clinical laboratories has remained elusive. Hence, this perspective shall outline the significant clinical potential of FT-IR diagnostics and subsequently address current barriers to translation from the perspective of all stakeholders, in the context of biofluid, histopathology, cytology, microbiology, and biomarker discovery frameworks. Thereafter, future perspectives of FT-IR for healthcare will be discussed, with consideration of recent technological advances that may facilitate future clinical translation.
Collapse
Affiliation(s)
- Duncan Finlayson
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering , University of Strathclyde , Wolfson Centre, 106 Rottenrow , Glasgow G4 0NW , U.K.,WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K
| | - Christopher Rinaldi
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering , University of Strathclyde , Wolfson Centre, 106 Rottenrow , Glasgow G4 0NW , U.K.,WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K
| | - Matthew J Baker
- WestCHEM , Department of Pure and Applied Chemistry , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K.,ClinSpec Diagnostics Ltd. , Technology and Innovation Centre, 99 George Street , Glasgow G11RD , U.K
| |
Collapse
|
24
|
Hanson C, Barney JT, Bishop MM, Vargis E. Simultaneous isolation and label‐free identification of bacteria using contactless dielectrophoresis and Raman spectroscopy. Electrophoresis 2019; 40:1446-1456. [DOI: 10.1002/elps.201800389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Cynthia Hanson
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Jacob T. Barney
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Morgan M. Bishop
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Elizabeth Vargis
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| |
Collapse
|
25
|
Comparato Filho OO, Morais FV, Bhattacharjee T, Castilho ML, Raniero L. Rapid identification of Paracoccidioides lutzii and P. Brasiliensis using Fourier Transform Infrared spectroscopy. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Sun X, Chen B, Li Q, Liu N, Xia B, Zhu L, Qu K. Toxicities of polystyrene nano- and microplastics toward marine bacterium Halomonas alkaliphila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1378-1385. [PMID: 30045518 DOI: 10.1016/j.scitotenv.2018.06.141] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 05/21/2023]
Abstract
Nano- and microplastics have been shown to cause negative effects on marine organisms. However, the toxicities of nano- and microplastics toward marine bacteria are poorly understood. In this study, we investigated the toxic effects of polystyrene nano- and microplastics on the marine bacterium Halomonas alkaliphila by determining growth inhibition, chemical composition, inorganic nitrogen conversion efficiencies and reactive oxygen species (ROS) generation. The results showed that both nano- and microplastics inhibited the growth of H. alkaliphila in high concentrations, while nanoplastics rather than microplastics influenced the growth inhibition, chemical composition and ammonia conversion efficiencies of H. alkaliphila at concentration of 80 mg/L. The ROS generation indicated oxidative stress induced by nano- but not microplastics, and the oxidative stress induced by nanoplastics may provide a significant effect on bacteria. Furthermore, the positively charged nanoplastics (amine-modified 50 nm) induced higher oxidative stress toward bacteria than that induced by negatively charged nanoplastics (non-modified 55 nm). The increased extracellular polymeric substances as evidenced by transmission electron microscope (TEM) observation suggested the possible bacterial protective mechanisms. The present study illustrates for the first time the impact of plastics debris on the inorganic nitrogen conversion efficiencies of marine bacteria. Our findings highlight the effects of microplastics on the ecological function of marine organisms.
Collapse
Affiliation(s)
- Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Qiufen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
27
|
Colabella C, Corte L, Roscini L, Shapaval V, Kohler A, Tafintseva V, Tascini C, Cardinali G. Merging FT-IR and NGS for simultaneous phenotypic and genotypic identification of pathogenic Candida species. PLoS One 2017; 12:e0188104. [PMID: 29206226 PMCID: PMC5714347 DOI: 10.1371/journal.pone.0188104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 01/27/2023] Open
Abstract
The rapid and accurate identification of pathogen yeast species is crucial for clinical diagnosis due to the high level of mortality and morbidity induced, even after antifungal therapy. For this purpose, new rapid, high-throughput and reliable identification methods are required. In this work we described a combined approach based on two high-throughput techniques in order to improve the identification of pathogenic yeast strains. Next Generation Sequencing (NGS) of ITS and D1/D2 LSU marker regions together with FTIR spectroscopy were applied to identify 256 strains belonging to Candida genus isolated in nosocomial environments. Multivariate data analysis (MVA) was carried out on NGS and FT-IR data-sets, separately. Strains of Candida albicans, C. parapsilosis, C. glabrata and C. tropicalis, were identified with high-throughput NGS sequencing of ITS and LSU markers and then with FTIR. Inter- and intra-species variability was investigated by consensus principal component analysis (CPCA) which combines high-dimensional data of the two complementary analytical approaches in concatenated PCA blocks normalized to the same weight. The total percentage of correct identification reached around 97.4% for C. albicans and 74% for C. parapsilosis while the other two species showed lower identification rates. Results suggested that the identification success increases with the increasing number of strains actually used in the PLS analysis. The absence of reliable FT-IR libraries in the current scenario is the major limitation in FTIR-based identification of strains, although this metabolomics fingerprint represents a valid and affordable aid to rapid and high-throughput to clinical diagnosis. According to our data, FT-IR libraries should include some tens of certified strains per species, possibly over 50, deriving from diverse sources and collected over an extensive time period. This implies a multidisciplinary effort of specialists working in strain isolation and maintenance, molecular taxonomy, FT-IR technique and chemo-metrics, data management and data basing.
Collapse
Affiliation(s)
- Claudia Colabella
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Perugia (Italy)
| | - Laura Corte
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Perugia (Italy)
| | - Luca Roscini
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Perugia (Italy)
| | - Volha Shapaval
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Norway
| | - Achim Kohler
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Norway
| | - Valeria Tafintseva
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Norway
| | - Carlo Tascini
- Azienda Ospedaliera dei Colli—Ospedale Cotugno, Napoli, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Perugia (Italy)
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials—Department of Chemistry, Biology and Biotechnology—University of Perugia, Perugia, Italy
| |
Collapse
|
28
|
Bumah VV, Aboualizadeh E, Masson-Meyers DS, Eells JT, Enwemeka CS, Hirschmugl CJ. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470nm) and methicillin-resistant Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:150-157. [DOI: 10.1016/j.jphotobiol.2016.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/08/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
29
|
Gurbanov R, Yıldız F. MOLECULAR PROFILE OF ORAL PROBIOTIC BACTERIA TO BE USED WITH FUNCTIONAL FOODS. ACTA ACUST UNITED AC 2017. [DOI: 10.3153/jfhs17015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
An infrared diagnostic system to detect causal agents of grapevine trunk diseases. J Microbiol Methods 2016; 131:1-6. [DOI: 10.1016/j.mimet.2016.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022]
|
31
|
Guzzon R, Gugole S, Zanzotti R, Malacarne M, Larcher R, von Wallbrunn C, Mescalchin E. Evaluation of the oenological suitability of grapes grown using biodynamic agriculture: the case of a bad vintage. J Appl Microbiol 2016; 120:355-65. [DOI: 10.1111/jam.13004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- R. Guzzon
- Edmund Mach Foundation; San Michele all'Adige Italy
| | - S. Gugole
- Edmund Mach Foundation; San Michele all'Adige Italy
| | - R. Zanzotti
- Edmund Mach Foundation; San Michele all'Adige Italy
| | - M. Malacarne
- Edmund Mach Foundation; San Michele all'Adige Italy
| | - R. Larcher
- Edmund Mach Foundation; San Michele all'Adige Italy
| | - C. von Wallbrunn
- Institute for Microbiology and Biochemistry; Hochschule Geisenheim University; Geisenheim Germany
| | | |
Collapse
|
32
|
Ghosh SB, Bhattacharya K, Nayak S, Mukherjee P, Salaskar D, Kale SP. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 148:420-426. [PMID: 25930088 DOI: 10.1016/j.saa.2015.03.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/13/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.
Collapse
Affiliation(s)
- S B Ghosh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - K Bhattacharya
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - S Nayak
- Karmaveer Bhaurao Patil College, Sector 10, Vashi, New Mumbai 400703, India
| | - P Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - D Salaskar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - S P Kale
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
33
|
Aguiar JC, Mittmann J, Ferreira I, Ferreira-Strixino J, Raniero L. Differentiation of Leishmania species by FT-IR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 142:80-85. [PMID: 25699696 DOI: 10.1016/j.saa.2015.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/11/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. RESULTS cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.
Collapse
Affiliation(s)
- Josafá C Aguiar
- Laboratório de Nanossensores - Instituto de Pesquisa & Desenvolvimento, Universidade do Vale do Paraíba - UNIVAP, Shishima Hifumi Avenue, 2911, Urbanova, 12244.000 São José dos Campos-SP, Brazil.
| | - Josane Mittmann
- Laboratório de Nanossensores - Instituto de Pesquisa & Desenvolvimento, Universidade do Vale do Paraíba - UNIVAP, Shishima Hifumi Avenue, 2911, Urbanova, 12244.000 São José dos Campos-SP, Brazil
| | - Isabelle Ferreira
- Laboratório de Nanossensores - Instituto de Pesquisa & Desenvolvimento, Universidade do Vale do Paraíba - UNIVAP, Shishima Hifumi Avenue, 2911, Urbanova, 12244.000 São José dos Campos-SP, Brazil
| | - Juliana Ferreira-Strixino
- Laboratório de Nanossensores - Instituto de Pesquisa & Desenvolvimento, Universidade do Vale do Paraíba - UNIVAP, Shishima Hifumi Avenue, 2911, Urbanova, 12244.000 São José dos Campos-SP, Brazil
| | - Leandro Raniero
- Laboratório de Nanossensores - Instituto de Pesquisa & Desenvolvimento, Universidade do Vale do Paraíba - UNIVAP, Shishima Hifumi Avenue, 2911, Urbanova, 12244.000 São José dos Campos-SP, Brazil
| |
Collapse
|
34
|
Edwards NP, Manning PL, Bergmann U, Larson PL, van Dongen BE, Sellers WI, Webb SM, Sokaras D, Alonso-Mori R, Ignatyev K, Barden HE, van Veelen A, Anné J, Egerton VM, Wogelius RA. Leaf metallome preserved over 50 million years. Metallomics 2014; 6:774-82. [PMID: 24804302 DOI: 10.1039/c3mt00242j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large-scale Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) elemental mapping and X-ray absorption spectroscopy are applied here to fossil leaf material from the 50 Mya Green River Formation (USA) in order to improve our understanding of the chemistry of fossilized plant remains. SRS-XRF of fossilized animals has previously shown that bioaccumulated trace metals and sulfur compounds may be preserved in their original distributions and these elements can also act as biomarkers for specific biosynthetic pathways. Similar spatially resolved chemical data for fossilized plants is sparsely represented in the literature despite the multitude of other chemical studies performed. Here, synchrotron data from multiple specimens consistently show that fossil leaves possess chemical inventories consisting of organometallic and organosulfur compounds that: (1) map discretely within the fossils, (2) resolve fine scale biological structures, and (3) are distinct from embedding sedimentary matrices. Additionally, the chemical distributions in fossil leaves are directly comparable to those of extant leaves. This evidence strongly suggests that a significant fraction of the chemical inventory of the examined fossil leaf material is derived from the living organisms and that original bioaccumulated elements have been preserved in situ for 50 million years. Chemical information of this kind has so far been unknown for fossilized plants and could for the first time allow the metallome of extinct flora to be studied.
Collapse
|
35
|
|
36
|
Polymer antimicrobial coatings with embedded fine Cu and Cu salt particles. Appl Microbiol Biotechnol 2014; 98:6265-74. [DOI: 10.1007/s00253-014-5670-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 12/26/2022]
|
37
|
Verma DK, Hasan SH, Singh DK, Singh S, Singh Y. Enhanced Biosorptive Remediation of Hexavalent Chromium Using Chemotailored Biomass of a Novel Soil Isolate Bacillus aryabhattai ITBHU02: Process Variables Optimization through Artificial Neural Network Linked Genetic Algorithm. Ind Eng Chem Res 2014. [DOI: 10.1021/ie404266k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Devendra Kumar Verma
- School of Biochemical Engineering and ‡Water Pollution
Research Laboratory,
Department of Applied Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 U.P., India
| | - Syed Hadi Hasan
- School of Biochemical Engineering and ‡Water Pollution
Research Laboratory,
Department of Applied Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 U.P., India
| | - Devendra Kumar Singh
- School of Biochemical Engineering and ‡Water Pollution
Research Laboratory,
Department of Applied Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 U.P., India
| | - Shalini Singh
- School of Biochemical Engineering and ‡Water Pollution
Research Laboratory,
Department of Applied Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 U.P., India
| | - Yogendra Singh
- School of Biochemical Engineering and ‡Water Pollution
Research Laboratory,
Department of Applied Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 U.P., India
| |
Collapse
|
38
|
Tang J, Yang B, Llewellyn I, Cutler RR, Donnan RS. Bacillus spores and their relevant chemicals studied by terahertz time domain spectroscopy. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Microspectroscopic infrared specular reflection chemical imaging of multi-component urinary stones: MIR vs. FIR. OPEN CHEM 2014. [DOI: 10.2478/s11532-013-0349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractSpecular reflection infrared microspectroscopy was used for chemical imaging of cross-sectioned urinary stones to determine their chemical composition and morphology simultaneously. Absorption spectral bands were recovered from reflection spectra by Kramers-Kronig transform. FUse of far-infrared radiation provides high-contrast images and allows more precise constituent distribution determinations than mid-infrared because band asymmetry after the transform caused by diffuse reflection is less in the far-infrared.
Collapse
|
40
|
Maity JP, Kar S, Lin CM, Chen CY, Chang YF, Jean JS, Kulp TR. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:478-484. [PMID: 23973597 DOI: 10.1016/j.saa.2013.07.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/17/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Bacterial spectra were obtained in the wavenumber range of 4000-600 cm(-1) using FTIR spectroscopy. FTIR spectral patterns were analyzed and matched with 16S-rRNA signatures of bacterial strains OS1 and OS2, isolated from oil sludge. Specific spectral bands obtained from OS1 (FJ226761), reference strain Bacillus flexus (ATCC 49095), OS2 (FJ215874) and reference strain Stenotrophomonas maltophilia (ATCC 19861) respectively, suggested that OS1 and ATCC 49095 were closely related whereas OS2 was different. The bands probably represent groups of proteins and lipids of specific bacteria. Separate peaks found in B. flexus were similar to those of OS1. The S. maltophilia (ATCC 19861) and OS2 exhibited a similar peak at 3272 cm(-1). Amide bands (I, II and III) exhibited that OS1 and B. flexus were closely related, but were different from OS2. In the fingerprint region, peak at 1096 cm(-1) and 1360 cm(-1) exhibited the specific fingerprints of OS2 and reference strain S. maltophilia (ATCC 19861), respectively. The specific fingerprint signature was found at 1339 cm(-1) for OS1 and at 1382 cm(-1) for B. flexus ATCC 49095, allowing these two strains of B. flexus to be differentiated. This spectral signature originated from phospholipid and RNA components of the cell. Principle components analysis (PCA) of spectral regions exhibited with distinct sample clusters between Bacillus flexus (ATCC 49095), S. maltophilia (ATCC 19861), OS1 and OS2 in amide and fingerprint region.
Collapse
Affiliation(s)
- Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, Ming-Shung, Chiayi County 62102, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bhat R. Potential Use of Fourier Transform Infrared Spectroscopy for Identification of Molds Capable of Producing Mycotoxins. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.609629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rajeev Bhat
- a Food Technology Division, School of Industrial Technology , Universiti Sains Malaysia , Penang , Malaysia
| |
Collapse
|
42
|
Dianawati D, Mishra V, Shah NP. Effect of drying methods of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris on secondary protein structure and glass transition temperature as studied by Fourier transform infrared and differential scanning calorimetry. J Dairy Sci 2013; 96:1419-30. [PMID: 23357021 DOI: 10.3168/jds.2012-6058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022]
Abstract
Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities.
Collapse
Affiliation(s)
- Dianawati Dianawati
- Tribhuwana Tunggadewi University, Jalan Telaga Warna, Malang 65145, East Java, Indonesia
| | | | | |
Collapse
|
43
|
Hessler CM, Wu MY, Xue Z, Choi H, Seo Y. The influence of capsular extracellular polymeric substances on the interaction between TiO₂ nanoparticles and planktonic bacteria. WATER RESEARCH 2012; 46:4687-4696. [PMID: 22789757 DOI: 10.1016/j.watres.2012.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/22/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
The role of capsular extracellular polymeric substances (EPS) at the surface of planktonic microorganisms was investigated for possible toxicity mitigation from titanium dioxide (TiO₂) nanoparticles, using variable EPS producing wild-type and isogenic mutant strains of Pseudomonas aeruginosa. Membrane integrity assays revealed that increased capsular EPS reduced cell membrane damage. Acting as a barrier to the cell membrane, capsular EPS permitted attachment of nanoparticles to the cell, while simultaneously delaying cellular damage caused by the production of reactive oxygen species (ROS). Modulations in ROS production were monitored in situ; while changes in the chemical composition of the microorganisms before and after exposure were examined with Fourier transform infrared spectroscopy (FTIR). The addition of methanol, a known radical scavenger, was shown to vastly reduce ROS production and membrane integrity losses, while not affecting physical interactions of nanoparticles with the microorganism. The results support that EPS provides an attachment site for nanoparticles, but more importantly act as a barrier to cell membrane oxidation from ROS. These observations provide better understanding of the overall importance of ROS in TiO₂ microbial toxicity.
Collapse
Affiliation(s)
- Christopher M Hessler
- Department of Chemical and Environmental Engineering, University of Toledo, 2801 W. Bancroft St., 3048 Nitschke Hall, Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
44
|
Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. BIOMATTER 2012; 2:176-94. [PMID: 23507884 PMCID: PMC3568104 DOI: 10.4161/biom.22905] [Citation(s) in RCA: 438] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field.
Collapse
Affiliation(s)
- Marta Ribeiro
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
45
|
Gautam R, Chandrasekar B, Deobagkar-Lele M, Rakshit S, Kumar B. N. V, Umapathy S, Nandi D. Identification of early biomarkers during acetaminophen-induced hepatotoxicity by fourier transform infrared microspectroscopy. PLoS One 2012; 7:e45521. [PMID: 23029070 PMCID: PMC3446881 DOI: 10.1371/journal.pone.0045521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/20/2012] [Indexed: 01/15/2023] Open
Abstract
Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/c mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2−/− mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnfα and Ifnγ in sera are not significantly affected, Nos2−/− mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.
Collapse
Affiliation(s)
- Rekha Gautam
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | | | - Srabanti Rakshit
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vinay Kumar B. N.
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (DN); (SU)
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (DN); (SU)
| |
Collapse
|
46
|
Role of calcium alginate and mannitol in protecting Bifidobacterium. Appl Environ Microbiol 2012; 78:6914-21. [PMID: 22843535 DOI: 10.1128/aem.01724-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fourier transform infrared (FTIR) spectroscopy was carried out to ascertain the mechanism of Ca-alginate and mannitol protection of cell envelope components and secondary proteins of Bifidobacterium animalis subsp. lactis Bb12 after freeze-drying and after 10 weeks of storage at room temperature (25°C) at low water activities (a(w)) of 0.07, 0.1, and 0.2. Preparation of Ca-alginate and Ca-alginate-mannitol as microencapsulants was carried out by dropping an alginate or alginate-mannitol emulsion containing bacteria using a burette into CaCl(2) solution to obtain Ca-alginate beads and Ca-alginate-mannitol beads, respectively. The wet beads were then freeze-dried. The a(w) of freeze-dried beads was then adjusted to 0.07, 0.1, and 0.2 using saturated salt solutions; controls were prepared by keeping Ca-alginate and Ca-alginate-mannitol in aluminum foil without a(w) adjustment. Mannitol in the Ca-alginate system interacted with cell envelopes during freeze-drying and during storage at low a(w)s. In contrast, Ca-alginate protected cell envelopes after freeze-drying but not during 10-week storage. Unlike Ca-alginate, Ca-alginate-mannitol was effective in retarding the changes in secondary proteins during freeze-drying and during 10 weeks of storage at low a(w)s. It appears that Ca-alginate-mannitol is more effective than Ca-alginate in preserving cell envelopes and proteins after freeze-drying and after 10 weeks of storage at room temperature (25°C).
Collapse
|
47
|
Zervakis GI, Bekiaris G, Tarantilis PΑ, Pappas CS. Rapid strain classification and taxa delimitation within the edible mushroom genus Pleurotus through the use of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Fungal Biol 2012; 116:715-28. [PMID: 22658316 DOI: 10.1016/j.funbio.2012.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/28/2012] [Accepted: 04/07/2012] [Indexed: 11/15/2022]
Abstract
Fourier transform infrared (FT-IR) spectroscopy has been successfully applied for the identification of bacteria and yeasts, but only to a limited extent for discriminating specific groups of filamentous fungi. In the frame of this study, 73 strains - from different associated hosts/substrates and geographic regions - representing 16 taxa of the edible mushroom genus Pleurotus (Basidiomycota, Agaricales) were examined through the use of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. A binary matrix, elaborated on the basis of presence/absence of specific absorbance peaks combined with cluster analysis, demonstrated that the spectral region 1800-600 cm(-1) permitted clear delimitation of individual strains into Pleurotus species. In addition, closely related species (e.g., Pleurotus ostreatus and Pleurotus pulmonarius) or taxa of the subgenus Coremiopleurotus demonstrated high similarity in their absorbance patterns, whereas genetically distinct entities such as Pleurotus dryinus, Pleurotus djamor, and Pleurotus eryngii provided spectra with noteworthy differences. When specific regions (1800-1700, 1360-1285, 1125-1068, and 950-650 cm(-1)) were evaluated in respect to the absorbance values demonstrated by individual strains, it was evidenced that this methodology could be eventually exploited for the identification of unknown Pleurotus specimens with a stepwise process and with the aid of a dichotomous key developed for this purpose. Moreover, it was shown that the nature of original fungal material examined (mycelium, basidiomata, and basidiospores) had an effect on the outcome of such analyses, and so did the use of different mycelium growth substrates. In conclusion, application of FT-IR spectroscopy provided a fast, reliable, and cost-efficient solution for the classification of pure cultures from closely related mushroom species.
Collapse
Affiliation(s)
- Georgios I Zervakis
- Agricultural University of Athens, Department of Agricultural Biotechnology, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece.
| | | | | | | |
Collapse
|
48
|
Barden HE, Wogelius RA, Li D, Manning PL, Edwards NP, van Dongen BE. Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird, Gansus yumenensis. PLoS One 2011; 6:e25494. [PMID: 22022404 PMCID: PMC3192724 DOI: 10.1371/journal.pone.0025494] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown evidence for the preservation of colour in fossilized soft tissues by imaging melanosomes, melanin pigment containing organelles. This study combines geochemical analyses with morphological observations to investigate the preservation of melanosomes and melanin within feathers of the Early Cretaceous bird, Gansus yumenensis. Scanning electron microscopy reveals structures concordant with those previously identified as eumelanosomes within visually dark areas of the feathers but not in lighter areas or sedimentary matrices. Fourier transform infrared analyses show different spectra for the feathers and their matrices; melanic functional groups appear in the feather including carboxylic acid and ketone groups that are not seen in the matrix. When mapped, the carboxylic acid group absorption faithfully replicates the visually dark areas of the feathers. Electron Paramagnetic Resonance spectroscopy of one specimen demonstrates the presence of organic signals but proved too insensitive to resolve melanin. Pyrolysis gas chromatography mass spectrometry shows a similar distribution of aliphatic material within both feathers that are different from those of their respective matrices. In combination, these techniques strongly suggest that not only do the feathers contain endogenous organic material, but that both geochemical and morphological evidence supports the preservation of original eumelanic pigment residue.
Collapse
Affiliation(s)
- Holly E Barden
- School of Earth Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
49
|
Bombalska A, Mularczyk-Oliwa M, Kwaśny M, Włodarski M, Kaliszewski M, Kopczyński K, Szpakowska M, Trafny EA. Classification of the biological material with use of FTIR spectroscopy and statistical analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:1221-1226. [PMID: 21257340 DOI: 10.1016/j.saa.2010.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/23/2010] [Indexed: 05/30/2023]
Abstract
Rapid detection and discrimination of dangerous biological materials such as bacteria and their spores has become a security aim of considerable importance. Various analytical methods, including FTIR spectroscopy combined with statistical analysis have been used to identify vegetative bacteria, bacterial spores and background interferants. The present work discusses the application of FTIR technique performed in reflectance mode using Horizontal Attenuated Total Reflectance accessory (HATR) to the discrimination of biological materials. In comparison with transmission technique the HATR is more rapid and do not require the sample destruction, simultaneously giving similar absorbance bands. HATR-FTIR results combined with statistical analysis PCA and HCA demonstrate that this combination provides novel and accurate microbial identification technique.
Collapse
Affiliation(s)
- Aneta Bombalska
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Petibois C, Desbat B. Clinical application of FTIR imaging: new reasons for hope. Trends Biotechnol 2010; 28:495-500. [PMID: 20828847 DOI: 10.1016/j.tibtech.2010.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 12/28/2022]
Abstract
In the 1990s, Fourier transform infrared (FTIR) imaging arrived as an analytical tool for the biological sciences. However, major limitations have appeared with respect to modern techniques of clinical imaging; slow acquisition of data, diffraction limitations, inability to image living biosystems, and weak sensitivity of detectors. Recent technological developments have demonstrated that FTIR imaging can be used to image living biosamples at the surface of specific crystals, lateral resolution can reach 100 nm without diffraction limits, and real-time imaging is accessible. These analytical improvements, in conjunction with industrial efforts in providing a new generation of high photon flux IR sources and more sensitive detectors, will give FTIR imaging a 'second chance' to be introduced into the clinic.
Collapse
Affiliation(s)
- Cyril Petibois
- Université de Bordeaux, CNRS UMR 5248 CBMN, 2 Rue Robert Escarpit, 33604 Pessac-Cedex, France.
| | | |
Collapse
|