1
|
Yuan X, Cheng S, Chen L, Cheng Z, Liu J, Zhang H, Yang J, Li Y. Iron oxides based nanozyme sensor arrays for the detection of active substances in licorice. Talanta 2023; 258:124407. [PMID: 36871515 DOI: 10.1016/j.talanta.2023.124407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
With the increasing applications of traditional Chinese medicines worldwide, authenticity identification and quality control are significant for them to go global. Licorice is a kind of medicinal material with various functions and wide applications. In this work, colorimetric sensor arrays based on iron oxide nanozymes were constructed to discriminate active indicators in licorice. Fe2O3, Fe3O4, and His-Fe3O4 nanoparticles were synthesized by a hydrothermal method, possessing excellent peroxidase-like activity that can catalyze the oxidation of 3,3',5,5' -tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue product. When licorice active substances were introduced in the reaction system, they showed competitive effect on peroxidase-mimicking activity of nanozymes, resulting in inhibitory effect on the oxidation of TMB. Based on this principle, four licorice active substances including glycyrrhizic acid, liquiritin, licochalcone A, and isolicoflavonol with the concentration ranging from 1 μM to 200 μM were successfully discriminated by the proposed sensor arrays. This work supplies a low cost, rapid and accurate method for multiplex discrimination of active substances to guarantee the authenticity and quality of licorice, which is also expected to be applied to distinguish other substances.
Collapse
Affiliation(s)
- Xiaohua Yuan
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Shaochun Cheng
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Linyi Chen
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Ziyu Cheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Liu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Jiao Yang
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Yingchun Li
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
A novel electrochemical sensor based on N, S co-doped liquorice carbon/functionalized MWCNTs nanocomposites for simultaneous detection of licochalcone A and liquiritin. Talanta 2023; 252:123869. [DOI: 10.1016/j.talanta.2022.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022]
|
3
|
The Effect of Terpenoid Natural Chinese Medicine Molecular Compound on Lung Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3730963. [PMID: 34956377 PMCID: PMC8702311 DOI: 10.1155/2021/3730963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.
Collapse
|
4
|
Evaluating the quality consistency of Rong’e Yishen oral liquid by UV + FTIR quantum profilings and HPLC fingerprints combined with 3-dimensional antioxidant profiles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021; 13:1759. [PMID: 34834174 PMCID: PMC8624722 DOI: 10.3390/pharmaceutics13111759] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.
Collapse
Affiliation(s)
- Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Yousra A. El-Maradny
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt;
| | - Alaa A. Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo 12256, Egypt;
| | - Amira M. G. Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), Alexandria 21934, Egypt;
| | - Hebatallah H. Abo Nahas
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Mohamed A. Abdel-Rahman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Bassem A. Balbool
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12585, Egypt;
| | - Ahmed M. Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Li J, Xu D, Wang L, Zhang M, Zhang G, Li E, He S. Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment. Molecules 2021; 26:6090. [PMID: 34684671 PMCID: PMC8539771 DOI: 10.3390/molecules26206090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Glycyrrhizic acid (GA), also known as glycyrrhizin, is a triterpene glycoside isolated from plants of Glycyrrhiza species (licorice). GA possesses a wide range of pharmacological and antiviral activities against enveloped viruses including severe acute respiratory syndrome (SARS) virus. Since the S protein (S) mediates SARS coronavirus 2 (SARS-CoV-2) cell attachment and cell entry, we assayed the GA effect on SARS-CoV-2 infection using an S protein-pseudotyped lentivirus (Lenti-S). GA treatment dose-dependently blocked Lenti-S infection. We showed that incubation of Lenti-S virus, but not the host cells with GA prior to the infection, reduced Lenti-S infection, indicating that GA targeted the virus for infection. Surface plasmon resonance measurement showed that GA interacted with a recombinant S protein and blocked S protein binding to host cells. Autodocking analysis revealed that the S protein has several GA-binding pockets including one at the interaction interface to the receptor angiotensin-converting enzyme 2 (ACE2) and another at the inner side of the receptor-binding domain (RBD) which might impact the close-to-open conformation change of the S protein required for ACE2 interaction. In addition to identifying GA antiviral activity against SARS-CoV-2, the study linked GA antiviral activity to its effect on virus cell binding.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Topcel Biological Technology Co., Ltd., Nanjing 210093, China
| | - Dongge Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Centre, Medical School, Nanjing University, Yancheng 224000, China
| | - Lingling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Mengyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Centre, Medical School, Nanjing University, Yancheng 224000, China
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541006, China;
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Shenzhen Institute of Nanjing University, Shenzhen 518000, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China; (J.L.); (D.X.); (L.W.); (M.Z.)
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Centre, Medical School, Nanjing University, Yancheng 224000, China
| |
Collapse
|
7
|
Xu M, Zhang H, Tang T, Zhou J, Zhou W, Tan S, He B. Potential and applications of capillary electrophoresis for analyzing traditional Chinese medicine: a critical review. Analyst 2021; 146:4724-4736. [PMID: 34269779 DOI: 10.1039/d1an00767j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capillary electrophoresis (CE) presents a promising possibility for analyzing traditional Chinese medicine (TCM) due to its low reagent consumption, high analysis speed, and enhanced efficiency. Herein we review the employment of CE for analyzing the effective components in TCM and identifying TCM via a fingerprint. Furthermore, we discuss the application of state-of-the-art capillary electrophoresis modes for screening enzyme inhibitors and investigating the interactions between TCM and plasma proteins. The review concludes with recommendations for future studies and improvements in this field of research. The general development trend identified in this review indicates that the application of CE has significantly improved TCM assay performance.
Collapse
Affiliation(s)
- Mengchang Xu
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Tong Tang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Ji Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
8
|
Recent advances in chemical analysis of licorice (Gan-Cao). Fitoterapia 2020; 149:104803. [PMID: 33309652 DOI: 10.1016/j.fitote.2020.104803] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 01/07/2023]
Abstract
Gan-Cao, or licorice, the dried roots and rhizomes of Glycyrrhiza uralensis, G.glabra, and G.inflata, has received considerable interest due to its extensive application in traditional Chinese medicine (TCM) prescriptions (60% approximately), clinical therapy, and as food additives world-wide. Chemical analysis is an important approach to understand the active pharmaceutical components in licorice and its prescriptions, as well as to develop novel methodologies for their quality assessment and control. This comprehensive review describes the advances in the chemical analysis, including sample preparation methods, qualitative and quantitative analysis and biological specimen analysis, based on 113 references for the recent years. Newly established methods are summarized, such as high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC), liquid chromatography tandem mass spectrometry (LC-MS), capillary electrophoresis (CE) and near infrared spectroscopy (NIR), which allows the identification, authentication, and simultaneous detection of multiple compounds in licorice with higher throughput and sensitivity. It is anticipated that this review could provide imperative information for improving the existing quality evaluation methods of licorice and afford scientific basis for further researches on the pharmacodynamic substances of licorice.
Collapse
|
9
|
An electroanalytical method for glabridin investigation based on poly(diallyldimethylammonium chloride)-functionalized graphene-modified electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Shao Q, Hu W, Liu X, Zhou R, Wei Y. Separation of five bioactive compounds from Glycyrrhiza uralensis Fisch using a general three-liquid-phase flotation followed by preparative high-performance liquid chromatography. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1655456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qian Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Weilun Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Xuerui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Rongfei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
11
|
Bai H, Bao F, Fan X, Han S, Zheng W, Sun L, Yan N, Du H, Zhao H, Yang Z. Metabolomics study of different parts of licorice from different geographical origins and their anti-inflammatory activities. J Sep Sci 2020; 43:1593-1602. [PMID: 32032980 DOI: 10.1002/jssc.201901013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023]
Abstract
Glycyrrhiza uralensis Fisch., known as licorice, is one of the most famous traditional Chinese medicines. In this study, we perform a metabolome analysis using liquid chromatography-tandem mass spectrometry to assign bioactive components in different parts of licorice from different geographical origins in Gansu province of China. Sixteen potential biomarkers of taproots from different geographical origins were annotated, such as glycycoumarin, gancaonin Z, licoricone, and dihydroxy kanzonol H mainly exist in the sample of Jiuquan; neoliquiritin, 6'-acetylliquiritin, licochalcone B, isolicoflavonol, glycyrol, and methylated uralenin mainly exist in Glycyrrhiza uralensis from Lanzhou; gancaonin L, uralenin, and glycybridin I mainly exist in licorice from Wuwei for the first time.
Collapse
Affiliation(s)
- Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fang Bao
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenhui Zheng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
12
|
Weng Q, Chen L, Ye L, Lu X, Yu Z, Wen C, Chen Y, Huang G. Determination of licochalcone A in rat plasma by UPLC–MS/MS and its pharmacokinetics. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2018.00491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Qinghua Weng
- The Third Clinical Institute Affiliated to Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou 325000, China
| | - Lianguo Chen
- The Third Clinical Institute Affiliated to Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou 325000, China
| | - Luxin Ye
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaojie Lu
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zheng Yu
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, 325035, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yichuan Chen
- The Third Clinical Institute Affiliated to Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou 325000, China
| | - Gang Huang
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323000, China
- Institute of Integrated Traditional Chinese and Western Medicine of Lishui, Lishui 323000, China
| |
Collapse
|
13
|
Abstract
A novel symmetrical structure, Gancao cyclooctenone A (1), was isolated from Radix Glycyrrhizae. The structure of the compound was established on the basis of the spectroscopic data including 1D and 2D NMR spectroscopy and mass spectrometry. Cytotoxic activities of compound 1 on A549 and Hela cell lines were evaluated and the IC50 values were determined to be 63.21 and 45.82 μΜ, respectively.
Collapse
Affiliation(s)
- Songsong Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Ying Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Zheng Xiang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| |
Collapse
|
14
|
Zhang Y, Wang C, Yang F, Sun G. A strategy for qualitative and quantitative profiling of glycyrrhiza extract and discovery of potential markers by fingerprint-activity relationship modeling. Sci Rep 2019; 9:1309. [PMID: 30718789 PMCID: PMC6361909 DOI: 10.1038/s41598-019-38601-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023] Open
Abstract
This study was to evaluate the quality consistency of glycyrrhiza extract and to explore the possible anti-oxidant components in combination with chromatographic fingerprint and bioactivity evaluation. Characteristic fingerprints of glycyrrhiza extract samples from different sources were generated by high performance liquid chromatography with diode array detector (HPLC-DAD) and evaluated using hierarchical clustering and similarity analysis. Compared with the conventional qualitative similarity evaluation method, the averagely linear quantified fingerprint method had an important quantitative similarity parameter supported by quantitative analysis, which was recommended in the fingerprint evaluation. Antioxidant activities of the glycyrrhiza extract samples were determined by DPPH (2, 2-diphenyl-1-picryldrazyl) radical scavenging assays. In addition, the fingerprint-efficacy relationship was investigated by the chemical fingerprints and the anti-oxidant activities utilizing partial least squares model, which was capable of exploring and discovering the bioactive components of glycyrrhiza extracts. Therefore, the present study provided a powerful strategy to evaluate the holistic quality consistency of medicinal plant.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Chao Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fangliang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China.
| |
Collapse
|
15
|
Shaoyao-Gancao Decoction alleviated hyperandrogenism in a letrozole-induced rat model of polycystic ovary syndrome by inhibition of NF-κB activation. Biosci Rep 2019; 39:BSR20181877. [PMID: 30573529 PMCID: PMC6328870 DOI: 10.1042/bsr20181877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/29/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Shaoyao-Gancao Decoction (SGD) has been widely used for the treatment of gynopathy. The present study aimed to evaluate the therapeutic effect and potential mechanism of SGD on hyperandrogenism in polycystic ovary syndrome (PCOS) rats. In the present work, SGD was orally administrated to the PCOS rats at the dose of 12.5, 25, and 50 g/kg/d for 14 consecutive days. UPLC–MS/MS was performed to identify the main chemical components of SGD. Body weight, ovarian weight, cystic dilating follicles, and serum levels of steroid hormones were tested to evaluate the therapeutic effect of SGD. In order to further clarify the underlying mechanism, we also measured mRNA and the protein levels of NF-κB, NF-κB p65, P-NF-κB p65, and IκB by RT-qPCR and Western blotting techniques. Our results showed that SGD treatment significantly alleviated hyperandrogenism in PCOS rats as evidenced by reduced serum levels of T and increased E2 and FSH levels. In addition, SGD effectively reduced the phosphorylation of NF-κB p65 and increased the expression of IκB. Results of the present study demonstrated that SGD could ameliorate hyperandrogenism in PCOS rats, and the potential mechanism may relate to the NF-κB pathway.
Collapse
|
16
|
Zhao S, Yan X, Zhao Y, Wen J, Zhao Z, Liu H. Dihydroisocoumarins from Radix Glycyrrhizae. Chem Cent J 2018; 12:58. [PMID: 29748827 PMCID: PMC5945569 DOI: 10.1186/s13065-018-0427-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radix Glycyrrhizae is the rhizome of Glycyrrhiza inflata Bat., Glycyrrhiza uralensis Fisch. or Glycyrrhiza glabra L. The present paper describes the isolation and the structural elucidation of three new dihydroisocoumarins obtained from the 70% EtOH extract of Radix Glycyrrhizae. And the cytotoxic activities of these new compounds were also evaluated using four cell lines, subsequently. RESULTS A pair of new dihydroisocoumarin epimers ((3R,4S)-4,8-dihydroxy-3-methyl-1-oxoisochroman-5-yl)methyl acetate (1) and ((3R,4R)-4,8-dihydroxy-3-methyl-1-oxoisochroman-5-yl)methyl acetate (2) along with a new dihydroisocoumarin (3R,4R)-4,8-dihydroxy-3,5-dimethylisochroman-1-one (3) were isolated from Radix Glycyrrhizae. Their structures were elucidated on the basis of chemical and spectral analysis, including 1D, 2D NMR analyses, HR-ESI-MSand ECD calculation comparing with those of experimental CD spectra. Cytotoxic activities of the three compounds were evaluated using the HepG2, A549, LoVo and Hela cell lines, respectively. IC50 values indicated compounds 1-3 exhibited moderate or less cytotoxic activity in vitro. CONCLUSIONS Dihydroisocoumarin is not the common components in Radix Glycyrrhizae, a series of dihydroisocoumarin were obtained in this plant could be a supplement to the chemical study of this plant.
Collapse
Affiliation(s)
- Songsong Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Xinjia Yan
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Ying Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Jing Wen
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Zhenzhen Zhao
- Department of Educational Administration, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, 110042, China.
| |
Collapse
|
17
|
Zhang X, Liang C, Yin J, Sun Y, Zhang L. Identification of metabolites of liquiritin in rats by UHPLC-Q-TOF-MS/MS: metabolic profiling and pathway comparisonin vitroandin vivo. RSC Adv 2018; 8:11813-11827. [PMID: 35542822 PMCID: PMC9079117 DOI: 10.1039/c7ra13760e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/03/2018] [Indexed: 12/22/2022] Open
Abstract
Liquiritin (LQ), the main bioactive constituent of licorice, is a common flavoring and sweetening agent in food products and has a wide range of pharmacological properties, including antidepressant-like, neuroprotective, anti-cancer and anti-inflammatory properties. This study investigated the metabolic pathways of LQ in vitro (rat liver microsomes) and in vivo (rat model) using ultra high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Moreover, supplementary tools such as key product ions (KPIs) were employed to search for and identify compounds. As a result, 56 in vivo metabolites and 15 in vitro metabolites were structurally characterized. Oxidation, reduction, hydrolysis, methylation, acetylation, and sulfate and glucuronide conjugation were determined to be the major metabolic pathways of LQ, and there were differences in LQ metabolism in vitro and in vivo. In addition, the in vitro and in vivo metabolic pathways were compared in this study. Liquiritin (LQ), the main bioactive constituent of licorice, is a common flavoring and sweetening agent in food products and has a wide range of pharmacological properties, including antidepressant-like, neuroprotective and anti-cancer properties.![]()
Collapse
Affiliation(s)
- Xia Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Caijuan Liang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Jintuo Yin
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| |
Collapse
|
18
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
19
|
Effects of Active Components of Fuzi and Gancao Compatibility on Bax, Bcl-2, and Caspase-3 in Chronic Heart Failure Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7686045. [PMID: 28053643 PMCID: PMC5178377 DOI: 10.1155/2016/7686045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/29/2022]
Abstract
Hypaconitine (HA) and glycyrrhetinic acid (GA) are active components of Fuzi (Aconitum carmichaelii) and Gancao (Glycyrrhiza uralensis Fisch); they have been used in compatibility for chronic heart failure (CHF) from ancient times. The purpose of the present research was to explore whether apoptosis pathways were related with the protective effects of HA + GA against CHF rats or not. The rats were progressed with transverse-aortic constriction (TAC) operation for 4 weeks to build the CHF state, and then the Digoxin (1 mg/kg), HA (2.07 mg/kg), GA (25 mg/kg), and HA (2.07 mg/kg) + GA (25 mg/kg) were orally administrated to rats for 1 week. The levels of BNP and cTnI in the plasma were decreased in the HA + GA group, and the heart/body weight ratio (H/B) and left ventricular (LV) parameters of transthoracic echocardiography were also declined; moreover, the expressions of Bax, Bcl-2, and caspase-3 were all improved in the HA + GA group than other groups in the immunohistochemistry and western blot methods. In general, the data suggested that Fuzi and Gancao compatibility could protect the CHF rats from apoptosis, which provided a strong evidence for further searching for mechanisms of them.
Collapse
|
20
|
Li G, Nikolic D, van Breemen RB. Identification and Chemical Standardization of Licorice Raw Materials and Dietary Supplements Using UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8062-8070. [PMID: 27696846 PMCID: PMC5378676 DOI: 10.1021/acs.jafc.6b02954] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Defined as the roots and underground stems of principally three Glycyrrhiza species, Glycyrrhiza glabra L., Glycyrrhiza uralensis Fish. ex DC., and Glycyrrhiza inflata Batalin, licorice has been used as a medicinal herb for millennia and is marketed as root sticks, powders, and extracts. Identity tests described in most pharmacopeial monographs enabled the distinction of Glycyrrhiza species. Accordingly, an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay using the method of standard addition was developed to quantify 14 licorice components (liquiritin, isoliquiritin, liquiritin apioside, isoliquiritin apioside, licuraside, liquiritigenin, isoliquiritigenin, glycyrrhizin, glycyrrhetinic acid, glabridin, glycycoumarin, licoricidin, licochalcone A, and p-hydroxybenzylmalonic acid), representing several natural product classes including chalcones, flavanones, saponins, and isoflavonoids. Using this approach, G. glabra, G. uralensis, and G. inflata in a variety of forms including root powders and extracts as well as complex dietary supplements could be differentiated and chemically standardized without concerns due to matrix effects.
Collapse
Affiliation(s)
- Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy , Chicago, Illinois 60612, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy , Chicago, Illinois 60612, United States
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy , Chicago, Illinois 60612, United States
| |
Collapse
|
21
|
Hoffmann KM, Herbrechter R, Ziemba PM, Lepke P, Beltrán L, Hatt H, Werner M, Gisselmann G. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors. Front Pharmacol 2016; 7:219. [PMID: 27524967 PMCID: PMC4965468 DOI: 10.3389/fphar.2016.00219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications.
Collapse
Affiliation(s)
- Katrin M Hoffmann
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Robin Herbrechter
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Paul M Ziemba
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Peter Lepke
- Kronen Apotheke Wuppertal Wuppertal, Germany
| | - Leopoldo Beltrán
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Markus Werner
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
22
|
Syed YH, Khan M. Chromatographic Profiling of Ellagic Acid in Woodfordia fruticosa Flowers and their Gastroprotective Potential in Ethanol-induced Ulcers in Rats. Pharmacognosy Res 2016; 8:S5-S11. [PMID: 27114692 PMCID: PMC4821107 DOI: 10.4103/0974-8490.178649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Woodfordia fruticosa, a plant of Indian origin, is extensively used in folk medicine for the treatment of various ailments. OBJECTIVE The aim of the present study was to standardize the flowers of W. fruticosa, Kurz (Lythraceae), an important plant of Indian origin and explore the chemical constituents contributing to its anti-ulcer activity. MATERIALS AND METHODS High-performance thin layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC) profiling of the three samples of W. fruticosa flowers purchased from three different markets was done using ellagic acid as the biomarker. Two doses of the aqueous extract of the W. fruticosa (AEWF) flowers were evaluated for anti-ulcer activity by ethanol-induced ulcer model in Wistar albino rats. Omeprazole was used as the positive control. The parameters used for the assessment of the anti-ulcer potential were total titratable acidity (TTA), ulcer index, and percentage protection. RESULTS The HPTLC and HPLC studies confirmed the presence of ellagic acid in all the three drug samples. The AEWF showed significant reduction in terms of TTA at both doses of 100 mg/kg and 200 mg/kg. The gastroprotection indicated by a lower ulcer index and higher percentage protection was significant for 200 mg/kg dose of AEWF, better than the protection afforded by omeprazole (10 mg/kg). CONCLUSION The chromatographic profiling and the anti-ulcer studies served as an efficient tool in the characterization of ellagic acid as an important biomarker for the flowers of W. fruticosa and a probable contributor to the gastroprotective capacity of the drug. The bioactivity studies further supported the traditional use of W. fruticosa in the treatment of ulcers. SUMMARY HPTLC & HPLC fingerprinting of W. fruticosa using ellagic acid as a biomarker.Evaluation of W. fruticosa for gastroprotection potential in ethanol induced gastric ulcer in rats model.Aqueous extract of the drug showed better gastroprotection than the standard drug omeprazole at a dose of 200 mg/kg.
Collapse
Affiliation(s)
- Yousuf Hussain Syed
- Department of Pharmacognosy, MESCO College of Pharmacy, Hyderabad, Telangana, India
| | - Mohib Khan
- Department of Pharmacognosy, Oriental College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
23
|
zhu Z, Tao W, Li J, Guo S, Qian D, Shang E, Su S, Duan JA. Rapid determination of flavonoids in licorice and comparison of three licorice species. J Sep Sci 2016; 39:473-82. [DOI: 10.1002/jssc.201500685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/25/2015] [Accepted: 11/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenhua zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Jianping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Nanjing University of Chinese Medicine; Nanjing China
| |
Collapse
|
24
|
Abstract
Liquorice foliage
Collapse
|
25
|
Liu X, Li Q, Lv C, Du Y, Xu H, Wang D, Li M, Li B, Li J, Bi K. Combination of the advantages of chromatographic methods based on active components for the quality evaluation of licorice. J Sep Sci 2015; 38:4180-6. [DOI: 10.1002/jssc.201500770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/05/2015] [Accepted: 10/04/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Xujia Liu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Qing Li
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Chunxiao Lv
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Yiyang Du
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Huarong Xu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Di Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Mingxiao Li
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Bohui Li
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Jing Li
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Kaishun Bi
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
26
|
Khalesi M. Ochratoxin A in liquorice products – a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:2086-92. [DOI: 10.1080/19440049.2015.1094708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Simmler C, Anderson JR, Gauthier L, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. JOURNAL OF NATURAL PRODUCTS 2015; 78:2007-22. [PMID: 26244884 PMCID: PMC4553119 DOI: 10.1021/acs.jnatprod.5b00342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Raw licorice roots represent heterogeneous materials obtained from mainly three Glycyrrhiza species. G. glabra, G. uralensis, and G. inflata exhibit marked metabolite differences in terms of flavanones (Fs), chalcones (Cs), and other phenolic constituents. The principal objective of this work was to develop complementary chemometric models for the metabolite profiling, classification, and quality control of authenticated licorice. A total of 51 commercial and macroscopically verified samples were DNA authenticated. Principal component analysis and canonical discriminant analysis were performed on (1)H NMR spectra and area under the curve values obtained from UHPLC-UV chromatograms, respectively. The developed chemometric models enable the identification and classification of Glycyrrhiza species according to their composition in major Fs, Cs, and species specific phenolic compounds. Further key outcomes demonstrated that DNA authentication combined with chemometric analyses enabled the characterization of mixtures, hybrids, and species outliers. This study provides a new foundation for the botanical and chemical authentication, classification, and metabolomic characterization of crude licorice botanicals and derived materials. Collectively, the proposed methods offer a comprehensive approach for the quality control of licorice as one of the most widely used botanical dietary supplements.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Jeffrey R. Anderson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Laura Gauthier
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - David C. Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - James B. McAlpine
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| |
Collapse
|
28
|
Herbrechter R, Ziemba PM, Hoffmann KM, Hatt H, Werner M, Gisselmann G. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids. Front Pharmacol 2015; 6:130. [PMID: 26191003 PMCID: PMC4490227 DOI: 10.3389/fphar.2015.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022] Open
Abstract
The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g., setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3Areceptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonism of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (-)-liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (-)-liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito.
Collapse
Affiliation(s)
- Robin Herbrechter
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Paul M Ziemba
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Katrin M Hoffmann
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Markus Werner
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
29
|
Wei SS, Yang M, Chen X, Wang QR, Cui YJ. Simultaneous determination and assignment of 13 major flavonoids and glycyrrhizic acid in licorices by HPLC-DAD and Orbirap mass spectrometry analyses. Chin J Nat Med 2015; 13:232-40. [PMID: 25835368 DOI: 10.1016/s1875-5364(15)30009-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Indexed: 10/23/2022]
Abstract
To determine 13 flavonoids and glycyrrhizic acid in licorice (Glycyrrhiza spp.), several samples from different areas were examined by HPLC-DAD analysis. The analysis was performed on a Zorbax Extend-C18 (250 mm × 4.6 mm, 5 μm) column connected with a Zorbax Extend guard column (20 mm × 4.6 mm, 5 μm). The mobile phase consisted of (A) acetonitrile and (B) 0.026% aqueous H3PO4 (VV) using a gradient elution of 20%-25% A at 0-20 min, 25%-33% A at 20-30 min, 33%-50% A at 30-55 min, 50%-60% A at 55-65 min, and 60% A between 65 min and 80 min, and peaks were detected at 280 nm. The fourteen compounds were assigned by HPLC-Orbitrap MS methods. The regression coefficient for the linear equations for the 14 compounds ranged between 0.9998 and 1. The limits of detection and quantification lay in the range of 0.032-2.461 and 0.154-8.202 μg·mL(1), respectively. The relative recovery rates for the 14 compounds were in the range of 93.90%-106.73% with RSDs being less than 5%. Coefficient variations for intra-day and inter-day precisions were in the range of 0.27%-2.38% and 0.31%-3.51%, respectively. In summary, the validated method was applied to the simultaneous determination of the 14 components in 29 different licorice samples and was proven to be suitable for quality evaluation of licorices and their active fractions.
Collapse
Affiliation(s)
- Shan-Shan Wei
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Yang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xin Chen
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiu-Rong Wang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya-Jun Cui
- School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
30
|
Xie J, Zhang Y, Wang W, Hou J. Identification and simultaneous determination of glycyrrhizin, formononetin, glycyrrhetinic acid, liquiritin, isoliquiritigenin, and licochalcone A in licorice by LC-MS/MS. ACTA CHROMATOGR 2014. [DOI: 10.1556/achrom.26.2014.3.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Chang L, Wei Y, Bi PY, Shao Q. Recovery of liquiritin and glycyrrhizic acid from Glycyrrhiza uralensis Fisch by aqueous two-phase flotation and multi-stage preparative high performance liquid chromatography. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.07.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Basar N, Talukdar AD, Nahar L, Stafford A, Kushiev H, Kan A, Sarker SD. A simple semi-preparative reversed-phase HPLC/PDA method for separation and quantification of glycyrrhizin in nine samples of Glycyrrhiza glabra root collected from different geographical origins. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:399-404. [PMID: 24585378 DOI: 10.1002/pca.2507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is one of the most popular ingredients in several traditional herbal medicinal preparations, and glycyrrhizin is the major glycoside present in this plant. The content of glycyrrhizin may vary among G. glabra samples collected from various geographical origins, which may affect the therapeutic efficacy. Thus, quantification of glycyrrhizin in G. glabra samples is important. OBJECTIVE To develop and validate a simple semi-preparative reversed-phase HPLC with photodiode array (PDA) method for separation and quantification of glycyrrhizin in nine samples of G. glabra root collected from various geographical origins. METHODS Dried and ground root of G. glabra was Soxhlet-extracted sequentially with n-hexane and methanol (MeOH). The separation and quantification of glycyrrhizin was achieved on a C18 reversed-phase semi-preparative column using a gradient mobile phase, 30-100% solvent B in solvent A in 30 min (solvent A: 0.1% v/v trifluoroacetic acid (TFA) in water and solvent B: 0.1% v/v of TFA in MeOH), at a flow rate of 3.00 mL/min and UV detection at 254 nm. RESULTS A simple semi-preparative reversed-phase HPLC/PDA method allowing clear separation and quantification of glycyrrhizin content in nine samples has been validated in terms of linearity, selectivity, limits of detection, precision, accuracy and detection. Concentration levels of glycyrrhizin were between 0.177 and 0.688% w/w of dry materials. CONCLUSION This method is precise, less time consuming and more cost effective, and can be used for the quality control of any G. glabra sample with regard to its glycyrrhizin contents.
Collapse
Affiliation(s)
- Norazah Basar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia; Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Simmler C, Jones T, Anderson JR, Nikolić DC, van Breemen RB, Soejarto DD, Chen SN, Pauli GF. Species-specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:378-88. [PMID: 25859589 PMCID: PMC4391967 DOI: 10.1002/pca.2472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Major phenolics from licorice roots (Glycyrrhiza sp.) are glycosides of the flavanone liquiritigenin (F) and its 2′-hydroxychalcone isomer, isoliquiritigenin (C). As the F and C contents fluctuate between batches of licorice, both quality control and standardisation of its preparations become complex tasks. OBJECTIVE To characterise the F and C metabolome in extracts from Glycyrrhiza glabra L. and Glycyrrhiza uralensis Fisch. ex DC. by addressing their composition in major F–C pairs and defining the total F:C proportion. MATERIAL AND METHODS Three types of extracts from DNA-authenticated samples were analysed by a validated UHPLC/UV method to quantify major F and C glycosides. Each extract was characterised by the identity of major F–C pairs and the proportion of Fs among all quantified Fs:Cs. RESULTS The F and C compositions and proportions were found to be constant for all extracts from a Glycyrrhiza species. All G. uralensis extracts contained up to 2.5 more Fs than G. glabra extracts. Major F–C pairs were B-ring glycosidated in G. uralensis, and A-/B-ring apiosyl-glucosidated in the G. glabra extracts. The F:C proportion was found to be linked to the glycosidation site: the more B-ring F-C glycosides were present, the higher was the final F:C proportion in the extract. These results enable the chemical differentiation of extracts from G. uralensis and G. glabra, which are characterised by total F:C proportions of 8.37:1.63 and 7.18:2.82, respectively. CONCLUSION Extracts from G. glabra and G. uralensis can be differentiated by their respective F and C compositions and proportions, which are both useful for further standardisation of licorice botanicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guido F. Pauli
- Correspondence to: G. F. Pauli, UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 S. Wood Street, Chicago, Illinois, 60612, USA.
| |
Collapse
|
34
|
Wang Y, Wang P, Xu C, Yang Y, Li J, Chen T, Li Z, Cui W, Zhou Q, Sun S, Li H. Macro-fingerprint analysis-through-separation of licorice based on FT-IR and 2DCOS-IR. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Park M, Lee JH, Choi JK, Hong YD, Bae IH, Lim KM, Park YH, Ha H. 18β-glycyrrhetinic acid attenuates anandamide-induced adiposity and high-fat diet induced obesity. Mol Nutr Food Res 2014; 58:1436-46. [PMID: 24687644 DOI: 10.1002/mnfr.201300763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/17/2022]
Abstract
SCOPE Previous reports suggest that licorice extract has various metabolically beneficial effects and may help to alleviate adiposity and hyperlipidemia. However, underlying anti-obesity mechanisms still remain elusive. Moreover, it is unknown which single ingredient in licorice extract would mediate such effects. We aimed to demonstrate that licorice extract and its active ingredients can inhibit adipocyte differentiation and fat accumulation. METHODS AND RESULTS 18β-glycyrrhetinic acid (18β-GA) alleviated the effects of CB1R agonist, anandamide (AEA) on CB1R signaling in a concentration-dependent manner. Consistently, 18β-GA suppressed AEA-induced adipocyte differentiation in 3T3-L1 cells through the downregulation of AEA-induced MAPK activation and expression of adipogenic genes including C/EBP-α and PPAR-γ. The protein levels of fatty acid synthase and stearoyl-CoA desaturase 1 were also decreased and the phosphorylation of acetyl-CoA carboxylase was increased in 18β-GA pretreated cells. The supplementation of 18β-GA significantly lowered body weight, fat weight, and plasma lipids levels in obese animal models. CONCLUSION These results may provide a novel insight into the molecular mechanism involved in anti-adipogenic and anti-obesity effects of 18β-GA by suppressing the activation of CB1R induced by AEA. Thus, 18β-GA may exert beneficial effects against obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Miyoung Park
- Medical Beauty Research Institute, Amorepacific Corporation R&D Center, Yongin, Korea; Departments of Pharmaceutical Science, College of Pharmacy, Global Top 5 Program, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dirican E, Turkez H. In vitro studies on protective effect of Glycyrrhiza glabra root extracts against cadmium-induced genetic and oxidative damage in human lymphocytes. Cytotechnology 2014; 66:9-16. [PMID: 23325115 PMCID: PMC3886544 DOI: 10.1007/s10616-012-9531-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022] Open
Abstract
Cadmium is a modern environmental contaminant that is toxic and carcinogenic. Glycyrrhiza glabra is a traditional medicinal herb which grows in the various parts of the World. Recent studies demonstrated that G. glabra has antifungal, antimicrobial, antioxidant, and powerful antiinflammatory features. The purpose of this study was to investigate the genetic safety of extracts from G. glabra and its effects on cadmium (as CdCl2) induced genotoxicity. Therefore we evaluated the capability of G. glabra extract to inhibit the rate of micronucleus (MN), sister chromatid exchange (SCE) formations induced by CdCl2. Moreover, to assess the effects of G. glabra on cell viability and oxidative status, we performed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and total antioxidant capacity (TAC) assays. Our results showed that there were significant increases (P < 0.05) in both SCE and MN frequencies of cultures treated with CdCl2 (5 ppm) as compared to controls. However, co-application of G. glabra extract (5, 10 and 20 ppm) and CdCl2 resulted in decreases of MN and SCE rates as compared to the group treated with CdCl2 alone. Again, the results of MTT and TAC assays clearly indicated dose dependent ameliorative effects of G. glabra extracts against CdCl2 toxicity. In conclusion, this study demonstrated for the first time that G. glabra extracts provided increased resistance of DNA against CdCl2 induced genetic and oxidative damage in human lymphocytes. So, the risk on target tissues of CdCl2 could be reduced and ensured early recovery from its toxicity.
Collapse
Affiliation(s)
- Ebubekir Dirican
- Department of Medical Biology, Medical Faculty, Mustafa Kemal University, 31034, Hatay, Turkey,
| | | |
Collapse
|
37
|
Yao Y, Zhang X, Wang Z, Zheng C, Li P, Huang C, Tao W, Xiao W, Wang Y, Huang L, Yang L. Deciphering the combination principles of Traditional Chinese Medicine from a systems pharmacology perspective based on Ma-huang Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:619-638. [PMID: 24064232 DOI: 10.1016/j.jep.2013.09.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The main therapeutic concept in Traditional Chinese Medicine (TCM) is herb formula, which treats various diseases via potential herb interactions to maximize the efficacy and minimize the adverse effects. However, the combination principle of herb formula still remains a mystery due to the lack of appropriate methods. METHODS A systems pharmacology method integrating the pharmacokinetic analysis, drug targeting, and drug-target-disease network is developed to dissect this rule embedded in the herbal formula. All these are exemplified by a representative TCM formula, Ma-huang decoction, made up of four botanic herbs. RESULTS Based on the deep investigation of the function and compatibility of each herb, in a molecular/systems level, we demonstrate the different pharmacological roles that each herb might play in the prescription. By the way of enhancing the bioavailability and/or making the pharmacological synergy among different herbs, the four herbs effectively combine together to be suitable for treating diseases. CONCLUSIONS The present work lays foundations for a more comprehensive understanding of the combination rule of TCM, which might also be beneficial to drug development and applications.
Collapse
Affiliation(s)
- Yao Yao
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Emara S, Masujima T, Zarad W, Mohamed K, Kamal M, Fouad M, EL-Bagary R. Field-amplified sample stacking β-cyclodextrin modified capillary electrophoresis for quantitative determination of diastereomeric saponins. J Chromatogr Sci 2013; 52:1308-16. [PMID: 24248558 DOI: 10.1093/chromsci/bmt169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Successful simultaneous diastereomeric separation and sensitive determination of two pairs of triterpenoidal saponins have been achieved by capillary electrophoresis (CE) using β-cyclodextrin (β-CD) as a stereoselective agent to cooperate with borate complexation. A usual technique for isolation and group separation of saponins was developed as an appropriate purification step prior to the determination of individual saponins by CE. Soyasaponin I ( S1: ), azukisaponin V ( S2: ), bersimoside I ( S3: ) and bersimoside II ( S4: ) could be well separated within 14 min in a fused-silica capillary (60 cm long to the detector with an additional 10 cm to the cathode; 75 µm i.d.). The background electrolyte was borate buffer (80 mM, pH 10), containing 24 mM β-CD. The separation voltage was 14 kV with a detection wavelength of 195 nm. The sample was electrokinetically injected using a voltage of 16 kV for 12 s. Methanol (70%) was used as the diluent for field-amplified sample stacking after hydrodynamic injection of short water plug (5 cm, 4 s). The method was partially validated for linearity, repeatability, reproducibility, limits of detection and limits of quantification. The correlation coefficients of the calibration curves were all >0.998, and the recoveries were from 98.23 to 96.21%.
Collapse
Affiliation(s)
- Samy Emara
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Misr International University, Km 28 Ismailia Road, Cairo, Egypt
| | - Tsutomu Masujima
- P.I. Laboratory Single Cell MS, RIKEN Quantitative Biology Center, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Walaa Zarad
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Misr International University, Km 28 Ismailia Road, Cairo, Egypt
| | - Khaled Mohamed
- Faculty of Pharmacy, Pharmacognosy Department, Assiut University, Assiut 71526, Egypt
| | - Maha Kamal
- Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, Modern Sciences and Arts University, 26 July Mehwar Road Intersection with Wahat Road, 6 October City, Egypt
| | - Marwa Fouad
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Ramzia EL-Bagary
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| |
Collapse
|
39
|
Sorrenti V, Di Giacomo C, Acquaviva R, Barbagallo I, Bognanno M, Galvano F. Toxicity of ochratoxin a and its modulation by antioxidants: a review. Toxins (Basel) 2013; 5:1742-66. [PMID: 24152986 PMCID: PMC3813909 DOI: 10.3390/toxins5101742] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin involved in the development of different types of cancers in rats, mice and humans. A growing number of in vitro and in vivo studies has been collected and has described evidence compatible with a role for oxidative stress in OTA toxicity and carcinogenicity. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Several studies have been performed to try to counteract the adverse effects of oxygen radicals generated under OTA-exposure. A number of molecules with various antioxidant properties were tested, using in vivo or in vitro models. Protection against OTA-induced DNA damage, lipid peroxidation, as well as cytotoxicity were observed, further confirming the link between OTA toxicity and oxidative damage. These studies demonstrated that antioxidants are able to counteract the deleterious effects of chronic consumption or exposure to OTA and confirmed the potential effectiveness of dietary strategies to counteract OTA toxicity.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Ignazio Barbagallo
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Matteo Bognanno
- Agriculture Department, Mediterranean University of Reggio Calabria, Reggio Calabria89122, Italy; E-Mail:
| | - Fabio Galvano
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| |
Collapse
|
40
|
Feng Yeh C, Wang KC, Chiang LC, Shieh DE, Yen MH, San Chang J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:466-73. [PMID: 23643542 PMCID: PMC7126896 DOI: 10.1016/j.jep.2013.04.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhiza uralensis Fisch., Leguminosae) has been used in herbal medicine and food supplement worldwide for centuries. Licorice is a common ingredient of several prescriptions of traditional Chinese medicine which have been proved to inhibit infection of human respiratory syncytial virus (HRSV). There are two preparations of licorice, Radix Glycyrrhizae and Radix Glycyrrhizae Preparata. However, it is unknown whether licorice or which preparation of licorice is effective against HRSV, nor is its active constituent. AIM OF THE STUDY We tested the hypothesis that Radix Glycyrrhizae can effectively decrease HRSV-induced plaque formation in respiratory mucosal cell lines. We also tried to find out the active constituent. MATERIALS AND METHODS Anti-HRSV activities of hot water extracts of preparations of licorice, glycyrrhizin and 18β-glycyrrhetinic acid (18β-GA), the active constituents of licorice, were examined by plaque reduction assay in both human upper (HEp-2) and low (A549) respiratory tract cell lines. Abilities of crude licorice to inhibit viral replication and to stimulate IFN-β were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. RESULTS Radix Glycyrrhizae and Radix Glycyrrhizae Preparata dose-dependently inhibited HRSV-induced plaque formation in both HEp-2 and A549 cell lines (p<0.0001). The effect of Radix Glycyrrhizae was better than that of Radix Glycyrrhizae Preparata on HEp-2 cells. However, there was no difference of their anti-HRSV effects on A549 cells. Besides, glycyrrhizin was ineffective at all. Nevertheless, 18β-GA showed a potent anti-HRSV activity. Radix Glycyrrhizae was more effective when given before viral inoculation (p<0.0001) which may be due to its inhibition of viral attachment on (p<0.0001) and penetration (p<0.0001) into the host cells. The anti-HRSV activity of Radix Glycyrrhizae was further confirmed by RT-PCR and qRT-PCR. 300 μg/ml Radix Glycyrrhizae markedly decreased the viral amounts within the cells and in the suspension. Radix Glycyrrhizae might further stimulate mucosal cells to secrete IFN-β to counteract viral infection. CONCLUSIONS Both Radix Glycyrrhizae and Radix Glycyrrhizae Preparata are effective against HRSV infection on airway epithelial cells. Radix Glycyrrhizae inhibited HRSV mainly by preventing viral attachment, internalization, and by stimulating IFN secretion. 18β-GA may be one of its active constituents.
Collapse
Key Words
- 18β-ga, 18β-glycyrrhetinic acid
- a549, human lung carcinoma cell
- atcc, the american type culture collection
- cc50, 50% cytotoxic concentration
- elisa, enzyme-linked immunosorbent assay
- fcs, fetal calf serum
- fda, food and drug administration
- hep-2, human larynx epidermoid carcinoma cell
- ic50, minimal concentration required to inhibit 50% cytopathic effect
- ifn, interferon
- dmem, dulbecco’s modified eagle’s medium
- pbs, phosphate-buffered saline
- pfu, plaque forming unit
- hrsv, human respiratory syncytial virus
- glycyrrhiza uralensis
- respiratory tract infection
- rsv
Collapse
Affiliation(s)
- Chia Feng Yeh
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Singh M, Kamal Y, Tamboli E, Parveen R, Ansari S, Ahmad S. Glabridin, a stable flavonoid ofGlycyrrhiza glabra:HPTLC analysis of the traditional formulation. JPC-J PLANAR CHROMAT 2013. [DOI: 10.1556/jpc.26.2013.3.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Zhao J, Lv GP, Chen YW, Li SP. Advanced development in analysis of phytochemicals from medicine and food dual purposes plants used in China. J Chromatogr A 2011; 1218:7453-75. [DOI: 10.1016/j.chroma.2011.06.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
|
43
|
Gotti R. Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants. J Pharm Biomed Anal 2011; 55:775-801. [DOI: 10.1016/j.jpba.2010.11.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/22/2010] [Accepted: 11/26/2010] [Indexed: 11/29/2022]
|
44
|
Malekinejad H, Farshid A, Mirzakhani N. Liquorice plant extract reduces ochratoxin A-induced nephrotoxicity in rats. ACTA ACUST UNITED AC 2011; 63:125-30. [DOI: 10.1016/j.etp.2009.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 10/23/2009] [Accepted: 10/29/2009] [Indexed: 11/16/2022]
|
45
|
Abstract
Glabridin, a polyphenolic isoflavan of Glycyrrhiza glabra, has shown a variety of pharmaceutical properties. We have previously studied the isolation of glabridin using macroporous resin and found that it is partially degraded, giving a dark color. To illustrate the degradation of glabridin, the present work studied the stability of glabridin under various conditions. Licorice extract containing about 20% glabridin, obtained from G. glabra by silica gel column chromatography, was used in the stability study. Seven different factors (temperature, illumination, humidity, pH, solvent, oxygen, and oxidant) were studied and content changes were determined through HPLC analysis. Except for oxygen, all the above factors had an effect on the stability of glabridin, with illumination being the main one. Moreover, the interactions between temperature and pH, temperature and humidity, and illumination and pH can promote the degradation of glabridin. In conclusion, we suggest that a dark, dry and airtight environment provides the optimized condition for the long-term storage of glabridin.
Collapse
Affiliation(s)
- Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, 430074 1037 Luoyu Road, Wuhan, China
| | - Yue Shi
- Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, 430074 1037 Luoyu Road, Wuhan, China
| | - Yongming Cui
- Institute of Environment Science, Wuhan University of Science and Engineering, 430073 1 FangZhi Road, Wuhan, China
| | - Wentao Guo
- Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, 430074 1037 Luoyu Road, Wuhan, China
| | - Jing Wang
- Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, 430074 1037 Luoyu Road, Wuhan, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Huazhong University of Science and Technology, 430074 1037 Luoyu Road, Wuhan, China
| |
Collapse
|
46
|
Zheng YF, Qi LW, Zhou JL, Li P. Structural characterization and identification of oleanane-type triterpene saponins in Glycyrrhiza uralensis Fischer by rapid-resolution liquid chromatography coupled with time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3261-3270. [PMID: 20973000 DOI: 10.1002/rcm.4768] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oleanane-type triterpene saponins (OTS) are major active ingredients in Glycyrrhiza uralensis. In this work, a rapid-resolution liquid chromatography with time-of-flight mass spectrometry (RRLC/TOF-MS) method has been developed to characterize and identify OTS from G. uralensis. The major diagnostic ions and fragmentation pathways from thirteen OTS have been characterized for the first time. At a low fragmentor voltage of 120 V in positive ion mode, the precursor ion [M + H](+) or/and [M + Na](+) was obtained for accurate determination of molecular formula. When the fragmentor voltage was increased to 425 V, abundant characteristic fragment ions were observed for structural characterization. Neutral losses of sugar moieties, such as glucuronic acid (GlcA, 176 Da), glucose (Glc, 162 Da) and rhamnose (Rha, 146 Da), were commonly observed in the MS spectra for prediction of the sugar number and sequences. Other typical losses included AcOH (60 Da), CH(2)O (30 Da), 2 × H(2)O (2 × 18 Da) and HCOOH (46 Da) from [Aglycone + H-H(2)O](+) (named [B](+)), corresponding to the presence of a C(22)-acetyl group, C(24)-hydroxyl group, C(22)-hydroxyl group or C(30)-carboxyl group on the aglycone moiety, respectively. In particular, characteristic ring cleavages of the aglycone moieties on A- and B-rings were observed. Based on the fragmentation patterns of reference compounds, nineteen OTS have been identified in an extract of G. uralensis, thirteen of which were unambiguously identified and the other six were tentatively assigned.
Collapse
Affiliation(s)
- Yun-Feng Zheng
- Key Laboratory of Modern Chinese Medicines (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | | | | | | |
Collapse
|
47
|
Rapid profiling and target analysis of principal components in Fuling Decoctions by UFLC-DAD-ESI-MS. Fitoterapia 2010; 81:662-7. [DOI: 10.1016/j.fitote.2010.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 11/22/2022]
|
48
|
Zandberg WF, Mohan S, Kumarasamy J, Pinto BM. Capillary Zone Electrophoresis Method for the Separation of Glucosidase Inhibitors in Extracts of Salacia reticulata, a Plant Used in Ayurvedic Treatments of Type-2 Diabetes. Anal Chem 2010; 82:5323-30. [DOI: 10.1021/ac100843y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wesley F. Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Sankar Mohan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jayakanthan Kumarasamy
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - B. Mario Pinto
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
49
|
Malekinejad H, Mirzakhani N, Razi M, Cheraghi H, Alizadeh A, Dardmeh F. Protective effects of melatonin and Glycyrrhiza glabra extract on ochratoxin A--induced damages on testes in mature rats. Hum Exp Toxicol 2010; 30:110-23. [PMID: 20413560 DOI: 10.1177/0960327110368416] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of Glycyrrhiza glabra extract (GgE) as a natural antioxidant and melatonin (MEL) on ochratoxin A (OTA)-induced histopathological damages on the testes and oxidative stress was evaluated in male rats. The animals were assigned into four groups (n = 8) including control and test groups. The rats in control group received saline and the animals in the test groups received (200 µg/kg) of OTA, (15 mg/kg) of MEL + (200 µg/kg) OTA and (100 mg/kg) of GgE + (200 µg/kg) OTA, respectively, during 28 consecutive days. The serum total antioxidant power (TAOP) and total thiol molecules (TTM) production were assessed. Moreover, histopathological and histochemical studies were also performed. The results showed that the TAOP and TTM were decreased in OTA-exposed rats, while the animals that received MEL + OTA or GgE + OTA showed an enhancement in the serum TAOP and TTM levels. Histopathological analyses demonstrated that in OTA-exposed rats, the testicular degeneration, seminiferous tubule atrophy, dissociation of germinative epithelium, vasodilatation with vascular thrombosis, perivascular immune cell infiltration, hypertrophied leydic cells, giant cell formation, and negative tubular differentiation index (TDI) were observed. Surprisingly, both the biochemical and histopathological examinations showed that MEL and GgE, albeit with some differences, exerted a protective effect on OTA-induced damages. In conclusion, this data suggest that OTA contamination in animal feeds and human foods could cause reproductive abnormalities. Our data also indicate that OTA, at least partly by interfering in oxidative stress system, exerts its toxic effects on testes whereas MEL and GgE with antioxidant properties could fairly protect rats against OTA toxic effects.
Collapse
Affiliation(s)
- Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of veterinary Medicine, Urmia University, Urmia, Iran.
| | | | | | | | | | | |
Collapse
|
50
|
HPLC analysis of glycyrrhizin and licochalcone a in Glycyrrhiza inflata from Xinjiang (China). Chem Nat Compd 2010. [DOI: 10.1007/s10600-010-9552-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|