1
|
Chen J, Liao X, Gan J. Review on the protective activity of osthole against the pathogenesis of osteoporosis. Front Pharmacol 2023; 14:1236893. [PMID: 37680712 PMCID: PMC10481961 DOI: 10.3389/fphar.2023.1236893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoporosis (OP), characterized by continuous bone loss and increased fracture risk, has posed a challenge to patients and society. Long-term administration of current pharmacological agents may cause severe side effects. Traditional medicines, acting as alternative agents, show promise in treating OP. Osthole, a natural coumarin derivative separated from Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim. f., exhibits protective effects against the pathological development of OP. Osthole increases osteoblast-related bone formation and decreases osteoclast-related bone resorption, suppressing OP-related fragility fracture. In addition, the metabolites of osthole may exhibit pharmacological effectiveness against OP development. Mechanically, osthole promotes osteogenic differentiation by activating the Wnt/β-catenin and BMP-2/Smad1/5/8 signaling pathways and suppresses RANKL-induced osteoclastogenesis and osteoclast activity. Thus, osthole may become a promising agent to protect against OP development. However, more studies should be performed due to, at least in part, the uncertainty of drug targets. Further pharmacological investigation of osthole in OP treatment might lead to the development of potential drug candidates.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou, China
| | - Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
2
|
Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy. Biomed Pharmacother 2021; 139:111386. [PMID: 34243594 DOI: 10.1016/j.biopha.2021.111386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological response in a broad range of prevalent chronic kidney diseases and ultimately leads to renal failure and death. Although RIF causes a high morbi-mortality worldwide, effective therapeutic drugs are urgently needed. Myofibroblasts are identified as the main effector during the process of RIF. Multiple types of cells, including fibroblasts, epithelial cells, endothelial cells, macrophages and pericytes, contribute to renal myofibroblasts origin, and lots of mediators, including signaling pathways (Transforming growth factor-β1, mammalian target of rapamycin and reactive oxygen species) and epigenetic modifications (Histone acetylation, microRNA and long non-coding RNA) are participated in renal myofibroblasts activation during renal fibrogenesis, suggesting that these mediators may be the promising targets for treating RIF. In addition, many small molecules show profound therapeutic effects on RIF by suppressing the origin and activation of renal myofibroblasts. Taken together, the review focuses on the mechanisms of the origin and activation of renal myofibroblasts in RIF and the small molecules against them improving RIF, which will provide a new insight for RIF therapy.
Collapse
|
3
|
Li LP, Wang XJ, Zhang JY, Zhang LL, Cao YB, Gu LQ, Yu YQ, Yang QL, Shen CY, Han B, Jiang YY. Antifungal activity of osthol in vitro and enhancement in vivo through Eudragit S100 nanocarriers. Virulence 2018; 9:555-562. [PMID: 28795862 PMCID: PMC5955437 DOI: 10.1080/21505594.2017.1356503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vitro interaction of osthol (Ost) and fluconazole (FLC) was investigated against 11 fluconazole-resistant clinical isolates of Candida albicans. Synergistic activities were determined using the checkerboard microdilution assay. The results of agar diffusion test confirmed the synergistic interaction. We used an enteric material Eudragit S100 for preparation of Ost nanoparticle (Ost-NP) to improve the oral bioavailability, biological activity of Ost. The physicochemical characteristics of Ost-S100-NP revealed Ost-S100-NP with mean particle size of 55.4±0.4 nm, encapsulation efficiency of 98.95±0.06%, drug loading efficiency of 23.89±0.25%, yield of 98.5±0.1% and a polydispersity index (PDI) of 0.165. As the Ost concentration-time curve showed, Ost-S100-NP can increase the plasma concentration and relative bioavailability of Ost compared with Ost-suspension by oral administration. In vivo, Ost-S100-NP enhanced the therapeutic efficacy of Ost against FLC-resistant C. albicans in immunosuppressed candidiasis mice model. The available information strongly suggests that Ost-S100-NP may be used as a promising compound against drug-resistant fungi.
Collapse
Affiliation(s)
- Lin-Peng Li
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Xiao-Juan Wang
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Jin-Yu Zhang
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Lu-Lu Zhang
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Yong-Bing Cao
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Li-Qun Gu
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Yi-Qun Yu
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Qi-Lian Yang
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Chun-Ying Shen
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Bing Han
- b Department of Pharmacy , Minhang District Central Hospital , Shanghai , P.R. China
| | - Yuan-Ying Jiang
- a Center for New Drug Research , School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| |
Collapse
|
4
|
Characterization of CYPs and UGTs Involved in Human Liver Microsomal Metabolism of Osthenol. Pharmaceutics 2018; 10:pharmaceutics10030141. [PMID: 30200214 PMCID: PMC6161247 DOI: 10.3390/pharmaceutics10030141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
Osthenol is a prenylated coumarin isolated from the root of Angelica koreana and Angelica dahurica, and is an O-demethylated metabolite of osthole in vivo. Its various pharmacological effects have been reported previously. The metabolic pathway of osthenol was partially confirmed in rat osthole studies, and 11 metabolic products were identified in rat urine. However, the metabolic pathway of osthenol in human liver microsomes (HLM) has not been reported. In this study, we elucidated the structure of generated metabolites using a high-resolution quadrupole-orbitrap mass spectrometer (HR-MS/MS) and characterized the major human cytochrome P450 (CYP) and uridine 5′-diphospho-glucuronosyltransferase (UGT) isozymes involved in osthenol metabolism in human liver microsomes (HLMs). We identified seven metabolites (M1-M7) in HLMs after incubation in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and uridine 5′-diphosphoglucuronic acid (UDPGA). As a result, we demonstrated that osthenol is metabolized to five mono-hydroxyl metabolites (M1-M5) by CYP2D6, 1A2, and 3A4, respectively, a 7-O-glucuronide conjugate (M6) by UGT1A9, and a hydroxyl-glucuronide (M7) from M5 by UGT1A3 in HLMs. We also found that glucuronidation is the dominant metabolic pathway of osthenol in HLMs.
Collapse
|
5
|
Liao M, Diao X, Cheng X, Sun Y, Zhang L. Nontargeted SWATH acquisition mode for metabolites identification of osthole in rats using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. RSC Adv 2018; 8:14925-14935. [PMID: 35541352 PMCID: PMC9079938 DOI: 10.1039/c8ra01221k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Osthole (OST), 7-methoxy-8-isopentenoxycoumarin, is the characteristic constituent found in Cnidium monnieri (L.) Cuss. and possesses excellent pharmacological activities, including anticancer, anti-apoptosis and neuroprotection. In this study, a rapid and reliable method based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and MetabolitePilot2.0™ software with principal component variable grouping (PCVG) filtering was developed to observe probable metabolites of OST firstly. The high resolution mass data were acquired by data-independent acquisition mode (DIA), i.e., sequential window acquisition of all theoretical fragmentation spectra (SWATH), which could significantly improved the hit rate of low-level and trace metabolites. A novel data processing method 'key product ions (KPIs)' were employed for metabolites rapid hunting and identification as an assistant tool. A total of 72 metabolites of OST were detected in vitro and in vivo, including 39 metabolites in rat liver microsomes (RLMs), 20 metabolites in plasma, 32 metabolites in bile, 32 metabolites in urine and 37 metabolites in feces. The results showed that mono-oxidation, demethylation, dehydrogenation, sulfate conjugation and glucuronide conjugation were major metabolic reactions of OST. More significant, oxydrolysis, 3,4-epoxide-aldehylation, phosphorylation, S-cysteine conjugation and N-acetylcysteine conjugation were considered as unique metabolic pathways of OST, and phosphorylation, S-cysteine conjugation and N-acetylcysteine conjugation reactions were characterized in rat biological samples for the first time. Preparation of active metabolites will be greatly helpful in elucidating the potential biological mechanism of OST, and the proposed metabolic pathways of it might provide further understanding of the safety and efficacy of simple coumarins.
Collapse
Affiliation(s)
- Man Liao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University 361 East Zhongshan Road Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86266419
| | - Xinpeng Diao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University 361 East Zhongshan Road Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86266419
| | - Xiaoye Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University 361 East Zhongshan Road Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86266419
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University 361 East Zhongshan Road Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86266419
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University 361 East Zhongshan Road Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86266419
| |
Collapse
|
6
|
Zhao Q, Li XM, Liu HN, Gonzalez FJ, Li F. Metabolic map of osthole and its effect on lipids. Xenobiotica 2018; 48:285-299. [PMID: 28287022 PMCID: PMC6594145 DOI: 10.1080/00498254.2017.1306660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
1. Osthole, a coumarin compound from plants, is a promising agent for the treatment of metabolic diseases, including hyperglycemia, fatty liver, and cancers. Studies indicate that the peroxisome proliferator-activated receptors (PPAR) α and γ are involved in the pharmacological effects of osthole. The in vitro and in vivo metabolism of osthole and its biological activity are not completely understood. 2. In this study, ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based metabolomics was used to determine the metabolic pathway of osthole and its influence on the levels of endogenous metabolites. Forty-one osthole metabolites, including 23 novel metabolites, were identified and structurally elucidated from its metabolism in vitro and in vivo. Recombinant cytochrome P450s (CYPs) screening showed that CYP3A4 and CYP3A5 were the primary enzymes contributing to osthole metabolism. 3. More importantly, osthole was able to decrease the levels of lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) in the plasma, which explains in part its modulatory effects on metabolic diseases. 4. This study gives the insights about the metabolic pathways of osthole in vivo, including hydroxylation, glucuronidation, and sulfation. Furthermore, the levels of the lipids regulated by osthole indicated its potential effects on adipogenesis. These data contribute to the understanding of the disposition and pharmacological activity of osthole in vivo.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Mei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, China
| | - Hong-Ning Liu
- Research Center for Differentiation and Development of Basic Theory of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, China
- Research Center for Differentiation and Development of Basic Theory of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
7
|
Zhou M, Hong Y, Lin X, Shen L, Feng Y. Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:363-375. [PMID: 28606807 DOI: 10.1016/j.jep.2017.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbs have been used in China for thousands of years and are also becoming popular in Western medicine. Formulae of traditional Chinese medicine (TCM), which contain two or more herbs, can often obtain better curative efficacies and fewer side effects than single herbs. Though there are many reports on pharmaceutics, pharmacokinetics, and pharmacodynamics of TCM, there remains a serious lack of summarization and systemic analyses of these reported data to help uncover the compatibility rationale of TCM. This review therefore aims to provide such an overview mainly based on the reports published in the last decade. It could be served as an informative reference for researchers interested in compound prescriptions and holistic therapies. MATERIALS AND METHODS Relevant information was collected from various resources, including books on Chinese herbs, China Knowledge Resource Integrated (CNKI), and international databases, such as Web of Science, Scopus, and PubMed. RESULTS Thirty-six relevant TCM formulae were collected to illustrate the compatibility rationality of TCM from the perspective of pharmaceutics, pharmacokinetics, and/or pharmacodynamics. CONCLUSIONS Compatibility is a key characteristic of multi-herb prescriptions. It often results in the change of the therapeutic material basis and, thus, produces the effect of reducing toxicity and/or increasing curative efficacy.
Collapse
Affiliation(s)
- Miaomiao Zhou
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
8
|
Cárdenas PA, Kratz JM, Hernández A, Costa GM, Ospina LF, Baena Y, Simões CMO, Jimenez-Kairuz Á, Aragon M. In vitro intestinal permeability studies, pharmacokinetics and tissue distribution of 6-methylcoumarin after oral and intraperitoneal administration in Wistar rats. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:919616. [PMID: 26246843 PMCID: PMC4515521 DOI: 10.1155/2015/919616] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/28/2015] [Indexed: 12/17/2022]
Abstract
This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.
Collapse
|
10
|
Zhang L, Yan R, Su R, Yang C, Liu S, Yu X, Chang X, Zhang S, Liu C, Xu M, Zeng W, Chen Y, Wang Q. Bioavailability enhancement of osthole after oral administration of Bushen Yizhi prescription extract to rats followed by Cnidium monnieri (L.) Cusson fruits extract in comparison to pure osthole at different doses. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:266-71. [PMID: 24140583 DOI: 10.1016/j.jep.2013.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bushen Yizhi prescription (BSYZ) is a traditional Chinese compound prescription, which is commonly used in China for treating ShenXu and hypophrenia based on traditional Chinese medicine and Alzheimer's Disease according to modern Chinese medicine. Cnidium monnieri (L.) Cusson fruits (CM) is treated as the main herb of BSYZ, and its main active ingredient Osthole (OST) is considered as one of the major active ingredients of BSYZ. Even though OST plays an important role in the BSYZ its bioavailability is poor. In order to investigate whether the bioavailability of OST was influenced by BSYZ and CM extract, the comparative evaluations on pharmacokinetics of OST after oral administration of pure OST at different doses, CM and BSYZ extract were studied. MATERIALS AND METHODS 30 rats were randomly assigned to five groups and orally administered with pure OST at different doses (15, 75 and 150 mg/kg), CM (15 mg/kg OST) and BSYZ (15 mg/kg OST) extract. At different predetermined time points after administration, the concentrations of OST in rat plasma were determined by using the HPLC-UV method, and main pharmacokinetic parameters were investigated. RESULTS The results showed that the pharmacokinetic parameters of OST were significantly different (p<0.05) among the groups. The AUC(0→t), AUC(0→∞) and Cmax of OST were significantly increased after oral administration of BSYZ extract, followed by CM extract, in comparison to pure osthole at different doses. CONCLUSIONS This present study indicated that the bioavailability of pure OST after oral administration was extremely low and it was dramatically enhanced because of the synergistic effect of the traditional Chinese Bushen Yizhi prescription.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Yan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruyu Su
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sijun Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuhua Yu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Chang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meili Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wu Zeng
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
11
|
Zhang LF, Lu TT, Zhang SQ, Lin WH, Li QS. Pharmacokinetics and tissue distribution of furanodiene W/O/W multiple emulsions in rats by a fast and sensitive HPLC–APCI–MS/MS method. Xenobiotica 2013; 43:1095-102. [DOI: 10.3109/00498254.2013.793434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Liu B, Wu Y, Qian G, Chang Y. Optimum Extraction of Osthole and Imperatorin from the Fruits of Cnidium monnieri(L.) Cusson by Supercritical Fluid. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2012.707728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Li J, Chan W. Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry. J Pharm Biomed Anal 2012; 74:156-61. [PMID: 23245246 DOI: 10.1016/j.jpba.2012.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022]
Abstract
Osthole is an active ingredient and one of the major coumarin compounds that were identified in the genus Cnidium moonnieri (L.) Cussion, the fruit of which was used as traditional Chinese medicine to treat male impotence, ringworm infection and blood stasis conventionally. Recent studies revealed that osthole has diverse pharmacological effects, such as improving male sexual dysfunction, anti-diabetes, and anti-hypertentions. The inhibition of thrombosis and platelet aggregation and protection of central nerve were also observed. On the other hand, the metabolism of osthole has not yet been investigated thoroughly. Herein the biotransformation of osthole in rat was investigated after oral administration of osthole by using efficient and sensitive ultra-performance liquid chromatography-tandem quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS). Eighteen osthole metabolites and the parent drug were detected and identified in rat urine. Fourteen metabolites of osthole were identified and characterized for the first time. Structures of metabolites of osthole were elucidated by comparing fragment pattern under MS/MS scan and change of molecular weight with those of osthole. The main phase I metabolic pathways were summed as 7-demethylation, 8-dehydrogenation, hydroxylation on coumarin and 3,4-epoxide. Sulfate conjugates were detected as phase II metabolites of osthole.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
14
|
Lv X, Wang CY, Hou J, Zhang BJ, Deng S, Tian Y, Huang SS, Zhang HL, Shu XH, Zhen YH, Liu KX, Yao JH, Ma XC. Isolation and identification of metabolites of osthole in rats. Xenobiotica 2012; 42:1120-7. [DOI: 10.3109/00498254.2012.689887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Zaugg J, Eickmeier E, Rueda DC, Hering S, Hamburger M. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes. Fitoterapia 2010; 82:434-40. [PMID: 21147202 DOI: 10.1016/j.fitote.2010.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
A petroleum ether extract of the traditional Chinese herbal drug Duhuo (roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan), showed significant activity in a functional two-microelectrode voltage clamp assay with Xenopus oocytes which expressed recombinant γ-aminobutyric acid type A (GABA(A)) receptors of the subtype α(1)β(2)γ(2S). HPLC-based activity profiling of the active extract revealed six compounds responsible for the GABA(A) receptor modulating activity. They were identified by microprobe NMR and high resolution mass spectrometry as columbianetin acetate (1), imperatorin (3), cnidilin (4), osthol (5), and columbianedin (6). In concentration-dependent experiments, osthol and cnidilin showed the highest potentiation of the GABA induced chloride current (273.6%±39.4% and 204.5%±33.2%, respectively at 300 μM). Bisabolangelone (2) only showed minor activity at the GABA(A) receptor. The example demonstrates that HPLC-based activity profiling is a simple and efficient method to rapidly identify GABA(A) receptor modulators in a bioactive plant extract.
Collapse
Affiliation(s)
- Janine Zaugg
- Institute of Pharmaceutical Biology, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Sun F, Xie ML, Xue J, Wang HB. Osthol regulates hepatic PPAR alpha-mediated lipogenic gene expression in alcoholic fatty liver murine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:669-673. [PMID: 20042322 DOI: 10.1016/j.phymed.2009.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/21/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
Our previous studies found that osthol, an active constituent isolated from Cnidium monnieri (L.) Cusson (Apiaceae), could ameliorate the accumulation of lipids and decrease the lipid levels in serum and hepatic tissue in alcohol-induced fatty liver mice and rats. The objective of this study was to investigate its possible mechanism of the lipid-lowering effect. A mouse model with alcoholic fatty liver was induced by orally feeding 52% erguotou wine by gavage when they were simultaneously treated with osthol 10, 20, 40 mg/kg for 4 weeks. The BRL cells (rat hepatocyte line) were cultured and treated with osthol at 25, 50, 100, 200 microg/ml for 24h. The mRNA expressions of peroxisome proliferator-activated receptor (PPAR) alpha, diacylglycerol acyltransferase (DGAT), 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and cholesterol 7 alpha-hydroxylase (CYP7A) in mouse hepatic tissue or cultured hepatocytes were determined by reverse transcription polymerase chain reaction (RT-PCR). After treatment with osthol, the PPAR alpha mRNA expression in mouse liver and cultured hepatocytes was increased in dose dependent manner, while its related target genes for mRNA expression, e.g., DGAT and HMG-CoA reductase, were decreased, the CYP7A was inversely increased. And osthol-regulated mRNA expressions of DGAT, HMG-CoA reductase and CYP7A in the cultured hepatocytes were abrogated after pretreatment with specific inhibitor of PPAR alpha, MK886. It was concluded that osthol might regulate the gene expressions of DGAT, HMG-CoA reductase and CYP7A via increasing the PPAR alpha mRNA expression.
Collapse
Affiliation(s)
- Fan Sun
- Department of Pharmacology, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | | | | | | |
Collapse
|