1
|
Jeong JH, Kim JS, Choi YR, Shin DH, Kang JH, Kim DW, Park YS, Park CW. Preparation and Evaluation of Inhalable Microparticles with Improved Aerodynamic Performance and Dispersibility Using L-Leucine and Hot-Melt Extrusion. Pharmaceutics 2024; 16:784. [PMID: 38931905 PMCID: PMC11206964 DOI: 10.3390/pharmaceutics16060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility while simultaneously maintaining the high aerodynamic performance of inhalable microparticles. This study explored using LEU in HME to improve dispersibility and maintain the high aerodynamic performance of inhalable microparticles. Formulations with crystalline itraconazole (ITZ) and LEU were made via co-jet milling and HME followed by jet milling. The LEU ratio varied, comparing solubility, homogenization, and aerodynamic performance enhancements. In HME, ITZ solubility increased, and crystallinity decreased. Higher LEU ratios in HME formulations reduced the contact angle, enhancing mass median aerodynamic diameter (MMAD) size and aerodynamic performance synergistically. Achieving a maximum extra fine particle fraction of 33.68 ± 1.31% enabled stable deep lung delivery. This study shows that HME combined with LEU effectively produces inhalable particles, which is promising for improved drug dispersion and delivery.
Collapse
Affiliation(s)
- Jin-Hyuk Jeong
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Ji-Su Kim
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Yu-Rim Choi
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Dae Hwan Shin
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| | - Ji-Hyun Kang
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
- Institute of New Drug Development and Respiratory Drug Development Research Institute, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Yun-Sang Park
- Research & Development Center, P2K Bio, Cheongju 28160, Republic of Korea;
| | - Chun-Woong Park
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-H.J.); (J.-S.K.); (Y.-R.C.); (D.H.S.); (J.-H.K.)
| |
Collapse
|
2
|
Ordoubadi M, Shepard KB, Wang H, Wang Z, Pluntze AM, Churchman JP, Vehring R. On the Physical Stability of Leucine-Containing Spray-Dried Powders for Respiratory Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020435. [PMID: 36839756 PMCID: PMC9967520 DOI: 10.3390/pharmaceutics15020435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Carrier-free spray-dried dispersions for pulmonary delivery, for which the demand is growing, frequently require the incorporation of dispersibility-enhancing excipients into the formulations to improve the efficacy of the dosage form. One of the most promising of such excipients, L-leucine, is expected to be approved for inhalation soon and has been studied exhaustively. However, during stability, small fibers protruding from the particles of leucine-containing powders have occasionally been observed. To clarify the origin of these fibers and assess their potential influence on the performance of the powders, three different classes of spray-dried leucine-containing formulation systems were studied over an 8-month accelerated stability program. These systems consisted of a large molecule biologic (bevacizumab) in conjunction with a glass former (trehalose), an amorphous small-molecular mass active (moxidectin), and a crystallizing active (mannitol). It was determined that the appearance of the fibers was due to the presence of small quantities of leucine in higher energy states, either because these were amorphous or present as a less stable crystalline polymorph. It was further shown that the growth of these leucine fibers caused no significant physicochemical instability in the powders. Nor, more importantly, did it decrease their aerosol performance in a dry powder inhaler or reduce the concentration of their active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zheng Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | | | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
3
|
Wang H, Connaughton P, Lachacz K, Carrigy N, Ordoubadi M, Lechuga-Ballesteros D, Vehring R. Inhalable Microparticle Platform Based on a Novel Shell-Forming Lipid Excipient and its Feasibility for Respirable Delivery of Biologics. Eur J Pharm Biopharm 2022; 177:308-322. [PMID: 35905804 DOI: 10.1016/j.ejpb.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Administration of biologics such as proteins, vaccines, and phages via the respiratory route is becoming increasingly popular. Inhalable powder formulations for the successful delivery of biologics must first ensure both powder dispersibility and physicochemical stability. A lipid-based inhalable microparticle platform combining the stability advantages offered by dry powder formulations and high dispersibility afforded by a rugose morphology was spray dried and tested. A new simplified spray drying method requiring no organic solvents or complicated feedstock preparation processes was introduced for the manufacture of the microparticles. Trehalose was selected to form the amorphous particle core, because of its well-known ability to stabilize biologics, and also because of its ability to serve as a surrogate for small molecule actives. Phospholipid distearoyl phosphatidylcholine (DSPC), the lipid component in this formulation, was used as a shell former to improve powder dispersibility. Effectiveness of the lipid excipient in modifying trehalose particle morphology and enhancing powder dispersibility was evaluated at different lipid mass fractions (5%, 10%, 25%, 50%) and compared with that of several previously published shell-forming excipients at their effective mass fractions, i.e., 5% trileucine, 20% leucine, and 40% pullulan. A strong dependence of particle morphology on the lipid mass fraction was observed. Particles transitioned from typical smooth spherical trehalose particles without lipid to highly rugose microparticles at higher lipid mass fractions (> 5%). In vitro aerosol performance testing demonstrated a significant improvement of powder dispersibility even at lipid mass fractions as low as 5%. Powder formulations with excellent aerosol performance comparable to those modified with leucine and trileucine were achieved at higher lipid mass fractions (> 25%). A model biologic-containing formulation with 35% myoglobin, 35% glass stabilizer (trehalose), and 30% lipid shell former was shown to produce highly rugose particle structure as designed and excellent aerosol performance for efficient pulmonary delivery. A short-term stability at 40 °C proved that this protein-containing formulation had good thermal stability as designed. The results demonstrated great potential for the new lipid microparticle as a platform for the delivery of both small-molecule APIs and large-molecule biologics to the lung.
Collapse
Affiliation(s)
- Hui Wang
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Patrick Connaughton
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Kellisa Lachacz
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Nicholas Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| |
Collapse
|
4
|
Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
On the feasibility of spray-dried eudragit-trehalose microparticles for enteric drug delivery. Int J Pharm 2021; 610:121264. [PMID: 34742827 DOI: 10.1016/j.ijpharm.2021.121264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
Enteric infections have long constituted a silent epidemic responsible for hundreds of thousands of deaths around the world every year. Because of the global rise in antibiotic-resistant bacteria and the slow development of new small-molecule antibiotics, alternatives such as bacteriophage therapy have become a much sought-after option in the treatment of enteric infections. However, the administration of therapeutics through the oral route to target gastrointestinal infections poses challenges to dosage formulation because these active ingredients, particularly relatively fragile biological entities, require protection from the stomach's harsh acids. Encapsulation of the therapeutics within a pH-responsive coating capable of surviving low pH conditions has the potential to provide such protection. In this study, we developed a spray-dried powder vehicle capable of withstanding low pH comparable to stomach conditions, using Eudragit® S100 as a protective particle coating and trehalose as a stabilizing excipient for a possible active component. A particle formation model and a monodisperse droplet chain technique were initially used to study the formation process of Eudragit-trehalose composite microparticles at different ratios and in different ratios of water-ethanol solvent, which showed formation of particles with Eudragit shells varying in thickness from 0.13 μm to 0.75 μm. Promising Eudragit-trehalose formulations were subsequently spray-dried and their survival in acidic and alkaline environments studied using a new shadowgraphic imaging method. The results demonstrated that Eudragit was capable of creating a protective shell in the particles irrespective of the type of solvent used to prepare the formulations. The trehalose cores of particles with higher than 5% w/w of Eudragit remained protected after one hour of exposure at pH 2, indicating the potential of Eudragit-trehalose formulations for enteric delivery of drugs.
Collapse
|
6
|
Ordoubadi M, Gregson FKA, Wang H, Carrigy NB, Nicholas M, Gracin S, Lechuga-Ballesteros D, Reid JP, Finlay WH, Vehring R. Trileucine as a dispersibility enhancer of spray-dried inhalable microparticles. J Control Release 2021; 336:522-536. [PMID: 34229002 DOI: 10.1016/j.jconrel.2021.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
The formation of trileucine-containing spray-dried microparticles intended for pulmonary delivery was studied in depth. A single-particle method was employed to study the shell formation characteristics of trileucine in the presence of trehalose as a glass former, and an empirical correlation was proposed to predict the instance of shell formation. A droplet chain instrument was used to produce and collect monodisperse particles to examine morphology and calculate particle density for different levels of trileucine. It was observed that the addition of only 0.5 mg/mL (10% w/w) trileucine to a trehalose system could lower dried particle densities by approximately 1 g/cm3. In addition, a laboratory-scale spray dryer was used to produce batches of trileucine/trehalose powders in the respirable range. Raman spectroscopy demonstrated that both components were completely amorphous. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry were used to study the particle morphologies and surface compositions. For all cases with trileucine, highly rugose particles with trileucine coverages of more than 60% by mass were observed with trileucine feed fractions of as little as 2% w/w. Moreover, it was seen that at lower trileucine content, smaller and larger particles of a polydisperse powder had slightly different surface compositions. The surface activity of trileucine was also modeled via a modified form of the diffusion equation inside an evaporating droplet that took into account initial surface adsorption and eventual surface desorption due to droplet shrinkage. Finally, using the Flory-Huggins theory, it was estimated that at room temperature, liquid-liquid phase separation would start when the trileucine reached an aqueous concentration of about 18 mg/mL. Besides the surface activity of trileucine, this low concentration was assumed to explain the substantial effect of trileucine on the morphology of spray-dried particles due to early phase separation. The methodology proposed in this study can be used in the rational design of trileucine-containing microparticles.
Collapse
Affiliation(s)
- Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas B Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, California, USA
| | - Mark Nicholas
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Sandra Gracin
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, California, USA
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Römerová S, Dammer O, Zámostný P. Streamlining of the Powder Mixing Process based on a Segregation Test. AAPS PharmSciTech 2021; 22:190. [PMID: 34159445 DOI: 10.1208/s12249-021-02073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023] Open
Abstract
In direct compression of tablets, it is crucial to maintain content uniformity within acceptable margins, especially in formulations with low drug loading. To assure it, complex and multistep mixing processes are utilized in the industry. In this study, we suggest the use of a simple segregation test to evaluate mixing process performance and mixture segregation to produce tablets having satisfying content uniformity while keeping the process as simple and low cost as possible. Eventually, the formulation propensity to segregation can be evaluated using process analytical technology (PAT) to adjust the mixing process parameters to changing source drug properties. In this study, that approach was examined on a model drug with a broad batch-to-batch variability in particle size and shape. Excipients were chosen so that the resulting blend composition mimicked some marketed formulations. For each drug batch, two formulation blends were prepared through different preparation processes (one simple and one complex) and subsequently subjected to segregation tests. From those, segregation coefficients were obtained to compare segregation tendencies and homogeneity robustness between the drug batches and the blend preparation methods. The inter-particulate interactions were substantially influenced by the drug particle morphology and size and resulted in different segregation behavior. Based on these findings, a simple segregation test proved to be a useful tool for determining the suitability of different batches of the model drug to be used in a certain formulation. Moreover, for a particular batch A, the test revealed a potential for mixing process simplification and therefore process intensification and cost reduction.
Collapse
|
8
|
Gomez M, Archer M, Barona D, Wang H, Ordoubadi M, Bin Karim S, Carrigy NB, Wang Z, McCollum J, Press C, Gerhardt A, Fox CB, Kramer RM, Vehring R. Microparticle encapsulation of a tuberculosis subunit vaccine candidate containing a nanoemulsion adjuvant via spray drying. Eur J Pharm Biopharm 2021; 163:23-37. [PMID: 33753213 PMCID: PMC8096719 DOI: 10.1016/j.ejpb.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
Spray drying is a technique that can be used to stabilize biopharmaceuticals, such as vaccines, within dry particles. Compared to liquid pharmaceutical products, dry powder has the potential to reduce costs associated with refrigerated storage and transportation. In this study, spray drying was investigated for processing an adjuvanted tuberculosis subunit vaccine, formulated as an oil-in-water nanoemulsion, into a dry powder composed of microparticles. Applying in-silico approaches to the development of formulation and processing conditions, successful encapsulation of the adjuvanted vaccine within amorphous microparticles was achieved in only one iteration, with high retention (>90%) of both the antigen and adjuvant system. Moisture-controlled stability studies on the powder were conducted over 26 months at temperatures up to 40 °C. Results showed that the powder was physically stable after 26 months of storage for all tested temperatures. Adjuvant system integrity was maintained at temperatures up to 25 °C after 26 months and after one month of storage at 40 °C. The spray-dried product demonstrated improved antigen thermostability when stored above refrigerated temperatures as compared to the liquid product. These results demonstrate the feasibility of spray drying as a method of encapsulating and stabilizing an adjuvanted vaccine.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shabab Bin Karim
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Zheng Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ryan M Kramer
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Leucine enhances the dispersibility of trehalose-containing spray-dried powders on exposure to a high-humidity environment. Int J Pharm 2021; 601:120561. [PMID: 33811968 DOI: 10.1016/j.ijpharm.2021.120561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022]
Abstract
This study investigates the ability of various shell-forming excipients to preserve the dispersibility of dry powder dosage forms, e.g., nasally administered vaccines, upon exposure to a high-humidity environment. Trehalose combinations using leucine, pullulan, or trileucine were selected as the candidate excipient systems, and the powder dispersibility of these systems was compared with that of pure trehalose particles. Scaled-up monodisperse spray drying was used to produce sufficient quantities of uniform-sized particles for powder dispersibility analysis. Particle size, crystallinity, and morphology of the powders before and after exposure to moisture were characterized by an aerodynamic particle sizer, Raman spectroscopy, and scanning electron microscopy, respectively. Three two-component particle systems composed of trehalose/trileucine (97/3 w/w), trehalose/pullulan (70/30 w/w), and trehalose/leucine (70/30 w/w) were first formulated and their dispersibility, characterized as the emitted dose from dry powder inhalers, was then compared with that of trehalose particles. The formulation containing 30% leucine maintained the highest emitted dose (90.3 ± 10%) at a 60 L/min flow rate after 60 min exposure to 90% RH and 25 °C, showing its superior protection against exposure to humidity compared with the other systems. Further investigations under more challenging conditions at a 15 L/min flow rate on the trehalose/leucine system with various compositions (70/30, 80/20, 90/10 w/w) showed that a higher leucine concentration generally provided better protection against moisture and maintained higher powder dispersibility, probably due to higher surface coverage of crystalline leucine and a thicker leucine shell around the particle. The study concludes that leucine may be considered an appropriate shell-forming excipient in the development of dry powder formulations in order to protect the dosage forms against humidity during administration.
Collapse
|
10
|
Gao M, Liu S, Chen J, Gordon KC, Tian F, McGoverin CM. Potential of Raman spectroscopy in facilitating pharmaceutical formulations development - An AI perspective. Int J Pharm 2021; 597:120334. [PMID: 33540015 DOI: 10.1016/j.ijpharm.2021.120334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023]
Abstract
Drug development is time-consuming and inherently possesses a high failure rate. Pharmaceutical formulation development is the bridge that links a new chemical entity (NCE) to pre-clinical and clinical trials, and has a high impact on the efficacy and safety of the final drug product. Further, the time required for this process is escalating as formulation techniques are becoming more complicated due to the rising demands for drug products with better efficacy and patient compliance, as well as the inherent difficulties of addressing the unfavorable properties of NCEs such as low water solubility. The advent of artificial intelligence (AI) provides possibilities to accelerate the drug development process. In this review, we first examine applications of AI methods in different types of pharmaceutical formulations and formulation techniques. Moreover, as availability of data is the engine for the advancement of AI, we then suggest a potential way (i.e. applying Raman spectroscopy) for faster high-quality data gathering from formulations. Raman techniques have the capability of analyzing the composition and distribution of components and the physicochemical properties thereof within formulations, which are prominent factors governing drug dissolution profiles and subsequently bioavailability. Thus, useful information can be obtained bridging formulation development to the final product quality.
Collapse
Affiliation(s)
- Ming Gao
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Sibo Liu
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Jianan Chen
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Keith C Gordon
- Dodd-Walls Centre, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Fang Tian
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Cushla M McGoverin
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
11
|
Hetrick EM, Shi Z, Harms ZD, Myers DP. Sample Mass Estimate for the Use of Near-Infrared and Raman Spectroscopy to Monitor Content Uniformity in a Tablet Press Feed Frame of a Drug Product Continuous Manufacturing Process. APPLIED SPECTROSCOPY 2021; 75:216-224. [PMID: 32721168 DOI: 10.1177/0003702820950318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, feed frame-based process analytical technology measurements used to assure product quality during continuous manufacturing processes have received significant attention. These measurements are able to accurately determine uniformity of the powder blend before compression, and in these applications, it is necessary to understand the interrogated sample volume per measurement. This understanding ensures that the blend measurement can be indicative of the uniformity of the final dosage form. A scientifically sound approach is proposed here to estimate sample mass for a continuous manufacturing process that utilizes either near infrared or Raman spectroscopy. A wide range of commercially available probes with varying spot diameters are considered. By comparing near infrared and Raman spectroscopy, an optimal range of probe spot diameters was identified in order to reach an estimated sample mass between 50 and 500 mg for pharmaceutical blends per measurement, which is equivalent to common tablet weight ranges for solid oral dosage forms currently on the market.
Collapse
Affiliation(s)
- Evan M Hetrick
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| | - Zhenqi Shi
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| | - Zachary D Harms
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| | - David P Myers
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, IN, USA
| |
Collapse
|
12
|
Gomez M, McCollum J, Wang H, Ordoubadi M, Jar C, Carrigy NB, Barona D, Tetreau I, Archer M, Gerhardt A, Press C, Fox CB, Kramer RM, Vehring R. Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. Int J Pharm 2021; 593:120121. [PMID: 33278492 PMCID: PMC7790949 DOI: 10.1016/j.ijpharm.2020.120121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Protection against primarily respiratory infectious diseases, such as tuberculosis (TB), can likely be enhanced through mucosal immunization induced by direct delivery of vaccines to the nose or lungs. A thermostable inhalable dry powder vaccine offers further advantages, such as independence from the cold chain. In this study, we investigate the formulation for a stable, inhalable dry powder version of ID93 + GLA-SE, an adjuvanted subunit TB vaccine candidate, containing recombinant fusion protein ID93 and glucopyranosyl lipid A (GLA) in a squalene emulsion (SE) as an adjuvant system, via spray drying. The addition of leucine (20% w/w), pullulan (10%, 20% w/w), and trileucine (3%, 6% w/w) as dispersibility enhancers was investigated with trehalose as a stabilizing agent. Particle morphology and solid state, nanoemulsion droplet size, squalene and GLA content, ID93 presence, and aerosol performance were assessed for each formulation. The results showed that the addition of leucine improved aerosol performance, but increased aggregation of the emulsion droplets was demonstrated on reconstitution. Addition of pullulan preserved emulsion droplet size; however, the antigen could not be detected after reconstitution. The trehalose-trileucine excipient formulations successfully stabilized the adjuvant system, with evidence indicating retention of the antigen, in an inhalable dry powder format suitable for lung delivery.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Chester Jar
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Isobel Tetreau
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ryan M Kramer
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Ordoubadi M, Gregson FKA, Wang H, Nicholas M, Gracin S, Lechuga-Ballesteros D, Reid JP, Finlay WH, Vehring R. On the particle formation of leucine in spray drying of inhalable microparticles. Int J Pharm 2021; 592:120102. [PMID: 33227375 DOI: 10.1016/j.ijpharm.2020.120102] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
The particle formation of L-leucine, a dispersibility-enhancing amino acid used in the spray drying of inhalable pharmaceutical aerosols, was extensively studied using three experimental methods, and the results were interpreted with the aid of theory. A comparative-kinetics electrodynamic balance was used to study the shell formation behavior in single evaporating microdroplets containing leucine and trehalose. Different concentration thresholds of solidification and shell formation were determined for trehalose and leucine, which were then used in the particle formation model to predict the properties of spray-dried particles. Furthermore, a droplet chain instrument was used to study the particle morphologies and particle densities that were not accessible in the single particle experiments. Lab-scale spray drying was also used to produce powders typical for actual pharmaceutical applications. Raman spectroscopy confirmed that a glass former, such as trehalose, can inhibit the crystallization of leucine. The surface compositions of these spray-dried powders were analyzed via time-of-flight secondary ion mass spectrometry. The leucine surface coverage in a polydisperse powder was determined to be a function of the particle size or the initial droplet diameter of each respective particle. This observation confirms the important role of leucine crystallization kinetics in its shell-forming capabilities. A critical supersaturation ratio of 3.5 was also calculated for leucine, at which it is assumed to instantaneously nucleate out of solution. This ratio was used as the threshold for the initiation of crystallization. Crystallinity predictions for the leucine-trehalose particles based on this supersaturation ratio were in good agreement with the solid-state characterizations obtained by Raman spectroscopy. This study improves the fundamental understanding of the particle formation process of leucine-containing formulations, which can apply to other crystallizing systems and potentially facilitate the rational design of such formulations with reduced experimental effort.
Collapse
Affiliation(s)
- Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Nicholas
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Sandra Gracin
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
An investigation into the impact of key process variables on the uniformity of powder blends containing a low-dose drug in a gentle-wing high shear mixer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Paiva EM, Ribessi RL, Pereira CF, Rohwedder JJR. Low-frequency Raman spectrophotometer with wide laser illumination on the sample: A tool for pharmaceutical analytical analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117798. [PMID: 31813732 DOI: 10.1016/j.saa.2019.117798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
This work describes an optical configuration for a Raman spectrophotometer, which permits variation of the laser spot size from 3 to 3000 μm, maintaining a high Raman photons throughput and allowing acquisitions with a short integration time. In addition, the instrument can acquire spectra from the low to middle frequency vibrational range (10 to 2000 cm-1), on the Stokes and anti-Stokes sides. One of the features of this new optical configuration is the non-use of beam splitters to redirect the scattered light to the detector, which would sacrifice the laser power. The quantitative and qualitative analytical performances of the Raman spectrophotometer were evaluated using chemometric models to predict the concentrations of different active pharmaceutical ingredients (APIs) in mixtures with polymorphs and excipients, as well as by analysis of an API mixture employing hyperspectral imaging. This new optical configuration was shown to be versatile for pharmaceutical purposes and could be used in applications such as the characterization of new drugs or the quality control of raw materials and processes, using normal Raman measurements or SERS (surface-enhanced Raman scattering).
Collapse
Affiliation(s)
- Eduardo Maia Paiva
- Institute of Chemistry, State University of Campinas - Unicamp, Rua Monteiro Lobato, 290, Campinas, SP CEP: 13083-862, Brazil.
| | - Rafael Luis Ribessi
- Institute of Chemistry, State University of Campinas - Unicamp, Rua Monteiro Lobato, 290, Campinas, SP CEP: 13083-862, Brazil
| | - Claudete Fernandes Pereira
- Department of Fundamental Chemistry, Federal University of Pernambuco, Avenida Jornalista Aníbal Fernandes, Recife, PE CEP: 50740-560, Brazil
| | - Jarbas José Rodrigues Rohwedder
- Institute of Chemistry, State University of Campinas - Unicamp, Rua Monteiro Lobato, 290, Campinas, SP CEP: 13083-862, Brazil
| |
Collapse
|
16
|
Bowler AL, Bakalis S, Watson NJ. A review of in-line and on-line measurement techniques to monitor industrial mixing processes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Raw Material Variability and Its Impact on the Online Adaptive Control of Cohesive Powder Blend Homogeneity Using NIR Spectroscopy. Processes (Basel) 2019. [DOI: 10.3390/pr7090568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is significant to analyze the blend homogeneity of cohesive powders during pharmaceutical manufacturing in order to provide the exact content of the active pharmaceutical ingredient (API) for each individual dose unit. In this paper, an online monitoring platform using an MEMS near infrared (NIR) sensor was designed to control the bin blending process of cohesive powders. The state of blend homogeneity was detected by an adaptive algorithm, which was calibration free. The online control procedures and algorithm’s parameters were fine-tuned through six pilot experiments and were successfully transferred to the industrial production. The reliability of homogeneity detection results was validated by 16 commercial scale experiments using 16 kinds of natural product powders (NPPs), respectively. Furthermore, 19 physical quality attributes of all NPPs and the excipient were fully characterized. The blending end time was used to denote the degree of difficulty of blending. The empirical relationships between variability of NPPs and the blending end time were captured by latent variable modeling. The critical material attributes (CMAs) affecting the blending process were identified as the particle shape and flowability descriptors of cohesive powders. Under the framework of quality by design (QbD) and process analytical technology (PAT), the online NIR spectroscopy together with the powder characterization facilitated a deeper understanding of the mixing process.
Collapse
|
18
|
Ly A, Carrigy NB, Wang H, Harrison M, Sauvageau D, Martin AR, Vehring R, Finlay WH. Atmospheric Spray Freeze Drying of Sugar Solution With Phage D29. Front Microbiol 2019; 10:488. [PMID: 30949139 PMCID: PMC6436606 DOI: 10.3389/fmicb.2019.00488] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/25/2019] [Indexed: 01/11/2023] Open
Abstract
Therapeutic bacteriophages offer a potential alternative approach in the treatment of drug resistant bacteria. In the present study, we examine the ability of atmospheric spray freeze-drying (ASFD) to process bacteriophage D29 into a solid dry formulation. Bacteriophage D29 is of particular interest due to its ability to infect Mycobacterium tuberculosis. A sugar solution containing bacteriophage D29 was sprayed and instantly frozen in a cold chamber. Cold drying gas was then passed through the chamber at a high flow rate and atmospheric pressure. Convective transport combined with the low temperature of the drying gas results in sublimation of ice, yielding a free-flowing, porous powder. The bacteriophages were atmospheric spray freeze-dried in solutions with varying concentrations of trehalose and mannitol. A solution of trehalose and mannitol at a mass ratio of 7:3 and a total mass concentration of 100 mg/mL led to powder with 4.9 ± 0.1% moisture content and an acceptable titer reduction of ∼0.6 logs. In comparison, a pure trehalose solution and a 1:1 ratio of trehalose and mannitol both had titer reductions of >1.5 logs. Spectroscopic analysis showed that trehalose in the powder was amorphous while mannitol completely crystallized during the drying process, both of which are desirable for preserving phage viability and storage in powders. The results highlight the potential for using ASFD as an alternative process in preserving biopharmaceutical products.
Collapse
Affiliation(s)
- Alvin Ly
- Department of Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Hui Wang
- Department of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Melissa Harrison
- Department of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Martin
- Department of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Reinhard Vehring
- Department of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Warren H Finlay
- Department of Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Stranzinger S, Faulhammer E, Li J, Dong R, Khinast JG, Zeitler JA, Markl D. Measuring bulk density variations in a moving powder bed via terahertz in-line sensing. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.11.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Wang H, Nobes DS, Vehring R. Particle Surface Roughness Improves Colloidal Stability of Pressurized Pharmaceutical Suspensions. Pharm Res 2019; 36:43. [PMID: 30701324 DOI: 10.1007/s11095-019-2572-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE The effects of particle size and particle surface roughness on the colloidal stability of pressurized pharmaceutical suspensions were investigated using monodisperse spray-dried particles. METHODS The colloidal stability of multiple suspensions in the propellant HFA227ea was characterized using a shadowgraphic imaging technique and quantitatively compared using an instability index. Model suspensions of monodisperse spray-dried trehalose particles of narrow distributions (GSD < 1.2) and different sizes (MMAD = 5.98 μm, 10.1 μm, 15.5 μm) were measured first to study the dependence of colloidal stability on particle size. Particles with different surface rugosity were then designed by adding different fractions of trileucine, a shell former, and their suspension stability measured to further study the effects of surface roughness on the colloidal stability of pressurized suspensions. RESULTS The colloidal stability significantly improved (p < 0.001) from the suspension with 15.5 μm-particles to the suspension with 5.98 μm-particles as quantified by the decreased instability index from 0.63 ± 0.04 to 0.07 ± 0.01, demonstrating a strongly size-dependent colloidal stability. No significant improvement of suspension stability (p > 0.1) was observed at low trileucine fraction at 0.4 % where particles remained relatively smooth until the surface rugosity of the particles was improved by the higher trileucine fractions at 1.0 % and 5.0 %, which was indicated by the substantially decreased instability index from 0.27 ± 0.02 for the suspensions with trehalose model particles to 0.18 ± 0.01 (p < 0.01) and 0.03 ± 0.01 (p < 0.002) respectively. CONCLUSIONS Surface modification of particles by adding shell formers like trileucine to the feed solutions of spray drying was demonstrated to be a promising method of improving the colloidal stability of pharmaceutical suspensions in pressurized metered dose inhalers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Mechanical Engineering, 10-269 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - David S Nobes
- Department of Mechanical Engineering, 10-269 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, 10-269 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
21
|
Stranzinger S, Faulhammer E, Li J, Dong R, Zeitler JA, Biserni S, Calzolari V, Khinast JG, Markl D. Predicting capsule fill weight from in-situ powder density measurements using terahertz reflection technology. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100004. [PMID: 31517269 PMCID: PMC6733302 DOI: 10.1016/j.ijpx.2018.100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/07/2022]
Abstract
The manufacturing of the majority of solid oral dosage forms is based on the densification of powder. A good understanding of the powder behavior is therefore essential to assure high quality drug products. This is particularly relevant for the capsule filling process, where the powder bulk density plays an important role in controlling the fill weight and weight variability of the final product. In this study we present a novel approach to quantitatively measure bulk density variations in a rotating container by means of terahertz reflection technology. The terahertz reflection probe was used to measure the powder density using an experimental setup that mimics a lab-scale capsule filling machine including a static sampling tool. Three different grades of α-lactose monohydrate excipients specially designed for inhalation application were systematically investigated at five compression stages. Relative densities predicted from terahertz reflection measurements were correlated to off-line weight measurements of the collected filled capsules. The predictions and the measured weights of the powder in the capsules were in excellent agreement, where the relative density measurements of Lactohale 200 showed the strongest correlation with the respective fill weight (R2=0.995). We also studied how the density uniformity of the powder bed was impacted by the dosing process and the subsequent filling of the holes (with excipient powder), which were introduced in the powder bed after the dosing step. Even though the holes seemed to be filled with new powder (by visual inspection), the relative density in these specific segments were found to clearly differ from the undisturbed powder bed state prior to dosing. The results demonstrate that it is feasible to analyze powder density variations in a rotating container by means of terahertz reflection measurements and to predict the fill weight of collected capsules.
Collapse
Affiliation(s)
- Sandra Stranzinger
- Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010 Graz, Austria.,Graz University of Technology, Institute for Process and Particle Engineering, Inffeldgasse 13, 8010 Graz, Austria
| | - Eva Faulhammer
- Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Jingyi Li
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Runqiao Dong
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - Stefano Biserni
- MG2, Via del Savena, 18. I-40065 Pian di Macina di Pianoro, Bologna, Italy
| | - Vittorio Calzolari
- MG2, Via del Savena, 18. I-40065 Pian di Macina di Pianoro, Bologna, Italy
| | - Johannes G Khinast
- Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, 8010 Graz, Austria.,Graz University of Technology, Institute for Process and Particle Engineering, Inffeldgasse 13, 8010 Graz, Austria
| | - Daniel Markl
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, UK.,EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, University of Strathclyde, 99 George Street, G1 1RD Glasgow, UK
| |
Collapse
|
22
|
Helešicová T, Pekárek T, Matějka P. The influence of different acquisition settings and the focus adjustment on Raman spectral maps of pharmaceutical tablets. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Wang H, Tan P, Barona D, Li G, Hoe S, Lechuga-Ballesteros D, Nobes DS, Vehring R. Characterization of the suspension stability of pharmaceuticals using a shadowgraphic imaging method. Int J Pharm 2018; 548:128-138. [PMID: 29959088 DOI: 10.1016/j.ijpharm.2018.06.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
A new shadowgraphic imaging method and an associated instrument for analyzing the physical stability of pharmaceutical suspensions are introduced in this paper. The new suspension tester consists mainly of a high-resolution camera that takes sequential shadowgraphic images of emulsions or suspensions and a 2D collimated LED for simultaneous whole-sample illumination in bright field. A built-in ultrasonic bath provides controlled initial agitation to the samples of interest. Sequential images acquired by the experimental setup were used to derive normalized transmission profiles from which an instability index was developed for quantitative stability comparison between samples. Instrument performance was verified by measuring the stability of a series of oil-in-water emulsions prepared with surfactant mixtures of different ratios. The new instrument correctly determined the required hydrophilic-lipophilic balance for sunflower oil to be 7.0. The stability of a pressurized suspension of spray dried lipid (DSPC) particles was monitored for 5 days after propellant filling. Although stable for the first 24 h, the lipid suspension was found to decrease in stability from day 1 to day 4. Morphological and spectroscopic analysis revealed that the suspended DSPC particles had reformed into large thin sheets of lipid, thereby causing the gradual stability decrease during the aging study. The effects of initial agitation on the stability of suspensions were demonstrated by agitating a suspension of micronized fluticasone propionate in propellant using a wrist action shaker and an ultrasonic bath respectively. A significant improvement of suspension stability was achieved by replacing the wrist action shaker method with ultrasonic agitation. Simultaneous illumination of the complete suspension, a high image acquisition rate, and controlled initial agitation are features that make this new suspension tester a suitable and more reliable instrument for investigating the stability of pressurized pharmaceutical suspensions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Penny Tan
- Pharmaceutical Technology & Development, AstraZeneca R&D, South San Francisco, CA, USA
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Grace Li
- Pharmaceutical Technology & Development, AstraZeneca R&D, South San Francisco, CA, USA
| | - Susan Hoe
- Pharmaceutical Technology & Development, AstraZeneca R&D, South San Francisco, CA, USA
| | | | - David S Nobes
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Paiva EM, da Silva VH, Poppi RJ, Pereira CF, Rohwedder JJ. Comparison of macro and micro Raman measurement for reliable quantitative analysis of pharmaceutical polymorphs. J Pharm Biomed Anal 2018; 157:107-115. [DOI: 10.1016/j.jpba.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
|
25
|
|
26
|
Design and pharmaceutical applications of a low-flow-rate single-nozzle impactor. Int J Pharm 2017; 533:14-25. [DOI: 10.1016/j.ijpharm.2017.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|