1
|
Sasikumar K, Prabakaran DS, Rajamanikandan R, Ju H. Yellow Emissive Carbon Dots - A Robust Nanoprobe for Highly Sensitive Quantification of Jaundice Biomarker and Mitochondria Targeting in Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:6730-6739. [PMID: 39267591 DOI: 10.1021/acsabm.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The abnormally high level of bilirubin (BR) in biofluids (human serum and urine) indicates a high probability of jaundice and liver dysfunction. However, quantification of BR as the Jaundice biomarker is difficult due to the interference of various biomolecules in serum and urine. To address this issue, we developed a fluorescence-based detection strategy, for which yellow emissive carbon dots (YCDs) were produced from a one-step solvothermal process using phloroglucinol and thionin acetate as chemical precursors. The as-fabricated YCDs exhibited a strong fluorescence peak at the wavelength of 542 nm upon excitation at 390 nm. We used YCDs for detecting BR through the fluorescence turn-off mechanism, unveiling the excellent sensitivity in the linear range of 0.5-12.5 μM with a limit of detection (LOD) of 9.62 nM, which was far below the clinically relevant range. The analytical nanoprobe also offered excellent detection specificity for quantifying BR in real samples. Moreover, the biocompatible fluorescent nanoprobe was successfully employed to target mitochondria in live cancer cells. A colocalization study confirmed that YCDs possessed the ability to target mitochondria and overlapped completely with MitoTracker Red. The developed nanoprobe of YCDs turned out to be straightforward in their synthesis, noninvasive, and can be utilized for biomedical sensors to diagnose the onset of jaundice as well as for mitochondria targeting.
Collapse
Affiliation(s)
- Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Dhashnamoorthy Subramanian Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ramar Rajamanikandan
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
2
|
Mirhadi E, Butler AE, Kesharwani P, Sahebkar A. Utilizing stimuli-responsive nanoparticles to deliver and enhance the anti-tumor effects of bilirubin. Biotechnol Adv 2024; 77:108469. [PMID: 39427964 DOI: 10.1016/j.biotechadv.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Bilirubin (BR) is among the most potent endogenous antioxidants that originates from the heme catabolic pathway. Despite being considered as a dangerous and cytotoxic waste product at high concentrations, BR has potent antioxidant effects leading to the reduction of oxidative stress and inflammation, which play an important role in the development and progression of cancer. The purpose of this study is to introduce PEGylated BR nanoparticles (NPs), themselves or in combination with other anti-cancer agents. BR is effective when loaded into various nanoparticles and used in cancer therapy. Interestingly, BRNPs can be manipulated to create stimuli-responsive carriers providing a sustained and controlled, as well as on-demand, release of drug in response to internal or external factors such as reactive oxygen species, glutathione, light, enzymes, and acidic pH. This review suggests that BRNPs have the potential as tumor microenvironment-responsive delivery systems for effective targeting of various types of cancers.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hulzebos CV, Camara JE, van Berkel M, Delatour V, Lo SF, Mailloux A, Schmidt MC, Thomas M, Mackay LG, Greaves RF. Bilirubin measurements in neonates: uniform neonatal treatment can only be achieved by improved standardization. Clin Chem Lab Med 2024; 62:1892-1903. [PMID: 39066506 DOI: 10.1515/cclm-2024-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Measurement of total bilirubin (TBil) concentration in serum is the gold standard approach for diagnosing neonatal unconjugated hyperbilirubinemia. It is of utmost importance that the measured TBil concentration is sufficiently accurate to prevent under treatment, unnecessary escalation of care, or overtreatment. However, it is widely recognized that TBil measurements urgently require improvement in neonatal clinical chemistry. External quality assessment (EQA) programs for TBil assess for differences between laboratories and provide supporting evidence of significant differences between various methods, manufacturers and measurement platforms. At the same time, many countries have adopted or only slightly adapted the neonatal hyperbilirubinemia management guidelines from the USA or UK, often without addressing differences in the methodology of TBil measurements. In this report, we provide an overview of the components of bilirubin that are measured by laboratory platforms, the availability of current reference measurement procedures and reference materials, and the role of EQA surveys in this context. Furthermore, the current status of agreement in neonatal bilirubin against clinical decision thresholds is reviewed. We advocate for enhancements in accuracy and comparability of neonatal TBil measurements, propose a path forward to accomplish this, and reflect on the position of the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Working Group Neonatal Bilirubin (WG-NB) in this matter.
Collapse
Affiliation(s)
- Christian V Hulzebos
- Department of Paediatrics, Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Johanna E Camara
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Miranda van Berkel
- Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Vincent Delatour
- Laboratoire National de Métrologie et d'Essais (LNE), Paris, France
| | - Stanley F Lo
- Department of Pathology and Laboratory Medicine, Children's Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Agnès Mailloux
- Centre National de Référence en Hémobiologie Périnatale, Unit of Biologie, Pole Biology, Hopital Saint Antoine (Public Assistance Hospitals of Paris (AP-HP)), Paris, France
| | | | - Mercy Thomas
- The Royal Children's Hospital, Parkville, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | | - Ronda F Greaves
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Kwoun W, Lee J, Youn Y, Chae H, Lee J. Evaluation of a Diazo-Based Point-Of-Care Bilirubin Assay careSTART S1 Total Bilirubin Strip. J Clin Lab Anal 2024; 38:e25093. [PMID: 39169634 PMCID: PMC11492299 DOI: 10.1002/jcla.25093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Neonatal jaundice (NNJ) affects a significant proportion of newborns globally, with an increased burden in low-resource settings. Effective health risk management of NNJ is hindered, particularly in resource-constrained environments, where early detection and treatment are challenging. The careSTART S1 Total Bilirubin Strip, a point-of-care testing (POCT) device based on a diazo-method, offers a potential solution by enabling onsite bilirubin measurement, thus, addressing the gap in early NNJ detection and management. METHODS The current study evaluated the analytical performance of the careSTART S1 Total Bilirubin Strip for precision, linearity, method comparison, and lot-to-lot consistency following CLSI guidelines. For method comparison, 105 residual EDTA whole blood samples were analyzed with the careSTART S1 Total Bilirubin Strip and compared with reference measurements from the Roche Cobas c702 analyzer. Additionally, statistical analyses, including Passing-Bablok regression and Bland-Altman plots, were performed. RESULTS The careSTART S1 Total Bilirubin Strip showed allowable (<10%) within-laboratory imprecision of 2.5%-3.6% across all levels and demonstrated linearity over the range of 4.16-439.3 μmol/L. Method comparison revealed a constant negative bias with a mean bias -4.19 μmol/L. However, the 95% confidence interval (-7.10 to -1.28 μmol/L) of the bias is covered by the prespecified allowable bias of 8.3%, at medical decision point. Lot-to-lot variation ranged from 0.14%-6.49%, and was within the acceptable critical difference of 8.3%. CONCLUSION The careSTART S1 Total Bilirubin Strip provided accurate and reliable bilirubin measurements that could contribute to neonatal care in settings lacking central laboratory facilities.
Collapse
Affiliation(s)
- Woojae Kwoun
- Department of Laboratory MedicineSeoul St. Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Laboratory MedicineSeegene Medical FoundationSeoulRepublic of Korea
| | - Jeong Joong Lee
- Department of Laboratory MedicineSeoul St. Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| | - Young‐Ah Youn
- Department of PediatricsSeoul St. Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| | - Hyojin Chae
- Department of Laboratory MedicineSeoul St. Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| | - Jehoon Lee
- Department of Laboratory MedicineEunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| |
Collapse
|
5
|
Molatrati K, Borse S, Ghosh S, Jha S, Murthy ZVP, Kailasa SK, Park TJ. Biosynthesis of copper nanoclusters for fluorescence detection of bilirubin in biofluids. LUMINESCENCE 2024; 39:e4866. [PMID: 39152772 DOI: 10.1002/bio.4866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Copper nanoclusters (Cu NCs) have shown significant attention in sensing of molecular and ionic species. In this work, a single-step biosynthetic approach was introduced for the preparation of fluorescent Cu NCs using Holarrhena pubescens (H. pubescens) leaves extract as a template. The synthesized H. pubescens-Cu NCs act as a nanomolecular probe for the detection of bilirubin in biofluids. The synthesized H. pubescens-Cu NCs displayed highest fluorescence intensity at 454 nm, when excited at 330 nm. Importantly, selective detection of bilirubin was obtained by introducing H. pubescens-Cu NCs as a simple molecular probe. The interaction of bilirubin and H. pubescens-Cu NCs resulted in a remarkable decrease in the emission peak intensity. The developed H. pubescens-Cu NCs-based bilirubin molecular probe has a wide linear range of 0.5-20.00 μM with the limit of detection of 30.54 nM for bilirubin. The promising application of H. pubescens-Cu NCs-based molecular probe was assessed by assaying bilirubin in spiked biofluids.
Collapse
Affiliation(s)
- Kousalya Molatrati
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Subhadeep Ghosh
- Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, Gujarat, India
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
- Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jung Park
- Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
O AA, Akhila BA, George S. Fluorescent Nitrogen-doped Carbon Dots-based Turn-off Sensor for Bilirubin. J Fluoresc 2024:10.1007/s10895-024-03771-0. [PMID: 38865062 DOI: 10.1007/s10895-024-03771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Bilirubin (BR), a heme protein produced from breakdown of haemoglobin is present in aged red blood cells; whose abnormal concentration is associated with diseases like hyperbilirubinemia, coronary disease, iron deficiency, and so on. Herein, we have synthesized a selective, sensitive, and low-cost sensing platform using fluorescent nitrogen doped carbon dots (NCDs), prepared from precursors; citric acid and urea via a simple microwave-assisted method. The emission at 444 nm on excitation with 360 nm was well quenched in presence of BR suggesting a direct turn-off detection for BR. Characterization of developed probe was done by UV-Visible absorption studies, photoluminescence studies, SEM, TEM, ATR-FTIR, XPS, and DLS analysis. BR was detected with a Limit of Detection (LoD) and Limit of Quantification (LoQ) of 0.32 µM and 1.08 µM respectively. NCDs exhibited excellent selectivity and sensitivity towards BR in the presence of co-existing biomolecules and ions. Practical feasibility was checked by paper-strip-based sensing of BR and spiked real human samples were used for conducting real sample analysis.
Collapse
Affiliation(s)
- Aswathy A O
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - B A Akhila
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Sony George
- Department of Chemistry, International Inter University Centre for Sensing and Imaging (IIUCSI), University of Kerala, Coordinator, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
7
|
Hazarika CJ, Borah A, Gogoi P, Ramchiary SS, Daurai B, Gogoi M, Saikia MJ. Development of Non-Invasive Biosensors for Neonatal Jaundice Detection: A Review. BIOSENSORS 2024; 14:254. [PMID: 38785728 PMCID: PMC11118406 DOI: 10.3390/bios14050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
One of the most common problems many babies encounter is neonatal jaundice. The symptoms are yellowing of the skin or eyes because of bilirubin (from above 2.0 to 2.5 mg/dL in the blood). If left untreated, it can lead to serious neurological complications. Traditionally, jaundice detection has relied on invasive blood tests, but developing non-invasive biosensors has provided an alternative approach. This systematic review aims to assess the advancement of these biosensors. This review discusses the many known invasive and non-invasive diagnostic modalities for detecting neonatal jaundice and their limitations. It also notes that the recent research and development on non-invasive biosensors for neonatal jaundice diagnosis is still in its early stages, with the majority of investigations being in vitro or at the pre-clinical level. Non-invasive biosensors could revolutionize neonatal jaundice detection; however, a number of issues still need to be solved before this can happen. These consist of in-depth validation studies, affordable and user-friendly gadgets, and regulatory authority approval. To create biosensors that meet regulatory requirements, additional research is required to make them more precise and affordable.
Collapse
Affiliation(s)
- Chandan Jyoti Hazarika
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, Meghalaya 793022, India (S.S.R.)
| | - Alee Borah
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, Meghalaya 793022, India (S.S.R.)
| | - Poly Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, Meghalaya 793022, India (S.S.R.)
| | - Shrimanta S. Ramchiary
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, Meghalaya 793022, India (S.S.R.)
| | - Bethuel Daurai
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, Meghalaya 793022, India (S.S.R.)
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, Meghalaya 793022, India (S.S.R.)
| | - Manob Jyoti Saikia
- Department of Electrical Engineering, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
8
|
Oostendorp M, Ten Hove CH, van Berkel M, Roovers L. A Significant Increase in the Incidence of Neonatal Hyperbilirubinemia and Phototherapy Treatment Due to a Routine Change in Laboratory Equipment. Arch Pathol Lab Med 2024; 148:e40-e47. [PMID: 37596896 DOI: 10.5858/arpa.2022-0478-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 08/21/2023]
Abstract
CONTEXT.— Total serum bilirubin (TSB) analysis is pivotal for diagnosing neonatal hyperbilirubinemia. Because of a routine change in laboratory equipment, our TSB assay changed from a diazo to a vanadate oxidase method. Upon implementation, TSB results were substantially higher in newborns than expected based on the validation. OBJECTIVE.— To investigate the application of TSB and intermethod differences in neonates and their impact on phototherapy treatment. DESIGN.— The diazo and vanadate methods were compared directly using neonatal and adult samples. Anonymized external quality control data were analyzed to explore interlaboratory differences among 8 commercial TSB assays. Clinical patient data were extracted from the medical records to investigate the number of newborns receiving phototherapy. RESULTS.— The mean bias of the vanadate versus the diazo TSB method was +17.4% and +3.7% in neonatal and adult samples, respectively. External quality control data showed that the bias of commercial TSB methods compared with the reference method varied from -3.6% to +20.2%. Within-method variation ranged from 5.2% to 16.0%. After implementation of the vanadate TSB method, the number of neonates treated with phototherapy increased approximately threefold. CONCLUSIONS.— Currently available TSB assays lack harmonization for the diagnosis of neonatal hyperbilirubinemia. Between-methods differences are substantially higher in neonatal compared with adult samples, highlighting the importance of including neonatal samples during assay validation. Close collaboration between laboratory specialists and clinicians is essential to prevent overtreatment or undertreatment upon the implementation of novel analyzers or assays. Also, harmonization of TSB assays, with an emphasis on neonatal application, is warranted.
Collapse
Affiliation(s)
- Marlies Oostendorp
- From the Departments of Clinical Chemistry and Hematology (Oostendorp), Rijnstate Hospital, Arnhem, the Netherlands
- the Department of Clinical Chemistry, Dicoon BV, Arnhem, the Netherlands (Oostendorp)
| | | | - Miranda van Berkel
- the Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands (van Berkel)
| | - Lian Roovers
- Clinical Research (Roovers), Rijnstate Hospital, Arnhem, the Netherlands
| |
Collapse
|
9
|
Peng T, Zhou C, Zhang Z, Liu Y, Lin X, Ye Y, Zhong Y, Wang P, Jia Y. Review on bile dynamics and microfluidic-based component detection: Advancing the understanding of bilestone pathogenesis in the biliary tract. BIOMICROFLUIDICS 2024; 18:014105. [PMID: 38370511 PMCID: PMC10869170 DOI: 10.1063/5.0186602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Bilestones are solid masses found in the gallbladder or biliary tract, which block the normal bile flow and eventually result in severe life-threatening complications. Studies have shown that bilestone formation may be related to bile flow dynamics and the concentration level of bile components. The bile flow dynamics in the biliary tract play a critical role in disclosing the mechanism of bile stasis and transportation. The concentration of bile composition is closely associated with processes such as nucleation and crystallization. Recently, microfluidic-based biosensors have been favored for multiple advantages over traditional benchtop detection assays for their less sample consumption, portability, low cost, and high sensitivity for real-time detection. Here, we reviewed the developments in bile dynamics study and microfluidics-based bile component detection methods. These studies may provide valuable insights into the bilestone formation mechanisms and better treatment, alongside our opinions on the future development of in vitro lithotriptic drug screening of bilestones and bile characterization tests.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Chenxiao Zhou
- Li Po Chun United World College of Hong Kong, Hong Kong, China
| | | | | | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Yongqing Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunlong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Jia
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
10
|
Yamazoe H. Multifunctional Micromachines Constructed by Combining Multiple Protein-Based Components with Different Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59145-59154. [PMID: 38078429 DOI: 10.1021/acsami.3c12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Untethered mobile micromachines have considerable potential to realize more effective and minimally invasive medicine. Although diverse medical micromachines have been reported over the past few decades, these machines were developed for performing only specific tasks and the functions imparted to them were limited to a few. Hence, the methodologies for imparting a wide variety of functions to machines have not been fully explored. In this study, a novel construction strategy for the multifunctional micromachines is presented, where a specific function can be added to the machine in one step by directly combining the protein-based component, possessing the biological function of constituent proteins, to an arbitrary position of the machine by using an inkjet printing technique. As a proof-of-concept demonstration, various types of machines were constructed by combining multiple components with different functions. These constructed machines successfully performed functions as diverse as enzyme-powered self-propulsion, collection of target objects, including the bilirubin and living cells, enzyme-mediated conversion of substrate molecules to different ones, magnetic guidance, and release of anti-inflammatory drug diapocynin. The study's progressive approach as well as multifunctional and biocompatible machines composed of proteins will profoundly impact the development of intelligent machines equipped with multiplex sophisticated functionalities.
Collapse
Affiliation(s)
- Hironori Yamazoe
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
11
|
Sist P, Tramer F, Bandiera A, Urbani R, Redenšek Trampuž S, Dolžan V, Passamonti S. Nanoscale Bilirubin Analysis in Translational Research and Precision Medicine by the Recombinant Protein HUG. Int J Mol Sci 2023; 24:16289. [PMID: 38003479 PMCID: PMC10671013 DOI: 10.3390/ijms242216289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Bilirubin is a toxicological biomarker for hemolysis and liver diseases. The current automated diazo method used in clinical chemistry has limited applicability in rodent models and cannot be used in small animals relevant to toxicology, microphysiological systems, cell cultures, and kinetic studies. Here, we present a versatile fluorometric method for nanoscale analysis of bilirubin based on its highly specific binding to the recombinant bifunctional protein HELP-UnaG (HUG). The assay is sensitive (LoQ = 1.1 nM), accurate (4.5% relative standard error), and remarkably robust, allowing analysis at pH 7.4-9.5, T = 25-37 °C, in various buffers, and in the presence of 0.4-4 mg × L-1 serum albumin or 30% DMSO. It allows repeated measurements of bilirubinemia in murine models and small animals, fostering the 3Rs principle. The assay determines bilirubin in human plasma with a relative standard error of 6.7% at values that correlate and agree with the standard diazo method. Furthermore, it detects differences in human bilirubinemia related to sex and UGT1A1 polymorphisms, thus demonstrating its suitability for the uniform assessment of bilirubin at the nanoscale in translational and precision medicine.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Sara Redenšek Trampuž
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (S.R.T.); (V.D.)
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (S.R.T.); (V.D.)
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy; (P.S.); (F.T.); (A.B.)
| |
Collapse
|
12
|
Guirguis N, Bertrand A, Rose CF, Matoori S. 175 Years of Bilirubin Testing: Ready for Point-of-Care? Adv Healthc Mater 2023; 12:e2203380. [PMID: 37035945 PMCID: PMC11468846 DOI: 10.1002/adhm.202203380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Indexed: 04/11/2023]
Abstract
Bilirubin was first detected in blood in 1847 and since then has become one of the most widely used biomarkers for liver disease. Clinical routine bilirubin testing is performed at the hospital laboratory, and the gold standard colorimetric test is prone to interferences. The absence of a bedside test for bilirubin delays critical clinical decisions for patients with liver disease. This clinical care gap has motivated the development of a new generation of bioengineered point-of-care bilirubin assays. In this Perspective, recently developed bilirubin assays are critically discussed, and their translational potential evaluated.
Collapse
Affiliation(s)
- Natalie Guirguis
- Faculté de PharmacieUniversité de MontréalMontrealQCH3T 1J4Canada
| | | | - Christopher F. Rose
- Hepato‐Neuro LaboratoryCentre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontrealQCH2X 0A9Canada
- Department of MedicineUniversité de MontréalMontrealQCH3T 1J4Canada
| | - Simon Matoori
- Faculté de PharmacieUniversité de MontréalMontrealQCH3T 1J4Canada
| |
Collapse
|
13
|
Das J, Ta S, Salam N, Das S, Ghosh S, Das D. Polymeric copper(ii) and dimeric oxovanadium(v) complexes of amide-imine conjugate: bilirubin recognition and green catalysis. RSC Adv 2023; 13:13195-13205. [PMID: 37124003 PMCID: PMC10141293 DOI: 10.1039/d3ra00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
An exceptionally simple amide-imine conjugate, (E)-N'-(4-(diethylamino)-2-hydroxybenzylidene)-4-methylbenzohydrazide (L), derived by the condensation of 4-methyl-benzoic acid hydrazide (PTA) with 4-(diethylamino)-2-hydroxybenzaldehyde was utilized to prepare a dimeric oxo-vanadium (V1) and a one-dimensional (1D) copper(ii) coordination polymer (C1). The structures of L, V1 and C1 were confirmed by single crystal X-ray diffraction analysis. The experimental results indicate that V1 is a promising green catalyst for the oxidation of sulfide, whereas C1 has potential for a C-S cross-coupling reaction in a greener way. Most importantly, C1 is an efficient 'turn-on' fluorescence sensor for bilirubin that functions via a ligand displacement approach. The displacement equilibrium constant is 7.78 × 105 M-1. The detection limit for bilirubin is 1.15 nM in aqueous chloroform (chloroform/water, 1/4, v/v, PBS buffer, and pH 8.0).
Collapse
Affiliation(s)
- Jayanta Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Sabyasachi Ta
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Noor Salam
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
- Department of Chemistry, Surendranath College 24/2 MG Road Kolkata 700009 WB India
| | - Sudipta Das
- Raina Swami Bholananda Vidyayatan Burdwan 713421 WB India
| | - Subhasis Ghosh
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| | - Debasis Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 WB India +91-342-2530452 +91-342-2533913, ext. 424
| |
Collapse
|
14
|
Nanomaterials for fluorescent assay of bilirubin. Anal Biochem 2023; 666:115078. [PMID: 36754137 DOI: 10.1016/j.ab.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The accumulation of bilirubin in blood is associated with many diseases. Sensitive and accurate detection of bilirubin is of great significance for personal health care. The rapid development of fluorescent nanomaterials promotes rapid development in the bilirubin assay. In this review, traditional methods for detection of bilirubin are briefly presented to compare with fluorescent nanosensors. Subsequently, the recent progress of different types of fluorescent nanomaterials for determination of bilirubin is summarized. Further, the performance of fluorescent nanosensors and conventional techniques for sensing bilirubin are compared. To this end, the challenges and prospects concerning the topics are discussed. This review will provide some introductory knowledge for researchers to understand the status and importance of fluorescent nanosensors for sensing bilirubin.
Collapse
|
15
|
Kumar S, Ghosh S, Kar P. Efficient Charge-Transfer Studies for Selective Detection of Bilirubin Biomolecules Using CsPbBr 3 as the Fluorescent Probe. J Phys Chem B 2023; 127:2138-2145. [PMID: 36880850 DOI: 10.1021/acs.jpcb.2c07517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Bright luminescence hybrid halide perovskite nanocrystals (PNCs) as a novel fluorophore class have not been broadly explored in biological sensing. Herein, we synthesized highly fluorescent CsPbBr3 PNCs through the LARP method using oleic acid and oleyl amine as capping ligands. Morphological and optical properties of as-synthesized PNCs were studied using transmission electron microscopy, X-ray diffraction, UV-vis, and emission spectroscopic analysis. Oleic acid- and oleyl amine-capped PNCs are employed for sensitive and selective detection of bilirubin (BR). A panel of characterizations (time-correlated single-photon count spectroscopy and photoluminescence (PL)) was carried out to investigate the detailed sensing study of PNCs-BR composite for quenching the PL emission of CsPbBr3 with BR. It has been noticed that the synthesized nanoparticles are highly capable of detecting BR and thus act as a biological material sensor.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sukanya Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prasenjit Kar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
16
|
Xiao W, Xiong Y, Li Y, Chen Z, Li H. Non-Enzymatically Colorimetric Bilirubin Sensing Based on the Catalytic Structure Disruption of Gold Nanocages. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23062969. [PMID: 36991679 PMCID: PMC10053977 DOI: 10.3390/s23062969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/12/2023]
Abstract
As an essential indicator of liver function, bilirubin is of great significance for clinical diagnosis. A non-enzymatic sensor has been established for sensitive bilirubin detection based on the bilirubin oxidation catalyzed by unlabeled gold nanocages (GNCs). GNCs with dual-localized surface plasmon resonance (LSPR) peaks were prepared by a one-pot method. One peak around 500 nm was ascribed to gold nanoparticles (AuNPs), and the other located in the near-infrared region was the typical peak of GNCs. The catalytic oxidation of bilirubin by GNCs was accompanied by the disruption of cage structure, releasing free AuNPs from the nanocage. This transformation changed the dual peak intensities in opposite trend, and made it possible to realize the colorimetric sensing of bilirubin in a ratiometric mode. The absorbance ratios showed good linearity to bilirubin concentrations in the range of 0.20~3.60 μmol/L with a detection limit of 39.35 nM (3σ, n = 3). The sensor exhibited excellent selectivity for bilirubin over other coexisting substances. Bilirubin in real human serum samples was detected with recoveries ranging from 94.5 to 102.6%. The method for bilirubin assay is simple, sensitive and without complex biolabeling.
Collapse
Affiliation(s)
- Wenxiang Xiao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensing and Intelligent Instrument, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yinan Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yaoxin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensing and Intelligent Instrument, Guilin University of Electronic Technology, Guilin 541004, China
| | - Hua Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensing and Intelligent Instrument, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
17
|
Lakshmi Devi A, Resmi PE, Pradeep A, Suneesh PV, Nair BG, Satheesh Babu TG. A paper-based point-of-care testing device for the colourimetric estimation of bilirubin in blood sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122045. [PMID: 36327811 DOI: 10.1016/j.saa.2022.122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A paper-based colourimetric assay for the Point-of-Care Testing (PoCT) of bilirubin has been developed based on the formation of a green-coloured copper-bilirubin complex from a blue-coloured tetraamminecopper(II) sulphate complex. The reaction was studied and optimized by UV-Visible absorption spectroscopy and translated onto a paper strip. Hydrophobic circular well patterns on Whatman chromatography paper were created by wax printing. The tetraamminecopper(II) sulphate complex was drop cast and dried on the reagent zones in the wax-patterned paper. The images of reagent zones captured using a scanner were analyzed using ImageJ software. Bilirubin spiked blood serum was tested in the concentration range of 1.2 to 950 µM. The PAD exhibited sensitivities of 0.4197 a.u/μM and 0.1040 a.u/μM for concentration ranges of bilirubin 1.2 to 96 μM and 105 to 950 μM respectively and a low detection limit of 0.799 µM. The method is highly selective to bilirubin, even in the presence of other biomarkers in serum. A plasma separation membrane incorporated PAD was fabricated for the final testing and quantification of bilirubin from whole blood.
Collapse
Affiliation(s)
- A Lakshmi Devi
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - P E Resmi
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - Aarathi Pradeep
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - P V Suneesh
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| | - Bipin G Nair
- Amrita Biomedical Engineering Centre, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri 690 525, India.
| | - T G Satheesh Babu
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biosensor Research Lab, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India; Amrita Biomedical Engineering Centre, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, India.
| |
Collapse
|
18
|
Pu R, Wang Z, Zhu R, Jiang J, Weng TC, Huang Y, Liu W. Investigation of Ultrafast Configurational Photoisomerization of Bilirubin Using Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2023; 14:809-816. [PMID: 36655842 DOI: 10.1021/acs.jpclett.2c03535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phototherapy is an efficient and safe way to reduce high levels of free 4Z,15Z-bilirubin (ZZ-BR) in the serum of newborns. The success of BR phototherapy lies in photoinduced configurational and structural isomerization processes that form excretable isomers. However, the physical picture of photoinduced photoisomerization of ZZ-BR is still unclear. Here, we strategically implement tunable femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, assisted by quantum chemical calculations, to dissect the detailed primary configurational isomerization dynamics of free ZZ-BR in organic solvents. The results of this study demonstrate that upon photoexcitation, ultrafast configurational isomerization proceeds by a volume-conserving "hula twist", followed by intramolecular hydrogen-bond distortion and large-scale rotation of the two dipyrrinone halves of the ZZ-BR isomer in a few picoseconds. After that, most of the population recovers back to ZZ-BR, and a very small amount is converted into stable BR isomers via structural isomerization.
Collapse
Affiliation(s)
- Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
19
|
Anusuyadevi K, Velmathi S. Expeditious fluorimetric detection of bilirubin by simple imidazole derived luminophore and it's pragmatic applicability in spiked biological fluids. Anal Chim Acta 2023; 1239:340678. [PMID: 36628705 DOI: 10.1016/j.aca.2022.340678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Bilirubin is an indispensable biomarker for liver diseases. Utilizing organic molecules as sensor platform for effective detection of bilirubin are little. In addition, the reported fluorophores required longer incubation time for detection. Hence, herein we have attempted to design an imidazole derivative 4-(3H-imidazo[4,5-b]pyridin-2-yl)-N,N-diphenylaniline (IMI) from triphenylamine and pyridine units which could detect bilirubin swiftly without any incubation period. IMI manifested an instant quenching of emission in presence of bilirubin with limit of detection (LOD) 11.74 × 10-6 mol L-1. The mechanistic aspect of detection involves coexistence of both static and dynamic quenching which was suitably justified. Finally, the pragmatic application of IMI was performed in bio-fluids.
Collapse
Affiliation(s)
- Kathiresan Anusuyadevi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
20
|
Corli G, Tirri M, Arfè R, Marchetti B, Bernardi T, Borsari M, Odoardi S, Mestria S, Strano-Rossi S, Neri M, Gaudio RM, Bilel S, Marti M. Pharmaco-Toxicological Effects of Atypical Synthetic Cathinone Mephtetramine (MTTA) in Mice: Possible Reasons for Its Brief Appearance over NPSs Scene. Brain Sci 2023; 13:brainsci13020161. [PMID: 36831704 PMCID: PMC9954072 DOI: 10.3390/brainsci13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Over the last year, NPSs have been steadily on the rise in the illicit drug market. Among these, synthetic cathinones seem to become increasingly popular among young adults, mainly because of their ability to replicate the effects of traditional psychostimulant drugs, such as cocaine, MDMA and amphetamines. However, scarce data are available about the in vivo pharmaco-toxicology of these new substances. To this end, this study focused on evaluation of effects induced by repeated administration of mephtetramine (MTTA 0.1-30 mg/kg i.p.) in mice. This atypical cathinone highlighted a sensorial (inhibition of visual and acoustic reflexes) and transient physiological parameter (decrease in breath rate and temperature) change in mice. Regarding motor activity, both a dose-dependent increase (accelerod test) and biphasic effect (drag and mobility time test) have been shown. In addition, blood and urine samples have been analysed to enrich the experimental featuring of the present study with reference to evaluation of potential toxicity related to consumption of MTTA. The latter analysis has particularly revealed important changes in blood cells count and blood and urine physicochemical profile after repeated treatment with this atypical cathinone. Moreover, MTTA induced histological changes in heart, kidney and liver samples, emphasizing its potential toxicity.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Odoardi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Serena Mestria
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Sabina Strano-Rossi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Margherita Neri
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
21
|
Anzar N, Suleman S, Kumar R, Rawal R, Pundir CS, Pilloton R, Narang J. Electrochemical Sensor for Bilirubin Detection Using Paper-Based Screen-Printed Electrodes Functionalized with Silver Nanoparticles. MICROMACHINES 2022; 13:mi13111845. [PMID: 36363867 PMCID: PMC9693322 DOI: 10.3390/mi13111845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/02/2023]
Abstract
A notable diagnostic for the detection of hemolytic diseases is bilirubin, a by-product of haemoglobin breakdown. The concentration of bilirubin ranges from 0.3 to 1.9 mg in 100 mL of blood. Low blood bilirubin levels are associated with a greater risk of coronary heart disease and anaemia. Hyperbilirubinemia results from a serum bilirubin level of more than 2.5 mg/100 mL. Therefore, it is very crucial to check the serum bilirubin level. Analytical equipment for point-of-care testing must be portable, small, and affordable. A unique method is used to detect bilirubin selectively using paper-based screen-printed carbon electrodes that were covalently linked with nanoparticles, that serves as a key biomarker for jaundice. In order to create an electrochemical biosensor, bilirubin oxidase was immobilised on electrodes modified with AgNPs. The morphology of Ag nanoparticles in terms of size and shape was determined using both UV- Vis Spectroscopy and transmission electron microscopy (TEM). The biosensor's analytical response was assessed using potentiostat (Cyclic voltammetry (CV) and linear sweep voltammetry (LSV)). The developed paper-based sensor provided optimum feedback and a broad linear range of 1 to 9 µg/mL for bilirubin, with a lower LOD of 1 µg/mL. Through tests of bilirubin in artificial blood serum, the viability is confirmed. The method that is being used makes it possible to create and use an inexpensive, miniature electrochemical sensor.
Collapse
Affiliation(s)
- Nigar Anzar
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Shariq Suleman
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Rocky Kumar
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Rachna Rawal
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | | | - Roberto Pilloton
- Institute of Crystallography of National Research council (IC-CNR), Monterotondo, I-00015 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
22
|
Banerjee B, Olajide OJ, Bortolussi G, Muro AF. Activation of Alternative Bilirubin Clearance Pathways Partially Reduces Hyperbilirubinemia in a Mouse Model Lacking Functional Ugt1a1 Activity. Int J Mol Sci 2022; 23:ijms231810703. [PMID: 36142606 PMCID: PMC9505366 DOI: 10.3390/ijms231810703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
Bilirubin is a heme catabolite and Ugt1a1 is the only enzyme involved in the biological elimination of bilirubin. Partially functional or non-functional Ugt1a1 may result in neuronal damage and death due to the accumulation of unconjugated bilirubin in the brain. The understanding of the role of alternative bilirubin detoxification mechanisms that can reduce bilirubin toxicity risk is crucial for developing novel therapeutic strategies. To provide a proof-of-principle showing whether activation of alternative detoxification pathways could lead to life-compatible bilirubin levels in the absence of Ugt1a1 activity, we used Ugt1−/− hyperbilirubinemic mice devoid of bilirubin glucuronidation activity. We treated adult Ugt1−/− mice with TCPOBOP, a strong agonist of the constitutive androstane receptor (CAR). TCPOBOP treatment decreased plasma and liver tissue bilirubin levels by about 38%, and resulted in the transcriptional activation of a vast array of genes involved in bilirubin transport and metabolism. However, brain bilirubin level was unaltered. We observed ~40% degradation of bilirubin in the liver microsomes from TCPOBOP treated Ugt1−/− mice. Our findings suggest that, in the absence of Ugt1a1, the activation of alternative bilirubin clearance pathways can partially improve hyperbilirubinemic conditions. This therapeutic approach may only be considered in a combinatorial manner along with other treatments.
Collapse
|
23
|
Ultrasensitive electrochemical sensor based on molecular imprinted polymer and ferromagnetic nanocomposite for bilirubin analysis in the saliva and serum of newborns. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Nowak R, Rój K, Ciechanowicz A, Lewandowska K, Kostrzewa-Nowak D. Capillary Blood Recovery Variables in Young Swimmers: An Observational Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148580. [PMID: 35886433 PMCID: PMC9318784 DOI: 10.3390/ijerph19148580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Sport diagnostics is still in pursuit of the optimal combination of biochemical and hematological markers to assess training loads and the effectiveness of recovery. The biochemical and hematological markers selected for a panel should be specific to the sport and training program. Therefore, the aim of this study was to evaluate the usefulness of selected biochemical and hematological variables in professional long-distance and sprint swimming. Twenty-seven participants aged 15–18 years took part in the study. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) activities and creatinine (Cr), C-reactive protein (CRP), ferritin, total bilirubin (TB), direct bilirubin (DB) and iron concentrations were measured for 10 weeks and compared with the traditional sport diagnostic markers of creatine kinase (CK) activity and urea (U) concentration. Additionally, capillary blood morphology was analyzed. An effective panel should consist of measurements of CK and AST activities and urea, TB, DB and ferritin concentrations. These markers provide a good overview of athletes’ post-training effort changes, can help assess the effectiveness of their recovery regardless of sex or competitive distance and are affordable. Moreover, changes in ferritin concentration can indicate inflammation status and, when combined with iron concentration and blood morphology, can help to avoid iron deficiencies, anemia and adverse inflammatory states in swimmers.
Collapse
Affiliation(s)
- Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza Str., 70-240 Szczecin, Poland;
- Correspondence:
| | - Konrad Rój
- Student of ”Sports Diagnostics”, Faculty of Physical Education and Health, University of Szczecin, 40b Piastów Al., 70-240 Szczecin, Poland;
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland; (A.C.); (K.L.)
| | - Klaudyna Lewandowska
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland; (A.C.); (K.L.)
| | - Dorota Kostrzewa-Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza Str., 70-240 Szczecin, Poland;
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland; (A.C.); (K.L.)
| |
Collapse
|
25
|
AuYoung B, Gutha Ravichandran A, Patel D, Dave N, Shah A, Wronko-Stevens B, Bettencourt F, Rajan R, Menon N. A Low-Cost Paper-Based Device for the Colorimetric Quantification of Bilirubin in Serum Using Smartphone Technology. Front Chem 2022; 10:869086. [PMID: 35873049 PMCID: PMC9301313 DOI: 10.3389/fchem.2022.869086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
Total bilirubin values have been used as a potential marker to pre-screen and diagnose various liver-based diseases such as jaundice, bile obstruction, liver cancer, etc. A device known as KromaHealth Kit, composed of paper and an acrylic backbone, is developed to quantify total bilirubin in human serum using image processing and machine learning technology. The biochemical assays are deposited on absorbent paper pads that act as reaction zones when serum is added. A dedicated smartphone app captures images of the colorimetric changes on the pad and converts them into quantitative values of bilirubin. The range of bilirubin concentration that can be quantified using the device ranges from 0.5 mg/dl to 7.0 mg/dl. The precision, limit of detection, interference analysis, linearity, stability, and comparison with a predicate are studied in this paper in accordance with clinical and laboratory standards institute. The results indicate that the KromaHealth Kit can be used as an inexpensive alternative to conventional bilirubin testing in clinical settings. With its level of precision, ease-of-use, long shelf-life, and short turnaround time, it will prove to be invaluable in limited-resource settings.
Collapse
Affiliation(s)
- Brittany AuYoung
- Division of Product Development, Group K Diagnostics, Philadelphia, PA, United States
| | | | - Divykumar Patel
- Manufacturing Department, Group K Diagnostics, Philadelphia, PA, United States
| | - Nisarg Dave
- Division of Product Development, Group K Diagnostics, Philadelphia, PA, United States
| | - Achal Shah
- Division of Product Development, Group K Diagnostics, Philadelphia, PA, United States
| | | | - Franklin Bettencourt
- Division of Product Development, Group K Diagnostics, Philadelphia, PA, United States
| | - Reshma Rajan
- Division of Product Development, Group K Diagnostics, Philadelphia, PA, United States
- *Correspondence: Reshma Rajan, ; Nidhi Menon,
| | - Nidhi Menon
- Division of Product Development, Group K Diagnostics, Philadelphia, PA, United States
- *Correspondence: Reshma Rajan, ; Nidhi Menon,
| |
Collapse
|
26
|
Thomas M, Greaves RF, Tingay DG, Loh TP, Ignjatovic V, Newall F, Oeum M, Tran MTC, Rajapaksa AE. Current and emerging technologies for the timely screening and diagnosis of neonatal jaundice. Crit Rev Clin Lab Sci 2022; 59:332-352. [PMID: 35188857 DOI: 10.1080/10408363.2022.2038074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Neonatal jaundice is one of the most common clinical conditions affecting newborns. For most newborns, jaundice is harmless, however, a proportion of newborns develops severe neonatal jaundice requiring therapeutic interventions, accentuating the need to have reliable and accurate screening tools for timely recognition across different health settings. The gold standard method in diagnosing jaundice involves a blood test and requires specialized hospital-based laboratory instruments. Despite technological advancements in point-of-care laboratory medicine, there is limited accessibility of the specialized devices and sample stability in geographically remote areas. Lack of suitable testing options leads to delays in timely diagnosis and treatment of clinically significant jaundice in developed and developing countries alike. There has been an ever-increasing need for a low-cost, simple to use screening technology to improve timely diagnosis and management of neonatal jaundice. Consequently, several point-of-care (POC) devices have been developed to address this concern. This paper aims to review the literature, focusing on emerging technologies in the screening and diagnosing of neonatal jaundice. We report on the challenges associated with the existing screening tools, followed by an overview of emerging sensors currently in pre-clinical development and the emerging POC devices in clinical trials to advance the screening of neonatal jaundice. The benefits offered by emerging POC devices include their ease of use, low cost, and the accessibility of rapid response test results. However, further clinical trials are required to overcome the current limitations of the emerging POC's before their implementation in clinical settings. Hence, the need for a simple to use, low-cost POC jaundice detection technology for newborns remains an unsolved challenge globally.
Collapse
Affiliation(s)
- Mercy Thomas
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Newborn Research Centre, Royal Women's Hospital, Melbourne, Australia.,Department of Nursing, Royal Children's Hospital, Melbourne, Australia
| | - Ronda F Greaves
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Victorian Clinical Genetics Services, Melbourne, Australia.,International Federation of Clinical Chemistry and Laboratory Medicine-Emerging Technologies Division (C-ETPLM), Milan, Italy
| | - David G Tingay
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Newborn Research Centre, Royal Women's Hospital, Melbourne, Australia.,Neonatal Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Neonatology, Royal Children's Hospital, Melbourne, Australia
| | - Tze Ping Loh
- International Federation of Clinical Chemistry and Laboratory Medicine-Emerging Technologies Division (C-ETPLM), Milan, Italy.,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Vera Ignjatovic
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Hematology, Murdoch Children's Research Institute, Melbourne, Australia
| | - Fiona Newall
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Department of Nursing, Royal Children's Hospital, Melbourne, Australia
| | - Michelle Oeum
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mai Thi Chi Tran
- International Federation of Clinical Chemistry and Laboratory Medicine-Emerging Technologies Division (C-ETPLM), Milan, Italy.,National Children's Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | - Anushi E Rajapaksa
- New Vaccines, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Newborn Research Centre, Royal Women's Hospital, Melbourne, Australia.,Think Project Global, Melbourne, Australia
| |
Collapse
|
27
|
Wang J, Li J, Chen Z, Xu M, Yang C, Rong R, Zhu T. A Nomogram for Predicting BK Virus Activation in Kidney Transplantation Recipients Using Clinical Risk Factors. Front Med (Lausanne) 2022; 9:770699. [PMID: 35223891 PMCID: PMC8866320 DOI: 10.3389/fmed.2022.770699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
BK virus is a common opportunistic viral infection that could cause BK virus-associated nephropathy in renal transplant recipients. Thus, we retrospectively analyzed clinical and laboratory data associated with a higher risk of BK virus activation from 195 renal transplant recipients by the multivariate logistic regression analysis and performed the external validation. Results showed that patients with BK virus active infection were associated with a deceased donor, had lower direct bilirubin levels, a higher proportion of albumin in serum protein electrophoresis, and lower red blood cells and neutrophil counts. The multivariate logistic regression analyses revealed that the living donor, direct bilirubin, and neutrophil counts were significantly associated with BK virus activation. The logistic regression model displayed a modest discriminability with the area under the receiver operating characteristic curve of 0.689 (95% CI: 0.607–0.771; P < 0.01) and also demonstrated a good performance in the external validation dataset (the area under the receiver operating characteristic curve was 0.699, 95% CI: 0.5899–0.8081). The novel predictive nomogram achieved a good prediction of BK virus activation in kidney transplant recipients.
Collapse
Affiliation(s)
- Jiyan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zhongli Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- Zhangjiang Institute of Fudan University, Shanghai, China
- *Correspondence: Cheng Yang ;
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
- Ruiming Rong
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- Tongyu Zhu ;
| |
Collapse
|
28
|
Hu J, Zhao M, Shi Q, Li L, Yin J. A ligand-based ELISA for detection of soluble asialoglycoprotein receptor in human serum. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2008952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, PR China
| | - Ming Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Qimin Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
29
|
Kartashova AD, Gonchar KA, Chermoshentsev DA, Alekseeva EA, Gongalsky MB, Bozhev IV, Eliseev AA, Dyakov SA, Samsonova JV, Osminkina LA. Surface-Enhanced Raman Scattering-Active Gold-Decorated Silicon Nanowire Substrates for Label-Free Detection of Bilirubin. ACS Biomater Sci Eng 2021; 8:4175-4184. [PMID: 34775760 DOI: 10.1021/acsbiomaterials.1c00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bilirubin (BR) is a product of hemoglobin breakdown, and its increasing levels in the blood may indicate liver disorders and lead to jaundice. Kernicterus is most dangerous in newborns when the unconjugated BR concentration can quickly rise to toxic levels, causing neurological damage and even death. The development of an accurate, fast, and sensitive sensor for BR detection will help reduce diagnostic time and ensure successful treatment. In this study, we propose a new method for creating a surface-enhanced Raman scattering (SERS)-active substrate based on gold-decorated silicon nanowires (Au@SiNWs) for sensitive label-free BR detection. Gold-assisted chemical etching of crystalline silicon wafers was used to synthesize SiNWs, the tops of which were then additionally decorated with gold nanoparticles. The low detection limit of model analyte 4-mercaptopyridine down to the concentration of 10-8 M demonstrated the excellent sensitivity of the obtained substrates for SERS application. The theoretical full-wave electromagnetic simulations of Raman scattering in the Au@SiNW substrates showed that the major contribution to the total SERS signal comes from the analyte molecules located on the SiNW surface near the gold nanoparticles. Therefore, for efficient BR adsorption and SERS detection, the surface of the SiNWs was modified with amino groups. Label-free detection of BR using amino modified Au@SiNWs with high point-to-point, scan-to-scan, and batch-to-batch reproducibility with a detection limit of 10-6 M has been demonstrated. Artificial urine, mimicking human urine samples, was used as the matrix to get insights into the influence of different parameters such as matrix complexity on the overall BR SERS signal. The signal stability was demonstrated for 7 days after adsorption of BR with a concentration of 5 × 10-5 M, which is the required sensitivity for clinical applications.
Collapse
Affiliation(s)
- Anna D Kartashova
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Kirill A Gonchar
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitry A Chermoshentsev
- Skolkovo Institute of Science and Technology, Center for Photonics and Quantum Materials, Bolshoy Boulevard 30, bld. 1, 143025 Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy pereulok 9, 141701 Moscow, Russia.,Russian Quantum Center, Bolshoy Boulevard 30, bld. 1, 143025 Moscow, Russian Federation
| | - Ekaterina A Alekseeva
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Maxim B Gongalsky
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Ivan V Bozhev
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia.,Quantum Technology Center, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Andrei A Eliseev
- Lomonosov Moscow State University, Faculty of Chemistry, Leninskie Gory 1, 119991 Moscow, Russia
| | - Sergey A Dyakov
- Skolkovo Institute of Science and Technology, Center for Photonics and Quantum Materials, Bolshoy Boulevard 30, bld. 1, 143025 Moscow, Russia
| | - Jeanne V Samsonova
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Leninskie Gory 1, 119991 Moscow, Russia
| | - Liubov A Osminkina
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia.,Institute for Biological Instrumentation of Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
30
|
Guerra Ruiz AR, Crespo J, López Martínez RM, Iruzubieta P, Casals Mercadal G, Lalana Garcés M, Lavin B, Morales Ruiz M. Measurement and clinical usefulness of bilirubin in liver disease. ADVANCES IN LABORATORY MEDICINE / AVANCES EN MEDICINA DE LABORATORIO 2021. [DOI: 10.1515/almed-2021-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Elevated plasma bilirubin levels are a frequent clinical finding. It can be secondary to alterations in any stage of its metabolism: (a) excess bilirubin production (i.e., pathologic hemolysis); (b) impaired liver uptake, with elevation of indirect bilirubin; (c) impaired conjugation, prompted by a defect in the UDP-glucuronosyltransferase; and (d) bile clearance defect, with elevation of direct bilirubin secondary to defects in clearance proteins, or inability of the bile to reach the small bowel through bile ducts. A liver lesion of any cause reduces hepatocyte cell number and may impair the uptake of indirect bilirubin from plasma and diminish direct bilirubin transport and clearance through the bile ducts. Various analytical methods are currently available for measuring bilirubin and its metabolites in serum, urine and feces. Serum bilirubin is determined by (1) diazo transfer reaction, currently, the gold-standard; (2) high-performance liquid chromatography (HPLC); (3) oxidative, enzymatic, and chemical methods; (4) direct spectrophotometry; and (5) transcutaneous methods. Although bilirubin is a well-established marker of liver function, it does not always identify a lesion in this organ. Therefore, for accurate diagnosis, alterations in bilirubin concentrations should be assessed in relation to patient anamnesis, the degree of the alteration, and the pattern of concurrent biochemical alterations.
Collapse
Affiliation(s)
- Armando Raúl Guerra Ruiz
- Service of Clinical Biochemistry , Marqués de Valdecilla University Hospital , Santander , Spain
- Commission on Biochemistry of Liver Disease , SEQC , Barcelona , Spain
| | - Javier Crespo
- Service of Gastroenterology , Marqués de Valdecilla University Hospital , Santander , Spain
- Clinical and Translational Research Group on Digestive Diseases, IDIVAL . Santander , Spain
| | - Rosa Maria López Martínez
- Commission on Biochemistry of Liver Disease , SEQC , Barcelona , Spain
- Unit of Liver Disease, Services of Biochemistry and Microbiology , Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Paula Iruzubieta
- Service of Gastroenterology , Marqués de Valdecilla University Hospital , Santander , Spain
- Clinical and Translational Research Group on Digestive Diseases, IDIVAL . Santander , Spain
| | - Gregori Casals Mercadal
- Commission on Biochemistry of Liver Disease , SEQC , Barcelona , Spain
- Service of Biochemistry and Molecular Genetics , Hospital Clínic de Barcelona, IDIBAPS, CIBERehd , Barcelona , Spain
| | - Marta Lalana Garcés
- Commission on Biochemistry of Liver Disease , SEQC , Barcelona , Spain
- Service of Clinical Biochemistry , Hospital of Barbastro , Huesca , Spain
| | - Bernardo Lavin
- Service of Clinical Biochemistry , Marqués de Valdecilla University Hospital , Santander , Spain
| | - Manuel Morales Ruiz
- Commission on Biochemistry of Liver Disease , SEQC , Barcelona , Spain
- Service of Biochemistry and Molecular Genetics , Hospital Clínic de Barcelona, IDIBAPS, CIBERehd , Barcelona , Spain
- Department of Biomedicine, School of Medicine and Health Sciences , Universidad de Barcelona , Barcelona , Spain
| |
Collapse
|
31
|
Guerra-Ruiz AR, Crespo J, López Martínez RM, Iruzubieta P, Casals Mercadal G, Lalana Garcés M, Lavin Gomez BA, Morales Ruiz M. Bilirrubina: Medición y utilidad clínica en la enfermedad hepática. ADVANCES IN LABORATORY MEDICINE / AVANCES EN MEDICINA DE LABORATORIO 2021. [DOI: 10.1515/almed-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Resumen
Un aumento en los niveles plasmáticos de bilirrubina es una alteración frecuente. Puede deberse a cualquier causa que altere alguna de las fases de su metabolismo: a) producción excesiva de bilirrubina (ej. hemólisis patológica); b) defecto en la captación hepática, con aumento de bilirrubina indirecta); c) defecto de conjugación, por alteración del enzima encargada (UDP-glucuronosiltransferasa); y d) defecto de excreción biliar, con aumento de bilirrubina directa, por defectos en las proteínas encargadas de la excreción, o bien por la imposibilidad del paso de la bilis a través de los conductos biliares hasta el intestino. Una lesión hepática de cualquier causa, al disminuir el número de hepatocitos, puede producir una disminución de la captación de bilirrubina indirecta desde el plasma y una disminución del transporte y excreción de la bilirrubina directa hacia los conductillos biliares. Se pueden usar diferentes técnicas analíticas para medir la bilirrubina y sus metabolitos en el suero, la orina y las heces. La bilirrubina sérica se mide mediante (1) la "reacción diazo", actualmente el método de referencia; (2) cromatografía líquida de alta resolución (HPLC); (3) métodos oxidativos, enzimáticos y químicos; (4) espectrofotometría directa; y (5) métodos transcutáneos. Aunque la bilirrubina es un marcador clásico de disfunción hepática, no siempre indica una lesión de este órgano. Por tanto, para obtener un diagnóstico preciso, el significado de las alteraciones de este parámetro biológico ha de valorarse en conjunción con la anamnesis del paciente, la magnitud de la alteración, y el patrón de las alteraciones bioquímicas. acompañantes.
Collapse
Affiliation(s)
- Armando Raúl Guerra-Ruiz
- Servicio de Análisis Clínicos, Hospital Universitario Marqués de Valdecilla , Santander , España
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, SEQC , Barcelona , España
| | - Javier Crespo
- Servicio Aparato Digestivo, Hospital Universitario Marqués de Valdecilla , Santander , España
- Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, IDIVAL , Santander , España
- Sociedad Española de Patología Digestiva (SEPD) , Madrid , España
| | - Rosa Maria López Martínez
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, SEQC , Barcelona , España
- Unidad de Patología hepática, Departamentos de Bioquímica y Microbiología , Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona , Barcelona , España
| | - Paula Iruzubieta
- Servicio Aparato Digestivo, Hospital Universitario Marqués de Valdecilla , Santander , España
- Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, IDIVAL , Santander , España
- Sociedad Española de Patología Digestiva (SEPD) , Madrid , España
| | - Gregori Casals Mercadal
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, SEQC , Barcelona , España
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBEReh , Barcelona , España
| | - Marta Lalana Garcés
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, SEQC , Barcelona , España
- Servicio de Análisis Clínicos, Hospital de Barbastro , Huesca , España
| | - Bernardo A. Lavin Gomez
- Servicio de Análisis Clínicos, Hospital Universitario Marqués de Valdecilla , Santander , España
| | - Manuel Morales Ruiz
- Comisión de Valoración Bioquímica de la Enfermedad Hepática, SEQC , Barcelona , España
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic de Barcelona, IDIBAPS, CIBEReh , Barcelona , España
- Departamento de Biomedicina de la Facultad de Medicina y Ciencias de la Salud , Universidad de Barcelona , Barcelona , España
| |
Collapse
|
32
|
Diagnostic methods for neonatal hyperbilirubinemia: benefits, limitations, requirements, and novel developments. Pediatr Res 2021; 90:277-283. [PMID: 33948000 DOI: 10.1038/s41390-021-01546-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/20/2021] [Accepted: 04/10/2021] [Indexed: 11/09/2022]
Abstract
Invasive bilirubin measurements remain the gold standard for the diagnosis and treatment of infants with severe neonatal hyperbilirubinemia. The present paper describes different methods currently available to assess hyperbilirubinemia in newborn infants. Novel point-of-care bilirubin measurement methods, such as the BiliSpec and the Bilistick, would benefit many newborn infants, especially in low-income and middle-income countries where the access to costly multi-analyzer in vitro diagnostic instruments is limited. Total serum bilirubin test results should be accurate within permissible limits of measurement uncertainty to be fit for clinical purposes. This implies correct implementation of internationally endorsed reference measurement systems as well as participation in external quality assessment programs. Novel analytic methods may, apart from bilirubin, include the determination of bilirubin photoisomers and bilirubin oxidation products in blood and even in other biological matrices. IMPACT: Key message: Bilirubin measurements in blood remain the gold standard for diagnosis and treatment of severe neonatal hyperbilirubinemia (SNH). External quality assessment (EQA) plays an important role in revealing inaccuracies in diagnostic bilirubin measurements. What does this article add to the existing literature? We provide analytic performance data on total serum bilirubin (TSB) as measured during recent EQA surveys. We review novel diagnostic point-of-care (POC) bilirubin measurement methods and analytic methods for determining bilirubin levels in biological matrices other than blood. Impact: Manufacturers should make TSB test results traceable to the internationally endorsed total bilirubin reference measurement system and should ensure permissible limits of measurement uncertainty.
Collapse
|
33
|
Screening methods for neonatal hyperbilirubinemia: benefits, limitations, requirements, and novel developments. Pediatr Res 2021; 90:272-276. [PMID: 33941863 DOI: 10.1038/s41390-021-01543-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Severe neonatal hyperbilirubinemia (SNH) is a serious condition that occurs worldwide. Timely recognition with bilirubin determination is key in the management of SNH. Visual assessment of jaundice is unreliable. Fortunately, transcutaneous bilirubin measurement for screening newborn infants is routinely available in many hospitals and outpatient settings. Despite a few limitations, the use of transcutaneous devices facilitates early recognition and appropriate management of neonatal jaundice. Unfortunately, however, advanced and often costly screening modalities are not accessible to everyone, while there is an urgent need for inexpensive yet accurate instruments to assess total serum bilirubin (TSB). In the near future, novel icterometers, and in particular optical bilirubin estimates obtained with a smartphone camera and processed with a smartphone application (app), seem promising methods for screening for SNH. If proven reliable, these methods may empower outpatient health workers as well as parents at home to detect jaundice using a simple portable device. Successful implementation of ubiquitous bilirubin screening may contribute substantially to the reduction of the worldwide burden of SNH. The benefits of non-invasive bilirubin screening notwithstanding, any bilirubin determination obtained through non-invasive screening must be confirmed by a diagnostic method before treatment. IMPACT: Key message: Screening methods for neonatal hyperbilirubinemia facilitate early recognition and timely treatment of severe neonatal hyperbilirubinemia (SNH). Any bilirubin screening result obtained must be confirmed by a diagnostic method. What does this article add to the existing literature? Data on optical bilirubin estimation are summarized. Niche research strategies for prevention of SNH are presented. Impact: Transcutaneous screening for neonatal hyperbilirubinemia contributes to the prevention of SNH. A smartphone application with optical bilirubin estimation seems a promising low-cost screening method, especially in low-resource settings or at home.
Collapse
|
34
|
Eczacioglu N, Ulusu Y, Gokce İ, Lakey JH. Investigation of mutations (L41F, F17M, N57E, Y99F_Y134W) effects on the TolAIII-UnaG fluorescence protein's unconjugated bilirubin (UC-BR) binding ability and thermal stability properties. Prep Biochem Biotechnol 2021; 52:365-374. [PMID: 34319856 DOI: 10.1080/10826068.2021.1952597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The UnaG protein is a ligand (unconjugated bilirubin) dependent fluorescence protein isolated from Unagi freshwater eel larvae and expressed as fusion in heterologous expression systems. Bilirubin is a tetrapyrrole molecule mainly produced from heme catabolism by the destruction of erythrocytes in the body. Bilirubin can cause kernicterus, a serious condition associated with permanent neurological damage in neonates with the passage of brain tissue. Different methods have been developed for plasma bilirubin analysis and quantification. The use of UnaG fluorescence protein triggered by bilirubin has become a new approach in bilirubin studies. In this study, we aimed to investigate the biophysical characterization of ligand interactions with the proteins obtained as a result of mutations (UnaGY99F_Y134W, UnaGN57E, UnaGL41F, and UnaGF17M) on the amino acid sequence of TolAIII-UnaG protein. After the purity levels of the expressed proteins have been analyzed by SDS-PAGE, secondary structures and thermal melting temperatures of the proteins have been examined by circular dichroism spectroscopy. Then determination of excitation and emission points by fluorescence spectroscopy, titration studies have been performed with bilirubin, and dissociation constant was calculated. According to the biophysical characterization studies, UnaGL41F has the highest affinity and stability among the mutants.
Collapse
Affiliation(s)
- Numan Eczacioglu
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Yakup Ulusu
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - İsa Gokce
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Gaziosmanpasa University, Tokat, Turkey
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Peng S, Wang Q, Xiong G, Gopinath SCB, Lei G. Biosensors and biomarkers for determining gestational diabetes mellitus and jaundice in children. Biotechnol Appl Biochem 2021; 69:1354-1364. [PMID: 34076915 DOI: 10.1002/bab.2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/31/2021] [Indexed: 11/07/2022]
Abstract
Gestational diabetes and jaundice are the correlated diseases predominantly found in mother and newborn child. Jaundice is a neonatal complication with an increased risk when mother has gestational diabetes. Mothers with diabetes at an early stage of gestational age are at higher risk for hyperbilirubinemia (jaundice) and hypoglycemia. So, it is mandatory to monitor the condition of diabetes and jaundice during the pregnancy period for a healthy child and safest delivery. On the other hand, nanotechnology has displayed a rapid advancement that can be implemented to overcome these issues. The development of high-performance diagnosis using appropriate biomarkers provides their efficacy in the detection gestational diabetes and jaundice. This review covers the aspects from a fast-developing field to generate nanosensors in the nanosized dimensions for the applications to overcome these complications by coupling diagnostics with biomarkers. Further, the serum-based biomarkers have been discussed for these inborn complications and also the diagnosis with the current trend.
Collapse
Affiliation(s)
- Shuangqin Peng
- Department of Pediatric Gastroenterology, Maternity and Child Healthcare Hospital of Hubei Province, Affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Qin Wang
- Department of Pathology, Maternity and Child Healthcare Hospital of Hubei Province, Affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Xiong
- Department of Obstetric, Centre Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Wuhan, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Gang Lei
- Department of Obstetric, Centre Hospital of Wuhan, Affiliated to Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
He AQ, Li Q, Yu ZQ, Tian J, Song J, Feng J, Xu YZ, Noda I, Ozaki Y. Investigation on the luminescence behavior of terbium acetylsalicylate/bilirubin system via 2D-COS approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119427. [PMID: 33461134 DOI: 10.1016/j.saa.2021.119427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Terbium acetylsalicylate has been prepared, and the ethanol solution of the complex exhibits strong luminescence under the excitation of ultraviolet radiation. When a small amount of bilirubin solution is introduced into the solution containing a high concentration of terbium acetylsalicylate, a remarkable diminution of the luminescence of the terbium complex was observed. Investigations on the behavior and life-time of luminescence indicate that the quenching is not caused by forming a stable non-luminescent product via a reaction between terbium acetylsalicylate and bilirubin. A π-π interaction between the chromophore of bilirubin and the aromatic moiety of ligand was revealed via the pattern of cross peaks in the 2D asynchronous spectrum generated using the DAOSD (double asynchronous orthogonal sample design) approach. Such an interaction paves a route for energy transfer in the quenching process. The combination of a high concentration of the terbium complex and a long life-time of luminescence in the lanthanide complex/bilirubin system forms a special scenario: a bilirubin molecule by diffusion may visit and deactivate dozens of excited terbium complexes within the half-life period of the lanthanide complex. This is why a small amount of bilirubin can bring about the significant reduction of luminescence on the solution containing a high concentration of the terbium complex.
Collapse
Affiliation(s)
- An-Qi He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Li
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Jing Tian
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan 610054, PR China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan 610054, PR China
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
37
|
Xiao W, Zhi D, Pan Q, Liang Y, Zhou F, Chen Z. A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5691-5698. [PMID: 33205788 DOI: 10.1039/d0ay01781g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. A ratiometric film sensor based on gold nanoclusters (AuNCs) was fabricated for highly sensitive determination of free bilirubin (fBR). Using bovine serum albumin (BSA) as a template, AuNCs that can emit blue and red fluorescence were prepared by the hydrothermal method at different pH values. Two kinds of AuNCs were incorporated into a single film by the layer-by-layer assembly (LBL) technique. The obtained thin-film showed dual fluorescence peaks excited at 372 nm, corresponding to the blue (443 nm) and red (622 nm) emissions of AuNCs respectively. When fBR interacted with the film, both fluorescence peaks were quenched at different degrees. A ratiometric method for fBR detection was established based on the fluorescence intensity ratio of the two emissions. The linear calibration curve for fBR lay in the concentration range of 0.01-2.00 μmol L-1 with a detection limit of 8.90 ± 0.34 nmol L-1 (S/N = 3). The film sensor showed a quick and sensitive response to fBR and could detect fBR in real samples with satisfactory results.
Collapse
Affiliation(s)
- Wenxiang Xiao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | | | | | | | | | | |
Collapse
|
38
|
Song X, Chen H, Zare RN. Coulometry-assisted quantitation in spray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4628. [PMID: 33245185 DOI: 10.1002/jms.4628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The concentration of target analyte in a mixture can be quantified by combining coulometric measurements with spray ionization mass spectrometry. A three-electrode system screen printed on the polymer support acts both as the coulometry platform for electrochemical oxidation and the sample loading tip for spray ionization. After loading a droplet of the analyte solution onto the tip, two steps were taken to implement quantitation. First, the electrochemical oxidation potential was optimized with cyclic voltammetry followed by coulometric measurements to calculate the amount of oxidized analyte under a constant low voltage within a fixed period of time (5 s). Then, a high voltage (+4.5 kV) was applied to the tip to trigger spray ionization for measuring the oxidation yield from the native analyte ion and its oxidized product ion intensities by mass spectrometry. The analyte's native concentration is quantified by dividing the oxidized product's concentration (based on Coulomb's law) and the oxidation yield (estimated from mass spectrometry [MS] assuming that the parent and oxidation product have nearly the same ionization efficiencies). The workflow has an advantage in being free of any standard for constructing the quantitation curve. Several model compounds (tyrosine, dopamine, and angiotensin II) were selected for method validation. It was demonstrated that this strategy was feasible with an accuracy of ~15% for a wide coverage of different species including endogenous metabolites and peptides. As an example of its possible practical use, it was initially employed to make a bilirubin assay in urine.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Richard N Zare
- Department of Chemistry, Fudan University, Shanghai, 200438, China
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
39
|
Rawal R, Kharangarh PR, Dawra S, Tomar M, Gupta V, Pundir C. A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Bandiera A, Corich L, Tommasi S, De Bortoli M, Pelizzo P, Stebel M, Paladin D, Passamonti S. Human elastin-like polypeptides as a versatile platform for exploitation of ultrasensitive bilirubin detection by UnaG. Biotechnol Bioeng 2019; 117:354-361. [PMID: 31691952 DOI: 10.1002/bit.27217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023]
Abstract
A new, bifunctional recombinant protein was expressed as the fusion product of human elastin-like polypeptide (HELP) and the bilirubin-binding protein UnaG. The engineered product displays both the HELP-specific property of forming a functional hydrogel matrix and the UnaG-specific capacity of emitting green fluorescence upon ligand binding. The new fusion protein has been proven to be effective at detecting bilirubin in complex environments with high background noise. A cell culture model of the stress response, consisting of bilirubin released in the cell culture medium, was set up to assess the bilirubin-sensing properties of the functional matrix obtained by cross-linking the HELP moiety. Our engineered protein allowed us to monitor cell induction by the release of bilirubin in the culture medium on a nanomolar scale. This study shows that elastin-like protein fusion represents a versatile platform for the development of novel and commercially viable analytical and biosensing devices.
Collapse
Affiliation(s)
| | - Lucia Corich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Tommasi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco De Bortoli
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Pelizzo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Stebel
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | |
Collapse
|
41
|
Singh NK, Jain P, Das S, Goswami P. Dye Coupled Aptamer-Captured Enzyme Catalyzed Reaction for Detection of Pan Malaria and P. falciparum Species in Laboratory Settings and Instrument-Free Paper-Based Platform. Anal Chem 2019; 91:4213-4221. [PMID: 30793883 DOI: 10.1021/acs.analchem.9b00670] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malaria diagnosis methods offering species-specific information on the causative parasites, along with their flexibility to use in different resource settings, have great demand for precise treatment and management of the disease. Herein, we report the detection of pan malaria and P. falciparum species using a dye-based reaction catalyzed by the biomarker enzymes Plasmodium lactate dehydrogenase ( PLDH) and Plasmodium falciparum glutamate dehydrogenase ( PfGDH), respectively, through instrument-based and instrument-free approaches. For the detection, two ssDNA aptamers specific to the corresponding PLDH and PfGDH were used. The aptamer-captured enzymes were detected through a substrate-dependent reaction coupled with the conversion of resazurin (blue, ∼λ605nm) to resorufin (pink, ∼λ570nm) dye. The reaction was monitored by measuring the fluorescence intensity at λ660nm for resorufin, absorbance ratio (λ570nm/λ605nm), and change in color (blue to pink). The detection approach could be customized to a spectrophotometer-based method and an instrument-free device. For both the approaches, the biomarkers were captured from the serum samples with the help of aptamer-coated magnetic beads prior to the analysis to exclude potential interferences from the serum. In the instrument-free device, a medical syringe (5 mL) prefabricated with a magnet was used for in situ separation of the enzyme-captured beads from the reaction supernatant. The converted dye in the supernatant was then efficiently adsorbed over a DEAE cellulose-treated paper wick assembled in the syringe hose. The biomarkers could be detected by both qualitative and quantitative format following the color and pixel intensity, respectively, developed on the paper surface. The developed method and technique offered detection of the biomarkers within a clinically relevant dynamic range, with the limit of detection values in the picomolar level. Flexible detection capability, low cost, interference-free detections, and portable nature (for instrument-free devices) are the major advantages offered by the developed approaches.
Collapse
Affiliation(s)
- Naveen Kumar Singh
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , 781039 Assam , India
| | - Priyamvada Jain
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , 781039 Assam , India
| | - Smita Das
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , 781039 Assam , India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , 781039 Assam , India
| |
Collapse
|
42
|
Das S, van Landeghem FKH. Clinicopathological Spectrum of Bilirubin Encephalopathy/Kernicterus. Diagnostics (Basel) 2019; 9:diagnostics9010024. [PMID: 30823396 PMCID: PMC6468386 DOI: 10.3390/diagnostics9010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Bilirubin encephalopathy/kernicterus is relatively rare, but continues to occur despite universal newborn screening. What is more interesting is the spectrum of clinical and even neuropathological findings that have been reported in the literature to be associated with bilirubin encephalopathy and kernicterus. In this review, the authors discuss the array of clinicopathological findings reported in the context of bilirubin encephalopathy and kernicterus, as well as the types of diagnostic testing used in patients suspected of having bilirubin encephalopathy or kernicterus. The authors aim to raise the awareness of these features among both pediatric neurologists and neuropathologists.
Collapse
Affiliation(s)
- Sumit Das
- Division of Neuropathology, University of Alberta and Stollery Children's Hospital, Edmonton, AB T6G 2B7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada.
| | - Frank K H van Landeghem
- Division of Neuropathology, University of Alberta and Stollery Children's Hospital, Edmonton, AB T6G 2B7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|