1
|
Khwaza V, Aderibigbe BA. Potential Pharmacological Properties of Triterpene Derivatives of Ursolic Acid. Molecules 2024; 29:3884. [PMID: 39202963 PMCID: PMC11356970 DOI: 10.3390/molecules29163884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Ursolic acid (UA) and its derivatives have garnered significant attention due to their extensive pharmacological activity. UA is a pentacyclic triterpenoid found in a variety of plants, such as apples, rosemary, thyme, etc., and it possesses a range of pharmacological properties. Researchers have synthesized various derivatives of UA through structural modifications to enhance its potential pharmacological properties. Various in vitro and in vivo studies have indicated that UA and its derivatives possess diverse biological activities, such as anticancer, antifungal, antidiabetic, antioxidant, antibacterial, anti-inflammatory and antiviral properties. This review article provides a review of the biological activities of UA and its derivatives to show their valuable therapeutic properties useful in the treatment of different diseases, mainly focusing on the relevant structure-activity relationships (SARs), the underlying molecular targets/pathways, and modes of action.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
2
|
Sun L, Li Z, Lan J, Wu Y, Zhang T, Ding Y. Better together: nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Front Pharmacol 2024; 15:1389922. [PMID: 38831883 PMCID: PMC11144913 DOI: 10.3389/fphar.2024.1389922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Combination therapies can enhance the sensitivity of cancer to drugs, lower drug doses, and reduce side effects in cancer treatment. However, differences in the physicochemical properties and pharmacokinetics of different therapeutic agents limit their application. To avoid the above dilemma and achieve accurate control of the synergetic ratio, a nanoscale co-delivery system (NCDS) has emerged as a prospective tool for combined therapy in cancer treatment, which is increasingly being used to co-load different therapeutic agents. In this study, we have summarized the mechanisms of therapeutic agents in combination for cancer therapy, nanoscale carriers for co-delivery, drug-loading strategies, and controlled/targeted co-delivery systems, aiming to give a general picture of these powerful approaches for future NCDS research studies.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Wang C, Pan J, Chen S, Qiu L, Hu H, Ji L, Wang J, Liu W, Ni X. Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer. Int J Nanomedicine 2024; 19:4339-4356. [PMID: 38774026 PMCID: PMC11107942 DOI: 10.2147/ijn.s459428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion In summary, Cur-Dox ND might be a promising ND for better cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Li Ji
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Wenjia Liu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinye Ni
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
4
|
Dwivedi SK, Arachchige DL, Waters M, Jaeger S, Mahmoud M, Olowolagba AM, Tucker DR, Geborkoff MR, Werner T, Luck RL, Godugu B, Liu H. Near-infrared Absorption and Emission Probes with Optimal Connection Bridges for Live Monitoring of NAD(P)H Dynamics in Living Systems. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 402:135073. [PMID: 38559378 PMCID: PMC10976508 DOI: 10.1016/j.snb.2023.135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two NAD(P)H-biosensing probes consisting of 1,3,3-trimethyl-3H-indolium and 3-quinolinium acceptors, linked by thiophene, A, and 3,4-ethylenedioxythiophene, B, bridges are detailed. We synthesized probes C and D, replacing the thiophene connection in probe A with phenyl and 2,1,3-benzothiadiazole units, respectively. Probe E was prepared by substituting probe A's 3-quinolinium unit with a 1-methylquinoxalin-1-ium unit. Solutions are non-fluorescent but in the presence of NADH, exhibit near-infrared fluorescence at 742.1 nm and 727.2 nm for probes A and B, respectively, and generate absorbance signals at 690.6 nm and 685.9 nm. In contrast, probes C and D displayed pronounced interference from NADH fluorescence at 450 nm, whereas probe E exhibited minimal fluorescence alterations in response to NAD(P)H. Pre-treatment of A549 cells with glucose in the presence of probe A led to a significant increase in fluorescence intensity. Additionally, subjecting probe A to lactate and pyruvate molecules resulted in opposite changes in NAD(P)H levels, with lactate causing a substantial increase in fluorescence intensity, conversely, pyruvate resulted in a sharp decrease. Treatment of A549 cells with varying concentrations of the drugs cisplatin, gemcitabine, and camptothecin (5, 10, and 20 μM) led to a concentration-dependent increase in intracellular fluorescence intensity, signifying a rise in NAD(P)H levels. Finally, fruit fly larvae were treated with different concentrations of NADH and cisplatin illustrating applicability to live organisms. The results demonstrated a direct correlation between fluorescence intensity and the concentration of NADH and cisplatin, respectively, further confirming the efficacy of probe A in sensing changes in NAD(P)H levels within a whole organism.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Micaela R Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
5
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
6
|
Le JQ, Song XH, Tong LW, Lin YQ, Feng KK, Tu YF, Hu YS, Shao JW. Dual-drug controllable co-assembly nanosystem for targeted and synergistic treatment of hepatocellular carcinoma. J Colloid Interface Sci 2024; 656:177-188. [PMID: 37989051 DOI: 10.1016/j.jcis.2023.11.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The effectiveness of chemotherapeutic agents for hepatocellular carcinoma (HCC) is unsatisfactory because of tumor heterogeneity, multidrug resistance, and poor target accumulation. Therefore, multimodality-treatment with accurate drug delivery has become increasingly popular. Herein, a cell penetrating peptide-aptamer dual modified-nanocomposite (USILA NPs) was successfully constructed by coating a cell penetrating peptide and aptamer onto the surface of sorafenib (Sora), ursolic acid (UA) and indocyanine green (ICG) condensed nanodrug (USI NPs) via one-pot assembly for targeted and synergistic HCC treatment. USILA NPs showed higher cellular uptake and cytotoxicity in HepG2 and H22 cells, with a high expression of epithelial cell adhesion molecule (EpCAM). Furthermore, these NPs caused more significant mitochondrial membrane potential reduction and cell apoptosis. These NPs could selectively accumulate at the tumor site of H22 tumor-bearing mice and were detected with the help of ICG fluorescence; moreover, they retarded tumor growth better than monotherapy. Thus, USILA NPs can realize the targeted delivery of dual drugs and the integration of diagnosis and treatment. Moreover, the effects were more significant after co-administration of iRGD peptide, a tumor-penetrating peptide with better penetration promoting ability or programmed cell death ligand 1 (PD-L1) antibody for the reversal of the immunosuppressive state in the tumor microenvironment. The tumor inhibition rates of USILA NPs + iRGD peptide or USILA NPs + PD-L1 antibody with good therapeutic safety were 72.38 % and 67.91 % compared with control, respectively. Overall, this composite nanosystem could act as a promising targeted tool and provide an effective intervention strategy for enhanced HCC synergistic treatment.
Collapse
Affiliation(s)
- Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ying-Qi Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Tu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yong-Shan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
7
|
Tong LW, Le JQ, Song XH, Li CL, Yu SJ, Lin YQ, Tu YF, Shao JW. Synergistic anti-tumor effect of dual drug co-assembled nanoparticles based on ursolic acid and sorafenib. Colloids Surf B Biointerfaces 2024; 234:113724. [PMID: 38183870 DOI: 10.1016/j.colsurfb.2023.113724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Both ursolic acid (UA) and sorafenib (Sora) have been generally utilized in cancer treatment, and the combination of the two has also shown a good anti-tumor effect. However, single-agent therapy for Hepatocellular carcinoma (HCC) has the disadvantages of multi-drug resistance, poor water solubility and low bioavailability, and the application of traditional nanocarrier materials is limited due to their low drug loading and low carrier-related toxicity. Therefore, we prepared US NPs with different proportions of UA and Sora by solvent exchange method for achieving synergistic HCC therapy. US NPs had suitable particle size, good dispersibility and storage stability, which synergistically inhibited the proliferation of HepG2 cells, SMMC7721 cells and H22 cells. In addition, we also proved that US NPs were able to suppress the migration of HepG2 cells and SMMC7721 cells and reduce the adhesion ability and colony formation ability of these cells. According to the results, US NPs could degrade the membrane potential of mitochondrial, participate in cell apoptosis, and synergistically induce autophagy. Collectively, the carrier-free US NPs provide new strategies for HCC treatment and new ideas for the development of novel nano-drug delivery systems containing UA and Sora.
Collapse
Affiliation(s)
- Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Lei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shi-Jing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ying-Qi Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Fan Tu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
8
|
Ursolic Acid Impairs Cellular Lipid Homeostasis and Lysosomal Membrane Integrity in Breast Carcinoma Cells. Cells 2022; 11:cells11244079. [PMID: 36552844 PMCID: PMC9776894 DOI: 10.3390/cells11244079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, thus the search for new cancer therapies is of utmost importance. Ursolic acid is a naturally occurring pentacyclic triterpene with a wide range of pharmacological activities including anti-inflammatory and anti-neoplastic effects. The latter has been assigned to its ability to promote apoptosis and inhibit cancer cell proliferation by poorly defined mechanisms. In this report, we identify lysosomes as the essential targets of the anti-cancer activity of ursolic acid. The treatment of MCF7 breast cancer cells with ursolic acid elevates lysosomal pH, alters the cellular lipid profile, and causes lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol. Lysosomal membrane permeabilization precedes the essential hallmarks of apoptosis placing it as an initial event in the cascade of effects induced by ursolic acid. The disruption of the lysosomal function impairs the autophagic pathway and likely partakes in the mechanism by which ursolic acid kills cancer cells. Furthermore, we find that combining treatment with ursolic acid and cationic amphiphilic drugs can significantly enhance the degree of lysosomal membrane permeabilization and cell death in breast cancer cells.
Collapse
|
9
|
Luo F, Zhao J, Liu S, Xue Y, Tang D, Yang J, Mei Y, Li G, Xie Y. Ursolic acid augments the chemosensitivity of drug-resistant breast cancer cells to doxorubicin by AMPK-mediated mitochondrial dysfunction. Biochem Pharmacol 2022; 205:115278. [PMID: 36191625 DOI: 10.1016/j.bcp.2022.115278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
Multidrug resistance remains the major obstacle to successful therapy for breast carcinoma. Ursolic acid (UA), a triterpenoid compound, has been regarded as a potential neoplasm chemopreventive drug in some preclinical studies since it exerts multiple biological activities. In this research, we investigated the role of UA in augmenting the chemosensitivity of drug-resistant breast carcinoma cells to doxorubicin (DOX), and we further explored the possible molecular mechanisms. Notably, we found that UA treatment led to inhibition of cellular proliferation and migration and cell cycle arrest in DOX-resistant breast cancers. Furthermore, combination treatment with UA and DOX showed a stronger inhibitory effect on cell viability, colony formation, and cell migration; induced more cell apoptosis in vitro; and generated a more potent inhibitory effect on the growth of the MCF-7/ADR xenograft tumor model than DOX alone. Mechanistically, UA effectively increased p-AMPK levels and concomitantly reduced p-mTOR and PGC-1α protein levels, resulting in impaired mitochondrial function, such as mitochondrial respiration inhibition, ATP depletion, and excessive reactive oxygen species (ROS) generation. In addition, UA induced a DNA damage response by increasing intracellular ROS production, thus causing cell cycle arrest at the G0/G1 phase. UA also suppressed aerobic glycolysis by prohibiting the expression and function of Glut1. Considered together, our data demonstrated that UA potentiated the susceptibility of DOX-resistant breast carcinoma cells to DOX by targeting energy metabolism through the AMPK/mTOR/PGC-1α signaling pathway, and it is a potential adjuvant chemotherapeutic candidate in MDR breast cancer.
Collapse
Affiliation(s)
- Fazhen Luo
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Juanjuan Zhao
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Shuo Liu
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Dongyun Tang
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Jun Yang
- Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guowen Li
- Pharmacy Department, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Lv L, Yang S, Zhu Y, Zhai X, Li S, Tao X, Dong D. Relationship between metabolic reprogramming and drug resistance in breast cancer. Front Oncol 2022; 12:942064. [PMID: 36059650 PMCID: PMC9434120 DOI: 10.3389/fonc.2022.942064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in women. At present, chemotherapy is the main method to treat breast cancer in addition to surgery and radiotherapy, but the process of chemotherapy is often accompanied by the development of drug resistance, which leads to a reduction in drug efficacy. Furthermore, mounting evidence indicates that drug resistance is caused by dysregulated cellular metabolism, and metabolic reprogramming, including enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic rates, is one of the hallmarks of cancer. Changes in metabolism have been considered one of the most important causes of resistance to treatment, and knowledge of the mechanisms involved will help in identifying potential treatment deficiencies. To improve women's survival outcomes, it is vital to elucidate the relationship between metabolic reprogramming and drug resistance in breast cancer. This review analyzes and investigates the reprogramming of metabolism and resistance to breast cancer therapy, and the results offer promise for novel targeted and cell-based therapies.
Collapse
Affiliation(s)
- Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Li H, Yu Y, Liu Y, Luo Z, Law BYK, Zheng Y, Huang X, Li W. Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacol Res 2022; 182:106306. [PMID: 35714823 DOI: 10.1016/j.phrs.2022.106306] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 02/09/2023]
Abstract
As a broad-spectrum oral small molecule inhibitor targeting multikinase, sorafenib is currently approved for the clinical treatment of several types of cancer as a single agent. A considerable number of clinical trial results have indicated that combination therapies involving sorafenib have been shown to improve treatment efficacy and may lead to novel therapeutic applications. Ursolic acid (UA), a natural pentacyclic triterpene compound extracted from a great variety of traditional medicinal plants and most fruits and vegetables, exhibits a wide range of therapeutic potential, including against cancer, diabetes, brain disease, liver disease, cardiovascular diseases, and sarcopenia. In the present study, we investigated the antitumor effects of sorafenib in combination with ursolic acid and found that the two agents displayed significant synergistic antitumor activity in in vitro and in vivo tumor xenograft models. Sorafenib/UA induced selective apoptotic death and ferroptosis in various cancer cells by evoking a dramatic accumulation of intracellular lipid reactive oxygen species (ROS). Mechanistically, the combination treatment promoted Mcl-1 degradation, which regulates apoptosis. However, decreasing the protein level of SLC7A11 plays a critical role in sorafenib/UA-induced cell ferroptosis. Therefore, these results suggest that the synergistic antitumor effects of sorafenib combined with ursolic acid may involve the induction of Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis. Our findings may offer a novel effective therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Han Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - You Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhihong Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xing Huang
- Center for Evidence-Based and Translational Medicine, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
13
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
14
|
Zong L, Cheng G, Zhao J, Zhuang X, Zheng Z, Liu Z, Song F. Inhibitory Effect of Ursolic Acid on the Migration and Invasion of Doxorubicin-Resistant Breast Cancer. Molecules 2022; 27:1282. [PMID: 35209071 PMCID: PMC8879026 DOI: 10.3390/molecules27041282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cause of death in most breast cancer patients is disease metastasis and the occurrence of multidrug resistance (MDR). Ornithine decarboxylase (ODC), which is involved into multiple pathways, is closely related to carcinogenesis and development. Ursolic acid (UA), a natural triterpenoid compound, has been shown to reverse the MDR characteristics of tumor cells. However, the effect of UA on the invasion and metastasis of tumor cells with MDR is not known. Therefore, we investigated the effects of UA on invasion and metastasis, ODC-related polyamine metabolism, and MAPK-Erk-VEGF/MMP-9 signaling pathways in a doxorubicin-resistant breast cancer cell (MCF-7/ADR) model. The obtained results showed that UA significantly inhibited the adhesion and migration of MCF-7/ADR cells, and had higher affinities with key active cavity residues of ODC compared to the known inhibitor di-fluoro-methyl-ornithine (DFMO). UA could downregulate ODC, phosphorylated Erk (P-Erk), VEGF, and matrix metalloproteinase-9 (MMP-9) activity. Meanwhile, UA significantly reduced the content of metabolites of the polyamine metabolism. Furthermore, UA increased the intracellular accumulation of Dox in MCF-7/ADR cells. Taken together, UA can inhibit against tumor progression during the treatment of breast cancer with Dox, and possibly modulate the Erk-VEGF/MMP-9 signaling pathways and polyamine metabolism by targeting ODC to exert these effects.
Collapse
Affiliation(s)
- Li Zong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guorong Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingwu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
15
|
Macedo LB, Nogueira-Librelotto DR, Mathes D, de Vargas JM, da Rosa RM, Rodrigues OED, Vinardell MP, Mitjans M, Rolim CMB. Overcoming MDR by Associating Doxorubicin and pH-Sensitive PLGA Nanoparticles Containing a Novel Organoselenium Compound-An In Vitro Study. Pharmaceutics 2021; 14:80. [PMID: 35056975 PMCID: PMC8779681 DOI: 10.3390/pharmaceutics14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed PLGA nanoparticles (NPs) as an effective carrier for 5'-Se-(phenyl)-3-(amino)-thymidine (ACAT-Se), an organoselenium compound, nucleoside analogue that showed promising antitumor activity in vitro. The PLGA NPs were prepared by the nanoprecipitation method and modified with a pH-responsive lysine-based surfactant (77KL). The ACAT-Se-PLGA-77KL-NPs presented nanometric size (around 120 nm), polydispersity index values < 0.20 and negative zeta potential values. The nanoencapsulation of ACAT-Se increased its antioxidant (DPPH and ABTS assays) and antitumor activity in MCF-7 tumor cells. Hemolysis study indicated that ACAT-Se-PLGA-77KL-NPs are hemocompatible and that 77KL provided a pH-sensitive membranolytic behavior to the NPs. The NPs did not induce cytotoxic effects on the nontumor cell line 3T3, suggesting its selectivity for the tumor cells. Moreover, the in vitro antiproliferative activity of NPs was evaluated in association with the antitumor drug doxorubicin. This combination result in synergistic effect in sensitive (MCF-7) and resistant (NCI/ADR-RES) tumor cells, being especially able to successfully sensitize the MDR cells. The obtained results suggested that the proposed ACAT-Se-loaded NPs are a promising delivery system for cancer therapy, especially associated with doxorubicin.
Collapse
Affiliation(s)
- Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Josiele Melo de Vargas
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Raquel Mello da Rosa
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Oscar Endrigo Dorneles Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Maria Pilar Vinardell
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institute of Nanocience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 465, 08028 Barcelona, Spain
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institute of Nanocience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 465, 08028 Barcelona, Spain
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
16
|
Lőrincz A, Mihály J, Wacha A, Németh C, Besztercei B, Gyulavári P, Varga Z, Peták I, Bóta A. Combination of multifunctional ursolic acid with kinase inhibitors for anti-cancer drug carrier vesicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112481. [PMID: 34857267 DOI: 10.1016/j.msec.2021.112481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023]
Abstract
A sterically stabilized unilamellar nanocarrier vesicle (SSV) system containing dipalmitoylphosphatidylcholine, cholesterol, ursolic acid and PEGylated phospholipid has been developed by exploiting the structural advantages of ursolic acid: by spontaneously attaching to the lipid head groups, it induces curvature at the outer side of the bilayers, allowing the preparation of size-limited vesicles without extrusion. Ursolic acid (UA) also interacts with the PEG chains, supporting steric stabilization even when the amount of PEGylated phospholipid is reduced. Using fluorescence immunohistochemistry, vesicles containing ursolic acid (UA-SSVs) were found to accumulate in the tumor in 3 h on xenografted mouse, suggesting the potential use of these vesicles for passive tumor targeting. Further on, mono- and combination therapy with UA and six different kinase inhibitors (crizotinib, erlotinib, foretinib, gefitinib, refametinib, trametinib) was tested on seven cancer cell-lines. In most combinations synergism was observed, in the case of trametinib even at very low concentration (0.001 μM), which targets the MAPK pathway most often activated in human cancers. The coupled intercalation of UA and trametinib (2:1 molar ratio) into vesicles causes further structural advantageous molecular interactions, promoting the formation of small vesicles. The high drug:lipid molar ratio (~0.5) in the novel type of co-delivery vesicles enables their direct medical application, possibly also overcoming the multidrug resistance effect.
Collapse
Affiliation(s)
- A Lőrincz
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - J Mihály
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary.
| | - A Wacha
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - Cs Németh
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - B Besztercei
- Semmelweis University, Institute of Clinical Experimental Research, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - P Gyulavári
- Semmelweis University, Pathobiochemistry Research Group, Tűzoltó street 37-47, 1094 Budapest, Hungary
| | - Z Varga
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary
| | - I Peták
- University of Illinois at Chicago, Department of Biopharmaceutical Sciences, 833 S. Wood street, Chicago, IL 60612, USA; Oncompass Medicine Ltd., Retek street 34, 1024 Budapest, Hungary; Semmelweis University, Department of Pharmacology and Pharmacotherapy, Nagyvárad square 4, 1089 Budapest, Hungary
| | - A Bóta
- Research Centre for Natural Sciences - Eötvös Loránd Research Network, Institute of Materials and Environmental Chemistry, Research Group of Biological Nanochemistry, Magyar tudósok boulevard 2, 1117 Budapest, Hungary.
| |
Collapse
|
17
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
18
|
Hussain Y, Islam L, Khan H, Filosa R, Aschner M, Javed S. Curcumin-cisplatin chemotherapy: A novel strategy in promoting chemotherapy efficacy and reducing side effects. Phytother Res 2021; 35:6514-6529. [PMID: 34347326 DOI: 10.1002/ptr.7225] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
The efficacy of chemotherapy in cancer therapy is limited due to resistance, treatment selectivity, and severe adverse effects. Immunotherapy, chemotherapy, targeted therapy, radiation, and surgery are the most common therapeutic strategies for treatment, with chemotherapy being the most successful. Nonetheless, these treatments exhibit poor effectiveness due to toxicity and resistance. Therefore, combination therapies of natural products may be used as an effective and novel strategy to overcome such barriers. Cisplatin is a platinum-based chemotherapy agent, and when administered alone, it can lead to severe adverse effects and resistance mechanism resulting in therapeutic failure. Curcumin is a polyphenolic compound extracted from turmeric (Curcuma longa) exhibiting anticancer potential with minimal adverse effects. The combination therapy of curcumin and cisplatin is a novel strategy to mitigate/attenuate cisplatin-related adverse effects and improve the barrier of resistance reducing unwanted effects. However, there are uncertainties on the efficacy of curcumin, and more in depth and high-quality studies are needed. This review aims to explain the adverse effects related to individual cisplatin delivery, the positive outcome of individual curcumin delivery, and the combination therapy of curcumin and cisplatin from nano platform as a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Lubna Islam
- Department of Pharmacy, University of Malakand, Dir Lower Chakdara, KPK, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Rosanna Filosa
- Department of Experimental Medicine, University of Campania, "L. Vanvitelli", Naples, Italy
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Saba Javed
- Department of Zoology, Hazara University, Mansehra, Pakistan
| |
Collapse
|
19
|
Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J Control Release 2021; 336:396-409. [PMID: 34175367 DOI: 10.1016/j.jconrel.2021.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is the primary reason for invalid chemotherapy. Antitumor drugs are often adversely affected by the MDR of tumor cells. Treatments using conventional drugs, which have specific drug targets, hardly regulate the complex signaling pathway of MDR cells because of the complex formation mechanism of MDR. However, natural products have positive advantages, such as high efficiency, low toxicity, and ability to target multiple mechanism pathways associated with MDR. Natural products, as MDR reversal agents, synergize with chemotherapeutics and enhance the sensitivity of tumor cells to chemotherapeutics, and the co-delivery of natural products and antitumor drugs with nanocarriers maximizes the synergistic effects against MDR in tumor cells. This review summarizes the molecular mechanisms of MDR, the advantages of natural products combined with chemotherapeutics in offsetting complicated MDR mechanisms, and the types and mechanisms of natural products that are potential MDR reversal modulators. Meanwhile, aiming at the low bioavailability of cocktail combined natural products and chemotherapeutic in vivo, the advantages of nanoplatform-based co-delivery system and recent research developments are illustrated on the basis of our previous research. Finally, prospective horizons are analyzed, which are expected to considerably improve the nano-co-delivery of natural products and chemotherapeutic systems for MDR reversal in cancer.
Collapse
|
20
|
Cheng G, Pi Z, Zhuang X, Zheng Z, Liu S, Liu Z, Song F. The effects and mechanisms of aloe-emodin on reversing adriamycin-induced resistance of MCF-7/ADR cells. Phytother Res 2021; 35:3886-3897. [PMID: 33792091 DOI: 10.1002/ptr.7096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles for clinical effective chemotherapy. In this study, the effects and possible mechanisms of aloe-emodin (AE) were investigated on reversing the adriamycin (ADR)-induced resistance of MCF-7/ADR cells. AE could significantly reverse the ADR resistance in MCF-7/ADR cells. The combination of AE (20 μM) and ADR had no effect on the P-glycoprotein (P-gp) level, but notably promoted the accumulation of ADR in drug-resistant cells. The efflux function of P-gp required ATP, but AE reduced the intracellular ATP level. AE played a reversal role might through inhibiting the efflux function of P-gp. The research result of energy metabolism pathways indicated that combination of AE and ADR could inhibit glycolysis, tricarboxylic acid (TCA) cycle, glutamine metabolism, and related amino acid synthesis pathways. Moreover, we found AE not only reversed ADR-induced resistant but also induced autophagy as a defense mechanism. In addition, the combination of AE and ADR arrested G2/M cell cycle and induced apoptosis through DNA damage, ROS generation, caspase-3 activation. Our study indicated that AE could be a potential reversal agent to resensitize ADR resistant in tumor chemotherapy and inhibiting autophagy might be an effective strategy to further enhance the reversal activity of AE.
Collapse
Affiliation(s)
- Guorong Cheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
21
|
Espinosa-Paredes DA, Cornejo-Garrido J, Moreno-Eutimio MA, Martínez-Rodríguez OP, Jaramillo-Flores ME, Ordaz-Pichardo C. Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutr Cancer 2020; 73:2287-2305. [PMID: 32959676 DOI: 10.1080/01635581.2020.1817956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Echinacea spp. displays different biological activities, such as antiviral, immunomodulatory, and anticancer activities. Currently, high sales of hydroalcoholic extracts of Echinacea have been reported; hence, the importance of studies on Echinacea. AIM To establish the effects of Echinacea angustifolia DC extract obtained with ethyl acetate (Ea-AcOEt) in breast cancer cell lines. METHODS Cytotoxicity, cell cycle arrest, and cell death were evaluated. Besides, the safety of the extract, as well as its effect in combination with paclitaxel were investigated. RESULTS The echinacoside and caffeic acid content in the Ea-AcOEt extract were quantified by HPLC, and its antioxidant activity was assessed. The Ea-AcOEt extract showed cytotoxic activity on breast cancer MDA-MB-231 cells (IC50 28.18 ± 1.14 µg/ml) and MCF-7 cells (19.97 ± 2.31 µg/ml). No effect was observed in normal breast MCF-10 cells. The Ea-AcOEt extract induced cell cycle arrest in the G1 phase and caspase-mediated apoptosis. No genotoxicity was found in vitro or in vivo, and the extract showed no signs of toxicity or death at 2,000 mg/kg in rodents. In vitro, the combination of Ea-AcOEt extract and paclitaxel showed a synergistic effect on both cancer cell lines. CONCLUSION The Ea-AcOEt extract is a potential candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Daniel Abraham Espinosa-Paredes
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | - Jorge Cornejo-Garrido
- Laboratorio de Fitoquímica, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | | | - Oswaldo Pablo Martínez-Rodríguez
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| |
Collapse
|
22
|
Nocedo-Mena D, Rivas-Galindo VM, Navarro P, Garza-González E, González-Maya L, Ríos MY, García A, Ávalos-Alanís FG, Rodríguez-Rodríguez J, Camacho-Corona MDR. Antibacterial and cytotoxic activities of new sphingolipids and other constituents isolated from Cissus incisa leaves. Heliyon 2020; 6:e04671. [PMID: 32923710 PMCID: PMC7475184 DOI: 10.1016/j.heliyon.2020.e04671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023] Open
Abstract
Cissus incisa is used in traditional Mexican medicine to treat certain ailments, infectious or cancerous diseases. Excepting for our previous research, this species had no scientific reports validating its traditional use. In this study, we evaluated the antibacterial and cytotoxic properties of the sphingolipids and others phytocompounds isolated from C. incisa leaves to increase the scientific knowledge of the Mexican flora. The antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria by the Microdilution method. Meanwhile, the cytotoxic potential was determined on six human cancer cells: PC3, Hep3B, HepG2, MCF7, A549, and HeLa; using an aqueous solution cell proliferation assay kit. A cell line of immortalized human hepatocytes (IHH) was included as a control of non-cancerous cells. Selectivity index (SI) was determined only against the hepatocellular carcinoma cell lines. The phytochemical investigation of C. incisa leaves resulted in the isolation and characterization of five compounds: 2-(2′-hydroxydecanoyl amino)-1,3,4-hexadecanotriol-8-ene (1), 2,3-dihydroxypropyl tetracosanoate (2), β-sitosterol-D-glucopyranoside (3), α-amyrin-3-O-β-D-glucopyranoside (4), and a mixture of cerebrosides (5). Until now, this is the first report of the sphingolipids (1), (5-IV) and (5-V). Only the compound (4) and cerebrosides (5) exhibited antibacterial activity reaching a MIC value of 100 μg/mL against Pseudomonas aeruginosa resistant to carbapenems. While, the acetylated derivate of (3), compound (3Ac) showed the best cytotoxic result against PC3 (IC50 = 43 ± 4 μg/mL) and Hep3B (IC50 = 49.0 ± 4 μg/mL) cancer cell lines. Likewise, (3Ac) achieved better SI values on HepG2 and Hep3B cell lines. This research reveals the importance of study medicinal plants, to identify bioactive molecules as sources of potential drugs. The presence of these compounds allows us to justify the use of this plant in traditional Mexican medicine.
Collapse
Affiliation(s)
- Deyani Nocedo-Mena
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas. Av. Universidad S/N, Ciudad Universitaria, 66451, San Nicolás de los Garza, Nuevo León, Mexico.,Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Verónica M Rivas-Galindo
- Universidad Autónoma de Nuevo León, Facultad de Medicina. Av. Gonzalitos and Madero S/N, Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Patricia Navarro
- General Research Services, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Servicio de Gastroenterología, Hospital Universitario "Dr. José Eleuterio González". Av. Gonzalitos and Madero S/N, Colonia Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Leticia González-Maya
- Universidad Autónoma del Estado de Morelos, Facultad de Farmacia. Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - María Yolanda Ríos
- Universidad Autónoma del Estado de Morelos, Centro de Investigaciones Químicas, IICBA. Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Abraham García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas. Av. Universidad S/N, Ciudad Universitaria, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - Francisco G Ávalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas. Av. Universidad S/N, Ciudad Universitaria, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Rodríguez-Rodríguez
- Instituto Tecnológico y de Estudios Superiores de Monterrey. Av. Eugenio Garza Sada Sur, Tecnológico, 64849, Monterrey, Nuevo León, Mexico
| | - María Del Rayo Camacho-Corona
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas. Av. Universidad S/N, Ciudad Universitaria, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
23
|
Cao Y, Shi Y, Cai Y, Hong Z, Chai Y. The Effects of Traditional Chinese Medicine on P-Glycoprotein–Mediated Multidrug Resistance and Approaches for Studying the Herb–P-Glycoprotein Interactions. Drug Metab Dispos 2020; 48:972-979. [DOI: 10.1124/dmd.120.000050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
24
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
25
|
Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance. Metabolites 2020; 10:metabo10070289. [PMID: 32708822 PMCID: PMC7408410 DOI: 10.3390/metabo10070289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance. Intervening regulatory points described above or targeting key genes in several important metabolic pathways may restore cell sensitivity to chemotherapy. This paper reviews the metabolic changes of tumor cells during the development of chemoresistance and discusses the potential of reversing chemoresistance by metabolic regulation.
Collapse
|
26
|
Ouyang J, Yang M, Gong T, Ou J, Tan Y, Zhang Z, Li S. Doxorubicin-loading core-shell pectin nanocell: A novel nanovehicle for anticancer agent delivery with multidrug resistance reversal. PLoS One 2020; 15:e0235090. [PMID: 32569270 PMCID: PMC7307773 DOI: 10.1371/journal.pone.0235090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022] Open
Abstract
Tumor is a prevalent great threat to public health worldwide and multidrug resistance (MDR) of tumor is a leading cause of chemotherapy failure. Nanomedicine has shown prospects in overcoming the problem. Doxorubicin (DOX), a broad-spectrum anticancer drug, showed limited efficacy due to MDR. Herein, a doxorubicin containing pectin nanocell (DOX-PEC-NC) of core-shell structure, a pectin nanoparticle encapsulated with liposome-like membrane was developed. The DOX-PEC-NC, spheroid in shape and sized around 150 nm, exerted better sustained release behavior than doxorubicin loading pectin nanoparticle (DOX-PEC-NP) or liposome (DOX-LIP). In vitro anticancer study showed marked accumulation of doxorubicin in different tumor cells as well as reversal of MDR in HepG2/ADR cells and MCF-7/ADR cells caused by treatment of DOX-PEC-NC. In H22 tumor-bearing mice, DOX-PEC-NC showed higher anticancer efficacy and lower toxicity than doxorubicin. DOX-PEC-NC can improve anticancer activity and reduce side effect of doxorubicin due to increased intracellular accumulation and reversal of MDR in tumor cells, which may be a promising nanoscale drug delivery vehicle for chemotherapeutic agents.
Collapse
Affiliation(s)
- Jiabi Ouyang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Mohui Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Tian Gong
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinlai Ou
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yani Tan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhen Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Sha Li
- College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, China
- * E-mail:
| |
Collapse
|
27
|
Li Y, Li R, Zeng Z, Li S, Luo S, Wu J, Zhou C, Xu D. Prediction of the mechanisms of Xiaoai Jiedu Recipe in the treatment of breast cancer: A comprehensive approach study with experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112603. [PMID: 31981747 DOI: 10.1016/j.jep.2020.112603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/04/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) holds a great promise for preventing complex chronic diseases through a holistic way. Certain Chinese medicine formulae from TCM are effective for treating and preventing cancer in clinical practice. Xiaoai Jiedu Recipe (XJR) is a Chinese medicine formula that has been used to treat breast cancer (BC). However, its active ingredients and therapeutic mechanisms on tumor are unclear. Therefore, further investigation is necessary. AIM OF THE STUDY This study aims to elucidate the active compounds of XJR and its molecular mechanisms for the treatment of BC. MATERIALS AND METHODS A comprehensive approach was used to clarify the pharmacodynamic basis of XJR and its pharmacological mechanism, including the acquisition of differentially expressed genes of BC, screening of active ingredients and their targets, construction of complex internetwork between drugs and diseases, and analysis of the key subnetwork. Finally, these results were validated by in vitro experiments and comparison with literature reviews. RESULTS By using bioinformatics, 5211 differentially expressed genes of BC were identified, more than half of them had been reported in previous studies. By using network analysis, 113 potential bioactive compounds in the ten component herbs of XJR and 157 BC-related targets were identified, which were significantly enriched in 85 pathways and 1321 GO terms. The in vitro studies showed that quercetin and ursolic acid, the active components of XJR, could effectively inhibit the proliferation of breast cancer cells, and the combination of the two components could significantly decrease the mitochondrial membrane potential and suppress the activation of PI3K-Akt signaling pathway, thus inducing apoptosis of cancer cells. CONCLUSIONS XJR played an important role in anti-BC through multi-component, multi-target and multi-pathway mechanisms, in which quercetin and ursolic acid may be the key active components. The anticancer effect of multi-component application was better than that of a single component. This study not only deepened our understanding of the role of TCM in the prevention and treatment of diseases, but also provided a reference for the in-depth research, development and application of the ancient medicine.
Collapse
Affiliation(s)
- Yuyun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Zhanjiang, 524023, China; Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China
| | - Rang Li
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zhanwei Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Zhanjiang, 524023, China; Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China
| | - Siyan Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shiying Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jiahuan Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Zhanjiang, 524023, China; Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan, 523808, China.
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Department of Pharmacology, Guangdong Medical University, Zhanjiang, 524023, China; Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
28
|
Vekaria M, Tirgar P. Promising Anticancer Potential of Herbal Compounds against Breast Cancer: A Systemic Review. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2020. [DOI: 10.18311/ajprhc/2021/26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Guo W, Tan HY, Chen F, Wang N, Feng Y. Targeting Cancer Metabolism to Resensitize Chemotherapy: Potential Development of Cancer Chemosensitizers from Traditional Chinese Medicines. Cancers (Basel) 2020; 12:cancers12020404. [PMID: 32050640 PMCID: PMC7072159 DOI: 10.3390/cancers12020404] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a common and complex disease with high incidence and mortality rates, which causes a severe public health problem worldwide. As one of the standard therapeutic approaches for cancer therapy, the prognosis and outcome of chemotherapy are still far from satisfactory due to the severe side effects and increasingly acquired resistance. The development of novel and effective treatment strategies to overcome chemoresistance is urgent for cancer therapy. Metabolic reprogramming is one of the hallmarks of cancer. Cancer cells could rewire metabolic pathways to facilitate tumorigenesis, tumor progression, and metastasis, as well as chemoresistance. The metabolic reprogramming may serve as a promising therapeutic strategy and rekindle the research enthusiasm for overcoming chemoresistance. This review focuses on emerging mechanisms underlying rewired metabolic pathways for cancer chemoresistance in terms of glucose and energy, lipid, amino acid, and nucleotide metabolisms, as well as other related metabolisms. In particular, we highlight the potential of traditional Chinese medicine as a chemosensitizer for cancer chemotherapy from the metabolic perspective. The perspectives of metabolic targeting to chemoresistance are also discussed. In conclusion, the elucidation of the underlying metabolic reprogramming mechanisms by which cancer cells develop chemoresistance and traditional Chinese medicines resensitize chemotherapy would provide us a new insight into developing promising therapeutics and scientific evidence for clinical use of traditional Chinese medicine as a chemosensitizer for cancer therapy.
Collapse
|
30
|
Fadhilah K, Wahyuono S, Astuti P. A bioactive compound isolated from Duku ( Lansium domesticum Corr) fruit peels exhibits cytotoxicity against T47D cell line. F1000Res 2020; 9:3. [PMID: 34136135 PMCID: PMC8185580 DOI: 10.12688/f1000research.21072.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Breast cancer is a major health problem for women globally. Many attempts have been promoted to cure cancer by finding new anticancer medicines from natural resources. Despite the richness of biodiversity discovered, there are some natural resources that remain unexplored. Fruit peels of Duku ( Lansium domesticum Corr.) are rich with compounds that may have the potential to be developed as anticancer drugs. This study aimed to isolate cytotoxic compounds from the fruit peels of L. domesticum and assess their cytotoxic nature against T47D cells. Methods: Powdered peels were macerated with ethyl acetate and the filtrate was evaporated to give EtOAc extract A. Dried extract A was triturated with n-hexane to give n-hexane soluble fraction B and insoluble fraction C. The cytotoxic nature of these three samples were assessed using MTT assay using T47D cells and doxorubicin as a control. Results: Fraction C that showed the smallest IC50 (25.56 ± 0.64μg/mL) value compared to extract A and fraction B. Fraction C was further fractionated by vacuum liquid chromatography to give 6 subfractions. Subfraction 2 showed a single compound based on thin layer chromatography, and this compound was identified as Lamesticumin A on the basis of its spectroscopic data. Lamesticumin A demonstrated cytotoxic activity against T47D cell lines with an IC 50 value of 15.68 ± 0.30µg/mL. Conclusions: Further research is needed to investigate the potential of the natural compound Lamesticumin A derived from L. domesticum fruit peel as an anticancer therapy.
Collapse
Affiliation(s)
- Khusnul Fadhilah
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Subagus Wahyuono
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| | - Puji Astuti
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| |
Collapse
|
31
|
Fadhilah K, Wahyuono S, Astuti P. A bioactive compound isolated from Duku ( Lansium domesticum Corr) fruit peels exhibits cytotoxicity against T47D cell line. F1000Res 2020; 9:3. [PMID: 34136135 PMCID: PMC8185580 DOI: 10.12688/f1000research.21072.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 04/08/2024] Open
Abstract
Background: Breast cancer is a major health problem for women globally. Many attempts have been promoted to cure cancer by finding new anticancer medicines from natural resources. Despite the richness of biodiversity discovered, there are some natural resources that remain unexplored. Fruit peels of Duku ( Lansium domesticum Corr.) are rich with compounds that may have the potential to be developed as anticancer drugs. This study aimed to isolate cytotoxic compounds from the fruit peels of L. domesticum and assess their cytotoxic nature against T47D cells. Methods: Powdered peels were macerated with ethyl acetate and the filtrate was evaporated to give EtOAc extract A. Dried extract A was triturated with n-hexane to give n-hexane soluble fraction B and insoluble fraction C. The cytotoxic nature of these three samples were assessed using MTT assay using T47D cells and doxorubicin as a control. Results: Fraction C that showed the smallest IC50 (25.56 ± 0.64μg/mL) value compared to extract A and fraction B. Fraction C was further fractionated by vacuum liquid chromatography to give 6 subfractions. Subfraction 2 showed a single compound based on thin layer chromatography, and this compound was identified as Lamesticumin A on the basis of its spectroscopic data. Lamesticumin A demonstrated cytotoxic activity against T47D cell lines with an IC50 value of 15.68 ± 0.30µg/mL. Conclusions: Further research is needed to investigate the potential of the natural compound Lamesticumin A derived from L. domesticum fruit peel as an anticancer therapy.
Collapse
Affiliation(s)
- Khusnul Fadhilah
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Subagus Wahyuono
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| | - Puji Astuti
- Departement of Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyaka, 55281, Indonesia
| |
Collapse
|
32
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
33
|
Kim GH, Kan SY, Kang H, Lee S, Ko HM, Kim JH, Lim JH. Ursolic Acid Suppresses Cholesterol Biosynthesis and Exerts Anti-Cancer Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:E4767. [PMID: 31561416 PMCID: PMC6802365 DOI: 10.3390/ijms20194767] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormally upregulated cholesterol and lipid metabolism, observed commonly in multiple cancer types, contributes to cancer development and progression through the activation of oncogenic growth signaling pathways. Although accumulating evidence has shown the preventive and therapeutic benefits of cholesterol-lowering drugs for cancer management, the development of cholesterol-lowering drugs is needed for treatment of cancer as well as metabolism-related chronic diseases. Ursolic acid (UA), a natural pentacyclic terpenoid, suppresses cancer growth and metastasis, but the precise underlying molecular mechanism for its anti-cancer effects is poorly understood. Here, using sterol regulatory element (SRE)-luciferase assay-based screening on a library of 502 natural compounds, this study found that UA activates sterol regulatory element-binding protein 2 (SREBP2). The expression of cholesterol biosynthesis-related genes and enzymes increased in UA-treated hepatocellular carcinoma (HCC) cells. The UA increased cell cycle arrest and apoptotic death in HCC cells and reduced the activation of oncogenic growth signaling factors, all of which was significantly reversed by cholesterol supplementation. As cholesterol supplementation successfully reversed UA-induced attenuation of growth in HCC cells, it indicated that UA suppresses HCC cells growth through its cholesterol-lowering effect. Overall, these results suggested that UA is a promising cholesterol-lowering nutraceutical for the prevention and treatment of patients with HCC and cholesterol-related chronic diseases.
Collapse
Affiliation(s)
- Geon-Hee Kim
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Sang-Yeon Kan
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Hyeji Kang
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Sujin Lee
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, 66 Daehak-ro, Jincheon-eup, Chungcheongbuk-do 27841, Korea.
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji-Hong Lim
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
34
|
Pei Y, Zhang Y, Zheng K, Shang G, Wang Y, Wang W, Qiu E, Zhang X. Ursolic acid suppresses the biological function of osteosarcoma cells. Oncol Lett 2019; 18:2628-2638. [PMID: 31404298 DOI: 10.3892/ol.2019.10561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is a highly malignant tumour that occurs in adolescents. Upregulation or the constitutive activation of epidermal growth factor receptor (EGFR) is a hallmark of osteosarcoma. To investigate the effect of ursolic acid on the biological function of osteosarcoma, MTT assay was used to detect the effect of ursolic acid on the proliferation of HOS and MG63 cells, while flow cytometry was used to analyse the effect on the cell cycle and apoptosis. Transwell and Matrigel assays were used to detect the effect of ursolic acid on cell migration and invasion, respectively. Western blot analysis and reverse transcription-quantitative polymerase chain reaction were used to detect the effects of different concentrations of ursolic acid on EGFR signaling pathway-related proteins, cell cycle, apoptosis and cell migration-related proteins. After overexpression or silencing of EGFR, the effects of ursolic acid on EGFR pathway and cell biological function were subsequently detected, using the same methods. The present study identified that ursolic acid had inhibitory effects on the growth and metastatic ability of osteosarcoma cells by suppressing EGFR.
Collapse
Affiliation(s)
- Yi Pei
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yueyan Zhang
- Department of Clinical Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Ke Zheng
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Guanning Shang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yuming Wang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Wei Wang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Enduo Qiu
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
35
|
Tan BL, Norhaizan ME. Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer. Molecules 2019; 24:E2527. [PMID: 31295906 PMCID: PMC6680685 DOI: 10.3390/molecules24142527] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Many chemotherapeutic drugs have been used for the treatment of cancer, for instance, doxorubicin, irinotecan, 5-fluorouracil, cisplatin, and paclitaxel. However, the effectiveness of chemotherapy is limited in cancer therapy due to drug resistance, therapeutic selectivity, and undesirable side effects. The combination of therapies with natural compounds is likely to increase the effectiveness of drug treatment as well as reduce the adverse outcomes. Curcumin, a polyphenolic isolated from Curcuma longa, belongs to the rhizome of Zingiberaceae plants. Studies from in vitro and in vivo revealed that curcumin exerts many pharmacological activities with less toxic effects. The biological mechanisms underlying the anticancer activity of co-treatment curcumin and chemotherapy are complex and worth to discuss further. Therefore, this review aimed to address the molecular mechanisms of combined curcumin and chemotherapy in the treatment of cancer. The anticancer activity of combined nanoformulation of curcumin and chemotherapy was also discussed in this study. Taken together, a better understanding of the implication and underlying mechanisms of action of combined curcumin and chemotherapy may provide a useful approach to combat cancer diseases.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
36
|
Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. JOURNAL OF INTEGRATIVE MEDICINE 2019; 17:155-160. [PMID: 30928277 DOI: 10.1016/j.joim.2019.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene of the ursane type. As a common chemical constituent among species of the family Lamiaceae, UA possesses a broad spectrum of pharmacological properties. This overview focuses on the anticancer properties of UA against breast cancer (BC) and colorectal cancer (CRC) that are most common among women and men, respectively. In vitro studies have shown that UA inhibited the growth of BC and CRC cell lines through various molecular targets and signaling pathways. There are several in vivo studies on the cytotoxic activity of UA against BC and CRC. UA also inhibits the growth of other types of cancer. Studies on structural modifications of UA have shown that the -OH groups at C3 and at C28 are critical factors influencing the cytotoxic activity of UA and its derivatives. Some needs for future research are suggested. Sources of information were from ScienceDirect, Google Scholar and PubMed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Chu Yong Soon
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Siu Kuin Wong
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Yew Woh Hui
- Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|