1
|
Wang Y, Xu D, Liu X, Cheng M, Huang J, Liu D, Zhang X, Zhang L. Discovery of potential female-specific biomarkers for major depressive disorder by LC-MS-based metabolomics. J Pharm Biomed Anal 2025; 254:116572. [PMID: 39586142 DOI: 10.1016/j.jpba.2024.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
The prevalence of major depressive disorder (MDD) is higher in females than males, emphasizing the need to identify gender-specific biomarkers to improve diagnosis accuracy. In this study, a cross-sectional investigation with 258 samples was conducted to evaluate the discriminative power of potential gender-specific biomarkers for MDD. Eighteen MDD-related differential metabolites have been identified, involving pathways of phospholipids, glycerolipids, fatty acids, sphingolipids, cholesterol, vitamin E, and heme. A potential biomarker combination consisting of palmitelaidic acid, gamma carboxyethyl hydroxychroman (gamma-CEHC), and lysoPE(16:0) was confirmed for predicting depression in women using binary logistic regression analysis. To evaluate the panel's specificity, nine generalized anxiety disorder (GAD) samples, which share highly similar clinical symptoms with MDD, were included in the validation set. The discovery and validation sets yielded an area under the receiver operating characteristic curve of 0.86 and 0.83, respectively. All nine female GAD samples were correctly predicted as non-MDD, demonstrating the panel's specificity in diagnosing female MDD. Remarkably, this composite panel achieved a 75 % prediction accuracy in female samples in both the discovery and validation sets, but it did not reach 60 % prediction accuracy in male samples in either set. Our findings highlight the importance of gender-specific molecular diagnostics in developing practical and accurate diagnostic methods for MDD.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dongcao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinxin Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengchun Cheng
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | - Dan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xiaozhe Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Sarkar J, Singh R, Chandel S. Understanding LC/MS-Based Metabolomics: A Detailed Reference for Natural Product Analysis. Proteomics Clin Appl 2025; 19:e202400048. [PMID: 39474988 DOI: 10.1002/prca.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 01/14/2025]
Abstract
Liquid chromatography, when used in conjunction with mass spectrometry (LC/MS), is a powerful tool for conducting accurate and reproducible investigations of numerous metabolites in natural products (NPs). LC/MS has gained prominence in metabolomic research due to its high throughput, the availability of multiple ionization techniques and its ability to provide comprehensive metabolite coverage. This unique method can significantly influence various scientific domains. This review offers a comprehensive overview of the current state of LC/MS-based metabolomics in the investigation of NPs. This review provides a thorough overview of the state of the art in LC/MS-based metabolomics for the investigation of NPs. It covers the principles of LC/MS, various aspects of LC/MS-based metabolomics such as sample preparation, LC modes, method development, ionization techniques and data pre-processing. Moreover, it presents the applications of LC/MS-based metabolomics in numerous fields of NPs research such as including biomarker discovery, the agricultural research, food analysis, the study of marine NPs and microbiological research. Additionally, this review discusses the challenges and limitations of LC/MS-based metabolomics, as well as emerging trends and developments in this field.
Collapse
Affiliation(s)
- Jyotirmay Sarkar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
3
|
De Cristofaro M, Lenzi A, Ghimenti S, Biagini D, Bertazzo G, Vivaldi FM, Armenia S, Pugliese NR, Masi S, Di Francesco F, Lomonaco T. Decoding the Challenges: navigating Intact Peptide Mass Spectrometry-Based Analysis for Biological Applications. Crit Rev Anal Chem 2024:1-23. [PMID: 39556023 DOI: 10.1080/10408347.2024.2427140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Quantitative analysis of peptides in biological fluids offers a high diagnostic and prognostic tool to reflect the pathophysiological condition of the patient. Recently, methods based on liquid chromatography coupled with mass spectrometry (LC-MS) for the quantitative determination of intact peptides have been replacing traditionally used ligand-binding assays, which suffer from cross-reactivity issues. The use of "top-down" analysis of peptides is rapidly increasing since it does not undergo incomplete or non-reproducible digestion like "bottom-up" approaches. However, the low abundance of peptides and their peculiar characteristics, as well as the complexity of biological fluids, make their quantification challenging. Herein, the analytical pitfalls that may be encountered during the development of an LC-MS method for the analysis of intact peptides in biological fluids are discussed. Challenges in the pre-analytical phase, stability after sampling and sample processing, significantly impact the accuracy of peptide quantification. Emerging techniques, such as microextractions, are becoming crucial for improved sample cleanup and enrichment of target analytes. A comparison between the roles of high-resolution and low-resolution mass spectrometry in the quantification of intact peptides, as well as the introduction of supercharging reagents to enhance ionization, will be discussed.
Collapse
Affiliation(s)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Giulia Bertazzo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Cortés-Bautista S, Molins-Legua C, Campíns-Falcó P. Miniaturized liquid chromatography in environmental analysis. A review. J Chromatogr A 2024; 1730:465101. [PMID: 38941795 DOI: 10.1016/j.chroma.2024.465101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The greater and more widespread use of chemicals, either from industry or daily use, is leading to an increase in the discharge of these substances into the environment. Some of these are known to be hazardous to humans and the environment and are regulated, but there is a large and increasing number of substances which pose a potential risk even at low concentration and are not controlled. In this context, new techniques and methodologies are being developed to deal with this concern. Miniaturized liquid chromatography (LC) emerges as a greener and more sensitive alternative to conventional LC. Furthermore, advances in instrument miniaturization have made possible the development of portable LC instrumentation which may become a promising tool for in-situ monitoring. This work reviews the environmental applications of miniaturized LC over the last 15 years and discusses the different instrumentation, including off- and on-line pretreatment techniques, chromatographic conditions, and contributions to the environmental knowledge.
Collapse
Affiliation(s)
- S Cortés-Bautista
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - C Molins-Legua
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - P Campíns-Falcó
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Girel S, Meister I, Glauser G, Rudaz S. Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38952056 DOI: 10.1002/mas.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.
Collapse
Affiliation(s)
- Sergey Girel
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
6
|
Maurer J, Grouzmann E, Eugster PJ. Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123904. [PMID: 37832388 DOI: 10.1016/j.jchromb.2023.123904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The recent increase in peptidomimetic-based medications and the growing interest in peptide hormones has brought new attention to the quantification of peptides for diagnostic purposes. Indeed, the circulating concentrations of peptide hormones in the blood provide a snapshot of the state of the body and could eventually lead to detecting a particular health condition. Although extremely useful, the quantification of such molecules, preferably by liquid chromatography coupled to mass spectrometry, might be quite tricky. First, peptides are subjected to hydrolysis, oxidation, and other post-translational modifications, and, most importantly, they are substrates of specific and nonspecific proteases in biological matrixes. All these events might continue after sampling, changing the peptide hormone concentrations. Second, because they include positively and negatively charged groups and hydrophilic and hydrophobic residues, they interact with their environment; these interactions might lead to a local change in the measured concentrations. A phenomenon such as nonspecific adsorption to lab glassware or materials has often a tremendous effect on the concentration and needs to be controlled with particular care. Finally, the circulating levels of peptides might be low (pico- or femtomolar range), increasing the impact of the aforementioned effects and inducing the need for highly sensitive instruments and well-optimized methods. Thus, despite the extreme diversity of these peptides and their matrixes, there is a common challenge for all the assays: the need to keep concentrations unchanged from sampling to analysis. While significant efforts are often placed on optimizing the analysis, few studies consider in depth the impact of pre-analytical steps on the results. By working through practical examples, this solution-oriented tutorial review addresses typical pre-analytical challenges encountered during the development of a peptide assay from the standpoint of a clinical laboratory. We provide tips and tricks to avoid pitfalls as well as strategies to guide all new developments. Our ultimate goal is to increase pre-analytical awareness to ensure that newly developed peptide assays produce robust and accurate results.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, Casas-Alvarado A, Mota-Rojas D. Mother-Young Bonding: Neurobiological Aspects and Maternal Biochemical Signaling in Altricial Domesticated Mammals. Animals (Basel) 2023; 13:ani13030532. [PMID: 36766424 PMCID: PMC9913798 DOI: 10.3390/ani13030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mother-young bonding is a type of early learning where the female and their newborn recognize each other through a series of neurobiological mechanisms and neurotransmitters that establish a behavioral preference for filial individuals. This process is essential to promote their welfare by providing maternal care, particularly in altricial species, animals that require extended parental care due to their limited neurodevelopment at birth. Olfactory, auditory, tactile, and visual stimuli trigger the neural integration of multimodal sensory and conditioned affective associations in mammals. This review aims to discuss the neurobiological aspects of bonding processes in altricial mammals, with a focus on the brain structures and neurotransmitters involved and how these influence the signaling during the first days of the life of newborns.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán Izcalli 54740, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
8
|
Hering A, Jieu B, Jones A, Muttenthaler M. Approaches to Improve the Quantitation of Oxytocin in Human Serum by Mass Spectrometry. Front Chem 2022; 10:889154. [PMID: 35755255 PMCID: PMC9218718 DOI: 10.3389/fchem.2022.889154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
The neuropeptide oxytocin (OT) regulates several peripheral and central functions and is a molecule of interest in psychiatric diseases such as autism spectrum disorder, schizophrenia, anxiety and depression. The study of OT in human serum samples is however hampered by inconsistent sample preparation and analysis as well as low endogenous blood concentration (1-10 pM). This results in varying reports on OT's blood levels and interpretation of OT's role in different (patho)physiological states. Quantitative mass spectrometry (MS) is a highly promising technology to address this problem but still requires large sample volumes to achieve adequate sensitivity and reliability for the quantitation of compounds at low concentrations. We therefore systematically evaluated sample preparation methods for MS to achieve a reliable sample preparation protocol with good peptide recovery, minimal matrix effects and good overall method efficiency in line with FDA guidelines for bioanalytic method development and validation. Additionally, we investigated a strategy to improve the ionization efficiency of OT by adding charged and/or hydrophobic moieties to OT to improve the lower limit of quantitation. Optimized sample preparation in combination with OT modification with a quaternary pyridinium ion improved the sensitivity of OT by ∼40-fold on a tandem triple quadrupole mass spectrometer (API4000 QTRAP), resulting in a lower limit of quantitation of 5 pM in water (linear range 5 pM - 1 mM) and 2 nM in human serum (linear range 2 nM - 1 mM) compared to 200 pM in water and 86 nM in serum with unmodified OT. This approach and protocol provide a solid foundation towards method development for OT quantitation using MS, which should be of high value for fundamental research as well as clinical monitoring of OT upon drug treatments.
Collapse
Affiliation(s)
- Anke Hering
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Beverly Jieu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Cherepanov SM, Gerasimenko M, Yuhi T, Shabalova A, Zhu H, Yokoyama S, Salmina AB, Munesue SI, Harashima A, Yamamoto Y, Higashida H. An improved sample extraction method reveals that plasma receptor for advanced glycation end-products (RAGE) modulates circulating free oxytocin in mice. Peptides 2021; 146:170649. [PMID: 34543678 DOI: 10.1016/j.peptides.2021.170649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) binds oxytocin (OT) and transports it from the blood to the brain. As RAGE's OT-binding capacity was lost in RAGE knockout (KO) mice, we predicted that circulating concentrations of unbound (free) OT should be elevated compared to wild-type (WT) mice. However, this hypothesis has not yet been investigated. Unfortunately, the evaluation of the dynamics of circulating free and bound plasma OT is unclear in immunoassays, in part because of interference from plasma proteins. A radioimmunoassay (RIA) is considered the gold standard method for overcoming this issue, but is more challenging to implement; thus, commercially available enzyme-linked immunosorbent assays (ELISAs) are more commonly used. Here, we developed a pre-treatment method to remove the interference-causing components from plasma before performing ELISA. The acetonitrile protein precipitation (PPT) approach was reliable, with fewer steps needed to measure free OT concentrations than by solid-phase extraction of plasma samples. PPT-extracted plasma samples yielded higher concentrations of OT in RAGE KO mice than in WT mice using ELISA. After peripheral OT injection, free OT plasma levels spiked immediately then rapidly declined in WT mice, but remained high in KO mice. These results suggest that plasma samples with PPT pre-treatment appear to be superior and that circulating soluble RAGE can most likely serve as a buffer for plasma OT, which indicates a novel physiological function of RAGE.
Collapse
Affiliation(s)
- Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Anna Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hong Zhu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Alla B Salmina
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, 660022, Russia
| | - Shei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.
| |
Collapse
|
10
|
Optimizing oxytocin LC-MS/MS sensitivity by choosing the right column. Pract Lab Med 2021; 27:e00254. [PMID: 34527802 PMCID: PMC8430380 DOI: 10.1016/j.plabm.2021.e00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Objective Sensitivity is often an issue in bioanalytical LC-MS/MS applications. Commonly investigated parameters to improve it include additives to mobile phase, derivatization and sample-preparation. The nature of the column, however, is not frequently evaluated. Design and Methods The sensitivity is compared for 18 different reversed phase and 2 different HILIC columns using 2 different mobile phase compositions. Sensitivity was evaluated in terms of S/N for 1,5 pg oxytocin on column, using a scouting gradient. Results The measured signal to noise ranged from 55 to 1473, indicating a substantial difference in sensitivity. The most sensitive columns were the Synergi Hydro RP (reversed phase) and the Atlantis HILIC (HILIC). Conclusions This study shows that choosing the right column contributes to the sensitivity of the method.
Collapse
|
11
|
Wang Y, Liu X, Liu D, Cheng M, Zhao N, He M, Zhang X. Plasma nontargeted peptidomics discovers potential biomarkers for major depressive disorder. Proteomics Clin Appl 2021; 15:e2000058. [PMID: 34329527 DOI: 10.1002/prca.202000058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE There are great demands for identifying biomarkers of major depressive disorder (MDD), a common mental illness with a prevalence of approximately 6%. Finding potential biomarkers to aid MDD diagnosis is in high demand. EXPERIMENTAL DESIGN In this study, a combination of pretreatment methods named salt-out assisted liquid-liquid extraction (SALLE) and nontargeted peptidomics based on nano-LC-Orbitrap/MS was primarily employed to discover the candidate peptide markers from the plasma of 238 subjects. RESULTS Many peptides were enriched and identified from the plasma, 42 of which showed significant differences between MDD patients and controls by univariate statistical analysis. A binary logistic regression (BLR) model combined four peptide markers (P1, P9, P17, P29) was established, yielding an overall prediction accuracy of 91.7% and 82.2% in the discovery and validation sets, respectively. CONCLUSIONS AND CLINICAL RELEVANCE In conclusion, the excellent performance of the BLR model in both discovery and validation sets demonstrates the robustness of the four peptide markers panel. It is very valuable for quantification of the absolute content of four peptides and further verification.
Collapse
Affiliation(s)
- Yi Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xinxin Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | - Dan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | - Nan Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | - Meixi He
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| |
Collapse
|
12
|
Kerem L, Lawson EA. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int J Mol Sci 2021; 22:7737. [PMID: 34299356 PMCID: PMC8306733 DOI: 10.3390/ijms22147737] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
The hypothalamic peptide oxytocin and its receptor are involved in a range of physiological processes, including parturition, lactation, cell growth, wound healing, and social behavior. More recently, increasing evidence has established the effects of oxytocin on food intake, energy expenditure, and peripheral metabolism. In this review, we provide a comprehensive description of the central oxytocinergic system in which oxytocin acts to shape eating behavior and metabolism. Next, we discuss the peripheral beneficial effects oxytocin exerts on key metabolic organs, including suppression of visceral adipose tissue inflammation, skeletal muscle regeneration, and bone tissue mineralization. A brief summary of oxytocin actions learned from animal models is presented, showing that weight loss induced by chronic oxytocin treatment is related not only to its anorexigenic effects, but also to the resulting increase in energy expenditure and lipolysis. Following an in-depth discussion on the technical challenges related to endogenous oxytocin measurements in humans, we synthesize data related to the association between endogenous oxytocin levels, weight status, metabolic syndrome, and bone health. We then review clinical trials showing that in humans, acute oxytocin administration reduces food intake, attenuates fMRI activation of food motivation brain areas, and increases activation of self-control brain regions. Further strengthening the role of oxytocin in appetite regulation, we review conditions of hypothalamic insult and certain genetic pathologies associated with oxytocin depletion that present with hyperphagia, extreme weight gain, and poor metabolic profile. Intranasal oxytocin is currently being evaluated in human clinical trials to learn whether oxytocin-based therapeutics can be used to treat obesity and its associated sequela. At the end of this review, we address the fundamental challenges that remain in translating this line of research to clinical care.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
13
|
Liu X, Liu G, Chen L, Liu F, Zhang X, Liu D, Liu X, Cheng X, Liu L. Untargeted Metabolomic Characterization of Ovarian Tumors. Cancers (Basel) 2020; 12:cancers12123642. [PMID: 33291756 PMCID: PMC7761955 DOI: 10.3390/cancers12123642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This study utilized untargeted metabolomic techniques to detect urine and plasma metabolites. Using support vector machine algorithm, three models for ovarian tumors diagnosis, benign-malignant distinguishing, early diagnosis and borderline-malignant distinguishing were developed. These models have good classification performance and provided a novel insight for non-invasive diagnosis of ovarian cancer. Abstract Diagnosis of ovarian cancer is difficult due to the lack of clinical symptoms and effective screening algorithms. In this study, we aim to develop models for ovarian cancer diagnosis by detecting metabolites in urine and plasma samples. Ultra-high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) in positive ion mode was used for metabolome quantification in 235 urine samples and 331 plasma samples. Then, Urine and plasma metabolomic profiles were analyzed by univariate and multivariate statistics. Four groups of samples: normal control, benign, borderline and malignant ovarian tumors were enrolled in this study. A total of 1330 features and 1302 features were detected from urine and plasma samples respectively. Based on two urine putative metabolites, five plasma putative metabolites and five urine putative metabolites, three models for distinguishing normal-ovarian tumors, benign-malignant (borderline + malignant) and borderline-malignant ovarian tumors were developed respectively. The AUC (Area Under Curve) values were 0.987, 0876 and 0.943 in discovery set and 0.984, 0.896 and 0.836 in validation set for three models. Specially, the diagnostic model based on 5 plasma putative metabolites had better early-stage diagnosis performance than CA125 alone. The AUC values of the model were 0.847 and 0.988 in discovery and validation set respectively. Our results showed that normal and ovarian tumors have unique metabolic signature in urine and plasma samples, which shed light on the ovarian cancer diagnosis and classification.
Collapse
Affiliation(s)
- Xiaona Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (G.L.)
| | - Gang Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (G.L.)
| | - Lihua Chen
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.C.); (F.L.)
| | - Fei Liu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.C.); (F.L.)
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (X.Z.); (D.L.); (X.L.)
| | - Dan Liu
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (X.Z.); (D.L.); (X.L.)
| | - Xinxin Liu
- CAS Key Laboratory of Separation of Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (X.Z.); (D.L.); (X.L.)
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; (L.C.); (F.L.)
- Correspondence: (X.C.); (L.L.); Tel.: +86-021-64174774 (X.C.)
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (G.L.)
- Data Science, School of (Institute for Big Data), Fudan University, Shanghai 200032, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200032, China
- Faculty of Medical Instrumentation, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Correspondence: (X.C.); (L.L.); Tel.: +86-021-64174774 (X.C.)
| |
Collapse
|
14
|
Sanders KL, Edwards JL. Nano-liquid chromatography-mass spectrometry and recent applications in omics investigations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4404-4417. [PMID: 32901622 PMCID: PMC7530103 DOI: 10.1039/d0ay01194k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is one of the most powerful tools in identifying and quantitating molecular species. Decreasing column diameter from the millimeter to micrometer scale is now a well-developed method which allows for sample limited analysis. Specific fabrication of capillary columns is required for proper implementation and optimization when working in the nanoflow regime. Coupling the capillary column to the mass spectrometer for electrospray ionization (ESI) requires reduction of the subsequent emitter tip. Reduction of column diameter to capillary scale can produce improved chromatographic efficiency and the reduction of emitter tip size increased sensitivity of the electrospray process. This improved sensitivity and ionization efficiency is valuable in analysis of precious biological samples where analytes vary in size, ion affinity, and concentration. In this review we will discuss common approaches and challenges in implementing nLC-MS methods and how the advantages can be leveraged to investigate a wide range of biomolecules.
Collapse
|
15
|
MacLean EL, Wilson SR, Martin WL, Davis JM, Nazarloo HP, Carter CS. Challenges for measuring oxytocin: The blind men and the elephant? Psychoneuroendocrinology 2019; 107:225-231. [PMID: 31163380 PMCID: PMC6634994 DOI: 10.1016/j.psyneuen.2019.05.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Since its discovery more than a century ago, oxytocin has become one of the most intensively studied molecules in behavioral biology. In the last five years, Psychoneuroendocrinology has published more than 500 articles with oxytocin in the title, with many of these articles including measures of endogenous oxytocin concentrations. Despite longstanding interest, methods of measuring endogenous oxytocin are still in active development. The widely varying oxytocin concentrations detected by different approaches to measurement - and lack of correlation among these techniques - has led to controversy and confusion. We identify features of oxytocin that may help to explain why various approaches may be differentially sensitive to diverse conformational states of the oxytocin molecule. We propose that discrepancies in data generated by different methods of measurement are not necessarily an indicator that some methods are valid whereas others are not. Rather, we propose that current challenges in the measurement of oxytocin may be analogous to the parable of the blind men and the elephant, with different methods of sample preparation and measurement being sensitive to different states in which the oxytocin molecule can exist.
Collapse
Affiliation(s)
- Evan L MacLean
- School of Anthropology, Department of Psychology, Cognitive Science Program, University of Arizona, United States.
| | - Steven Ray Wilson
- Department of Chemistry, Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | | | - John M Davis
- Psychiatric Institute, University of Illinois at Chicago, United States
| | | | - C Sue Carter
- The Kinsey Institute, Indiana University, United States
| |
Collapse
|