1
|
Wei Z, Zhong H, Yuan S, Chen C. Daturataturin A Ameliorates Psoriasis by Regulating PPAR Pathway. Biochem Genet 2024; 62:4952-4966. [PMID: 38379039 DOI: 10.1007/s10528-024-10680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a kind of severe immune-mediated systemic skin disorder, becoming a worldwide public health concern. Daturataturin A (DTA), a withanolide compound, exerts excellent anti-inflammatory and anti-proliferative properties. The objective of this study is to elucidate the effect of DTA on psoriasis and its potential mechanism. We established psoriasis-like keratinocytes model by stimulating HaCaT cells with M5 cocktail cytokines including Interleukin (IL)-17A, IL-22, oncostatin M, IL-1α, and tumor necrosis factor-α (TNF-α), followed by intervention with DTA. The potential effects and mechanisms of DTA on psoriasis were evaluated in vitro. DTA was found to be able to inhibit hyperproliferation, promote apoptosis, decrease the release of pro-inflammatory cytokines, downregulate keratin expression, and improve lipid metabolism via regulating the peroxisome proliferator-activated receptor (PPAR) signaling pathway by M5 cocktail cytokines stimulation in HaCaT cells. DTA ameliorated lipid metabolism of psoriasis and exerted the potential anti-psoriasis effects by regulating PPAR pathway in vitro, suggesting that DTA may act as a new therapeutic agent for psoriasis.
Collapse
Affiliation(s)
- Zheng Wei
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Hongfa Zhong
- Trauma Center, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Shanmin Yuan
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Cong Chen
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, No. 16 Meiguang Avenue, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
2
|
Singh R, Sahu N, Tyagi R, Alam P, Akhtar A, Walia R, Chandra A, Madan S. Integrative Network Pharmacology, Molecular Docking, and Dynamics Simulations Reveal the Mechanisms of Cinnamomum tamala in Diabetic Nephropathy Treatment: An In Silico Study. Curr Issues Mol Biol 2024; 46:11868-11889. [PMID: 39590299 PMCID: PMC11592827 DOI: 10.3390/cimb46110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic nephropathy (DN) is a serious diabetes-related complication leading to kidney damage. Cinnamomum tamala (CT), traditionally used in managing diabetes and kidney disorders, has shown potential in treating DN, although its active compounds and mechanisms are not fully understood. This study aims to identify CT's bioactive compounds and explore their therapeutic mechanisms in DN. Active compounds in CT were identified using the Indian Medicinal Plants, Phytochemicals and Therapeutics database, and their potential targets were predicted with PharmMapper. DN-related targets were sourced from GeneCards, and therapeutic targets were identified by intersecting the compound-target and disease-target data. Bioinformatics analyses, including the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment studies, were performed on these targets. A protein-protein interaction network was constructed using STRING and Cytoscape. Molecular docking and dynamics simulations validated the most promising compound-target interactions. Six active compounds in CT were identified, along with 347 potential therapeutic targets, of which 70 were DN-relevant. Key targets like MMP9, EGFR, and AKT1 were highlighted, and the PPAR and PI3K-AKT signaling pathways were identified as the primary mechanisms through which CT may treat DN. CT shows promise in treating DN by modulating key pathways related to cellular development, inflammation, and metabolism.
Collapse
Affiliation(s)
- Rashmi Singh
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India; (R.S.); (R.W.)
- Metro College of Health Sciences & Research, Greater Noida 201310, Uttar Pradesh, India
| | - Nilanchala Sahu
- Sharda School of Pharmacy, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (N.S.); (A.C.)
| | - Rama Tyagi
- Galgotias College of Pharmacy, Greater Noida 201310, Uttar Pradesh, India;
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ali Akhtar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ramanpreet Walia
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India; (R.S.); (R.W.)
| | - Amrish Chandra
- Sharda School of Pharmacy, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (N.S.); (A.C.)
| | - Swati Madan
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India; (R.S.); (R.W.)
| |
Collapse
|
3
|
Zhang T, Zhao X, Zhang X, Liang X, Guan Z, Wang G, Liu G, Wu Z. Research on the metabolic regulation mechanism of Yangyin Qingfei decoction plus in severe pneumonia caused by Mycoplasma pneumoniae in mice. Front Pharmacol 2024; 15:1376812. [PMID: 38694915 PMCID: PMC11061391 DOI: 10.3389/fphar.2024.1376812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: With amazing clinical efficacy, Yangyin Qingfei Decoction Plus (YQDP), a well-known and age-old Chinese compound made of ten Chinese botanical drugs, is utilized in clinical settings to treat a range of respiratory conditions. This study examines the impact of Yangyin Qingfei Decoction (YQDP) on lung tissue metabolic products in severe Mycoplasma pneumoniae pneumonia (SMPP) model mice and examines the mechanism of YQDP in treating MP infection using UPLC-MS/MS technology. Methods: YQDP's chemical composition was ascertained by the use of Agilent 1260 Ⅱ high-performance liquid chromatography. By using a nasal drip of 1010 CCU/mL MP bacterial solution, an SMPP mouse model was created. The lung index, pathology and ultrastructural observation of lung tissue were utilized to assess the therapeutic effect of YQDP in SMPP mice. Lung tissue metabolites were found in the normal group, model group, and YQDP group using UPLC-MS/MS technology. Using an enzyme-linked immunosorbent test (ELISA), the amount of serum inflammatory factors, such as interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α), was found. Additionally, the protein expression of PI3K, P-PI3K, AKT, P-AKT, NF-κB, and P-NF-κB was found using Western blot. Results: The contents of chlorogenic acid, paeoniflorin, forsythrin A, forsythrin, and paeonol in YQDP were 3.480 ± 0.051, 3.255 ± 0.040, 3.612 ± 0.017, 1.757 ± 0.031, and 1.080 ± 0.007 mg/g respectively. YQDP can considerably lower the SMPP mice's lung index (p < 0.05). In the lung tissue of YQDP groups, there has been a decrease (p < 0.05) in the infiltration of inflammatory cells at varying concentrations in the alveoli compared with the model group. A total of 47 distinct metabolites, including choline phosphate, glutamyl lysine, L-tyrosine, 6-thioinosine, Glu Trp, 5-hydroxydecanoate, etc., were linked to the regulation of YQDP, according to metabolomics study. By controlling the metabolism of porphyrins, pyrimidines, cholines, fatty acids, sphingolipids, glycerophospholipids, ferroptosis, steroid hormone biosynthesis, and unsaturated fatty acid biosynthesis, enrichment analysis suggested that YQDP may be used to treat SMPP. YQDP can lower the amount of TNF-α and IL-6 in model group mice as well as downregulate P-PI3K, P-AKT, and P-NF-κB expression (p < 0.05). Conclusion: A specific intervention effect of YQDP is observed in SMPP model mice. Through the PI3K/Akt/NF-κB signaling pathways, YQDP may have therapeutic benefits by regulating the body's metabolism of α-Linoleic acid, sphingolipids, glycerophospholipids, arachidonic acid, and the production of unsaturated fatty acids.
Collapse
Affiliation(s)
- Tianyu Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiyu Zhao
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xining Zhang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiangyu Liang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenglong Guan
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghan Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Guanghua Liu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhenqi Wu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
4
|
Zhang B, Yan G, Li F, Tang Y, Xu G, Zhang Y, Ze K. Qingxiong Ointment and its Active Ingredient, Shikonin Treat Psoriasis through HIF-1 Signaling Pathway. Curr Pharm Des 2024; 30:1927-1938. [PMID: 38835124 DOI: 10.2174/0113816128287142240529120346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Psoriasis is a common chronic inflammatory skin disorder. Qingxiong ointment (QX) is a natural medicinal combination frequently employed in clinical treatment of psoriasis. However, the active ingredients of QX and its precise mechanisms of improving psoriasis remain unclear. This study elucidated the effects of QX on an Imiquimod (IMQ)-induced mouse model of psoriasis while also exploring the regulation of the active ingredient of QX, shikonin, on the HIF-1 signaling pathway in HaCaT cells. METHODS A mouse model of psoriasis was established through topical application of IMQ, and the local therapeutic effect of QX was evaluated using dorsal skin tissue with mouse psoriatic lesion and Psoriasis Area Severity Index (PASI) scores, hematoxylin-eosin (HE) staining, and immunohistochemical staining. Elisa and qPCR were employed to identify changes in the expression of inflammation-related factors in the mouse dorsal skin. Immunofluorescence was used to assess changes in the expression of T cell subsets before and after treatment with various doses of QX. HPLC was used to analyze the content of shikonin, and network pharmacology was employed to analyze the main targets of shikonin. Immunofluorescence was used to identify the effects of shikonin on the HIF-1 signaling pathway in IL6-induced psoriasis HaCaT cells. Finally, qPCR was used to identify the differential expression of the HIF-1 signaling pathway in skin tissues. RESULTS QX significantly reduces PASI scores on the backs of IMQ-induced psoriasis mice. HE staining reveals alleviated epidermal thickness in the QX group. Immunohistochemical analysis shows a significant reduction in ICAM, KI67, and IL17 expression levels in the QX group. Immunofluorescence results indicate that QX can notably decrease the proportions of CD4+ T cells, γδ T cells, and CD8+ T cells while increasing the proportion of Treg cells. Network pharmacology analysis demonstrates that the main targets of shikonin are concentrated in the HIF-1 signaling pathway. Molecular docking results show favorable binding affinity between shikonin and key genes of the HIF-1 signaling pathway. Immunofluorescence results reveal that shikonin significantly reduces p-STAT3, SLC2A1, HIF1α, and NOS2 expression levels. qPCR results show significant downregulation of the HIF-1 signaling pathway at cellular and tissue levels. CONCLUSION Our study revealed that QX can significantly reduce the dorsal inflammatory response in the IMQ-induced psoriasis mouse model. Furthermore, we discovered that its main component, shikonin, exerts its therapeutic effect by diminishing the HIF-1 signaling pathway in HaCaT cells.
Collapse
Affiliation(s)
- Bin Zhang
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Fei Li
- Bozhou City Food and Drug Inspection Center, Bozhou 236800, China
| | - Ye Tang
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Guangyao Xu
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yanan Zhang
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Kan Ze
- Derpartment of Surgery VIII (Dermatology and Sores), Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
5
|
Shi Q, Lin Y, Huang L, Jin S, Huang R, Zhang L, Song C, Xu L, Zhang S. Elucidating the mechanisms underlying the anti-hyperlipidemic effects of Laportea bulbifera using integrated serum metabolomics and network pharmacology. Biomed Chromatogr 2023; 37:e5707. [PMID: 37496197 DOI: 10.1002/bmc.5707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Hyperlipidemia is a chronic metabolic disorder characterized by alterations in lipid metabolism as well as other pathways. Laportea bulbifera, an indigenous medicinal plant of Chinese herbal medicine, exhibits therapeutic effects on hyperlipidemia, but the mechanisms remain unclear. This study investigated the potential mechanisms underlying the anti-hyperlipidemic effects of L. bulbifera using an integrated strategy based on metabolomics and network pharmacology methods that were established to investigate the potential mechanism of anti-hyperlipidemia effect of L. bulbifera. First, the therapeutic effects of L. bulbifera on body weight reduction and biochemical indices were assessed. Next, 18 significant metabolites distinguishing the control and model groups were identified based on serum metabolomics and multivariate analyses. Then, a compound-target network was constructed by linking L. bulbifera and hyperlipidemia using network pharmacology. Three metabolic pathways involved in treating hyperlipidemia were identified. Finally, five crucial targets were selected by constructing a bionetwork starting from the compounds and ending in the metabolites. This study established an integrated strategy based on metabolomics coupled with network pharmacology and revealed the mechanism underlying the protective effects of L. bulbifera against hyperlipidemia for the first time.
Collapse
Affiliation(s)
- Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuqi Lin
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lu Huang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lijun Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shiying Zhang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Sang X, Bi H, Si X, Wang Y, Shi X, Wu F. Efficacy of extracts from Datura Metel L. for Psoriasis: a meta-analysis of case series and single-arm studies. BMC Complement Med Ther 2023; 23:320. [PMID: 37710189 PMCID: PMC10500872 DOI: 10.1186/s12906-023-04159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Datura Metel L. has been used to treat psoriasis in China for a long time. The effect of extracts from Datura Metel L. for Psoriasis has not been previously confirmed. This study aimed to evaluate the efficacy of extracts from Datura Metel L. for patients with psoriasis. METHODS PubMed, Cochrane Library, Embase, and other databases were searched from database inception until to September 1, 2021. A quality assessment and data extraction were performed by 2 independent reviews. We used a random-effects meta-analysis model to estimate the pooled curative effect, pooled odds ratio (OR), and 95% confidence intervals. RESULTS Nine studies were included in Meta-analysis, including a total number of 1778 patients with psoriasis. The case cure rate of Datura Metel L. intravenous therapy was 0.48 (95% CI: 0.33, 0.62) and of Datura Metel L. oral therapy was 0.42 (95% CI: 0.17, 0.68), respectively. The case effective rate of Datura Metel L. intravenous therapy was 0.91 (95% CI: 0.84, 0.97) and of Datura Metel L. oral therapy was 0.94 (95% CI: 0.88, 0.99), respectively. CONCLUSIONS The extracts from Datura Metel L. showed the potential to treat psoriasis, and intravenous therapy might be a promising treatment to cure psoriasis, which is likely affected by selection and publication bias, still need more high quality clinical studies.
Collapse
Affiliation(s)
- Xiaopu Sang
- Longgang Key Laboratory of Chinese Medicine and Immunology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, 518100, China
| | - Huanzhou Bi
- Longgang Key Laboratory of Chinese Medicine and Immunology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, 518100, China
| | - Xinlei Si
- Longgang Key Laboratory of Chinese Medicine and Immunology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, 518100, China
| | - Yihang Wang
- Longgang Key Laboratory of Chinese Medicine and Immunology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, 518100, China
| | - Xianjie Shi
- Longgang Key Laboratory of Chinese Medicine and Immunology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, 518100, China
| | - Fenfang Wu
- Longgang Key Laboratory of Chinese Medicine and Immunology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, 518100, China.
| |
Collapse
|
7
|
Ruksiriwanich W, Linsaenkart P, Muangsanguan A, Sringarm K, Jantrawut P, Arjin C, Sommano SR, Phimolsiripol Y, Barba FJ. Wound Healing Effect of Supercritical Carbon Dioxide Datura metel L. Leaves Extracts: An In Vitro Study of Anti-Inflammation, Cell Migration, MMP-2 Inhibition, and the Modulation of the Sonic Hedgehog Pathway in Human Fibroblasts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2546. [PMID: 37447107 DOI: 10.3390/plants12132546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Datura metel L. (thorn apple) has been used in Thai folk wisdom for wound care. In this study, we chose supercritical carbon dioxide extraction (scCO2) to develop crude extraction from the leaves of the thorn apple. The phytochemical profiles were observed using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). The biological activities of D. metel were performed through antioxidant assays, anti-inflammation based on the Griess reaction, the migration assay, the expression of matrix metalloproteinase-2 (MMP-2), and regulatory genes in fibroblasts. Dm1 and Dm2 extracts were obtained from scCO2 procedures at different pressures of 300 and 500 bar, respectively. Bioactive compounds, including farnesyl acetone, schisanhenol B, and loliolide, were identified in both extracts. The antioxidant properties of both D. metel extracts were comparable to those of l-ascorbic acid in hydrogen peroxide-induced fibroblasts with no significant difference. Additionally, Dm1 and Dm2 significantly inhibited the nitrite production levels of 1.23 ± 0.19 and 1.52 ± 0.05 μM, respectively, against the lipopolysaccharide-treated group (3.82 ± 0.39 μM). Interestingly, Dm1 obviously demonstrated the percentage of wound closure with 58.46 ± 7.61 and 82.62 ± 6.66% after 36 and 48 h of treatment, which were comparable to the commercial deproteinized dialysate from the calf blood extract. Moreover, both extracts were comparable to l-ascorbic acid treatment in their ability to suppress the expression of MMP-2: an enzyme that breaks down collagen. The gene expressions of SHH, SMO, and GLI1 that control the sonic hedgehog pathway were also clearly upregulated by Dm1. Consequently, the scCO2 technique could be applied in D. metel extraction and contribute to potentially effective wound closure.
Collapse
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Francisco J Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
8
|
Islam T, Ara I, Islam T, Sah PK, Almeida RSD, Matias EFF, Ramalho CLG, Coutinho HDM, Islam MT. Ethnobotanical uses and phytochemical, biological, and toxicological profiles of Datura metel L.: A review. Curr Res Toxicol 2023; 4:100106. [PMID: 37228329 PMCID: PMC10203738 DOI: 10.1016/j.crtox.2023.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Datura metel L., a recognized poisonous plant in the Solanaceae family, is widely distributed in the world. Traditionally, D. metel is used in many diseases, including neurological and heart diseases; fever; catarrh; pain; diarrhea; skin diseases; chronic bronchitis; asthma; digestive disorders; and so on. It possesses many important phytochemicals that can be used to treat various types of diseases. This review aims at summarizing the traditional uses, phytochemical, biological, and toxicological profiles of D. metel based on the database reports. For this, an up-to-date (till March 20, 2023) search was made in the databases: PubMed, Google Scholar, Science Direct, Scopus, and MedLine, with relevant keywords for the published evidence. Findings suggest that the plant has many traditional uses, such as a cure for madness, epilepsy, psoriasis, heart diseases, diarrhea, mad dog bites, indigestion, etc. It possesses various important phytochemicals, including withanolides, daturaolone, datumetine, daturglycosides, ophiobolin A, baimantuoluoline A, and many others. D. metel has many important biological activities, including antioxidant, anti-inflammatory, anti-microbial, insecticidal, anti-cancer, anti-diabetic, analgesic, anti-pyretic, neurological, contraceptive, and wound healing capacity. In conclusion, the toxic plant, D. metel, can be considered a potential source of phyto-therapeutic lead compounds.
Collapse
Affiliation(s)
- Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tariqul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Pankaj Kumar Sah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri—URCA, Crato 63105-000, Brazil
| | | | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
9
|
Zhu X, An W, Li X, Zhou B, Li H. Anti-inflammatory effects of Scutellaria baicalensis water extract in LPS-induced THP-1 Macrophages through metabolomics study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Paganelli A, Righi V, Tarentini E, Magnoni C. Current Knowledge in Skin Metabolomics: Updates from Literature Review. Int J Mol Sci 2022; 23:ijms23158776. [PMID: 35955911 PMCID: PMC9369191 DOI: 10.3390/ijms23158776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022] Open
Abstract
Metabolomic profiling is an emerging field consisting of the measurement of metabolites in a biological system. Since metabolites can vary in relation to different stimuli, specific metabolic patterns can be closely related to a pathological process. In the dermatological setting, skin metabolomics can provide useful biomarkers for the diagnosis, prognosis, and therapy of cutaneous disorders. The main goal of the present review is to present a comprehensive overview of the published studies in skin metabolomics. A search for journal articles focused on skin metabolomics was conducted on the MEDLINE, EMBASE, Cochrane, and Scopus electronic databases. Only research articles with electronically available English full text were taken into consideration. Studies specifically focused on cutaneous microbiomes were also excluded from the present search. A total of 97 papers matched all the research criteria and were therefore considered for the present work. Most of the publications were focused on inflammatory dermatoses and immune-mediated cutaneous disorders. Skin oncology also turned out to be a relevant field in metabolomic research. Only a few papers were focused on infectious diseases and rarer genetic disorders. All the major metabolomic alterations published so far in the dermatological setting are described extensively in this review.
Collapse
Affiliation(s)
- Alessia Paganelli
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
- Correspondence: ; Tel.: +39-059-4222347
| | - Valeria Righi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Elisabetta Tarentini
- Servizio Formazione, Ricerca e Innovazione, Modena University Hospital, 41124 Modena, Italy
| | - Cristina Magnoni
- Regenerative and Oncological Dermatological Surgery Unit, Modena University Hospital, 41124 Modena, Italy
| |
Collapse
|
11
|
Joshi MB, Kamath A, Nair AS, Yedehali Thimmappa P, Sriranjini SJ, Gangadharan GG, Satyamoorthy K. Modulation of neutrophil (dys)function by Ayurvedic herbs and its potential influence on SARS-CoV-2 infection. J Ayurveda Integr Med 2022; 13:100424. [PMID: 33746457 PMCID: PMC7962552 DOI: 10.1016/j.jaim.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, traditional medicines of Ayurveda have been in use to manage infectious and non-infectious diseases. The key embodiment of traditional medicines is the holistic system of approach in the management of human diseases. SARS-CoV-2 (COVID-19) infection is an ongoing pandemic, which has emerged as the major health threat worldwide and is causing significant stress, morbidity and mortality. Studies from the individuals with SARS-CoV-2 infection have shown significant immune dysregulation and cytokine overproduction. Neutrophilia and neutrophil to lymphocyte ratio has been correlated to poor outcome due to the disease. Neutrophils, component of innate immune system, upon stimulation expel DNA along with histones and granular proteins to form extracellular traps (NETs). Although, these DNA lattices possess beneficial activity in trapping and eliminating pathogens, NETs may also cause adverse effects by inducing immunothrombosis and tissue damage in diseases including Type 2 Diabetes and atherosclerosis. Tissues of SARS-CoV-2 infected subjects showed microthrombi with neutrophil-platelet infiltration and serum showed elevated NETs components, suggesting large involvement and uncontrolled activation of neutrophils leading to pathogenesis and associated organ damage. Hence, traditional Ayurvedic herbs exhibiting anti-inflammatory and antioxidant properties may act in a manner that might prove beneficial in targeting over-functioning of neutrophils and there by promoting normal immune homeostasis. In the present manuscript, we have reviewed and discussed pathological importance of NETs formation in SARS-CoV-2 infections and discuss how various Ayurvedic herbs can be explored to modulate neutrophil function and inhibit NETs formation in the context of a) anti-microbial activity to enhance neutrophil function, b) immunomodulatory effects to maintain neutrophil mediated immune homeostasis and c) to inhibit NETs mediated thrombosis.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana Kamath
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Sitaram J Sriranjini
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - G G Gangadharan
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
12
|
Li T, Wei Z, Kuang H. UPLC-orbitrap-MS-based metabolic profiling of HaCaT cells exposed to withanolides extracted from Datura metel.L: Insights from an untargeted metabolomics. J Pharm Biomed Anal 2021; 199:113979. [PMID: 33845385 DOI: 10.1016/j.jpba.2021.113979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/25/2023]
Abstract
In recent decades, more and more attention to the withanolides extracted from Datura metel.L has been paid due to their anti-psoriatic effects. Withanolides have also been reported to exhibit anti-inflammatory and anti-proliferative properties. Thus, withanolides have been considered as a promising candidate of anti-psoriatic drug. The aim of this study was to investigated the metabolic network of HaCaT cells after exposure to withanolides to identify anti-psoriatic mechanism induced by withanolides on skin cells. In this experiment, our results demonstrated that exposure to withanolides at concentrations beyond 50 μg/mL inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner. In addition, withanolides-induced reactive oxygen species (ROS) generation and mitochondrial depolarization in HaCaT cells. In this research, ultra-high performance liquid chromatography coupled with orbitrap mass spectrometry (UPLC-orbitrap-MS) method was applied to profile metabolite changes in HaCaT cells exposed to withanolides. In total, significant variations in 38 differential metabolites were identified between withanolides exposure and untreated groups. The exposure of HaCaT cells to withanolides at the dose of 200 μg/mL for 24 h was revealed by the disturbance of energy metabolism, amino acid metabolism, lipid metabolism and nucleic acid metabolism. UPLC-orbitrap-MS-based cell metabolomics provided a comprehensive method for the identification of withanolides' anti-psoriasis mechanisms in vitro. And above metabolic disorders also reflected potential therapeutic targets for treating psoriasis.
Collapse
Affiliation(s)
- Tingting Li
- Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005, China; Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Zheng Wei
- Ganzhou City People's Hospital, 18 Mei-guan Avenue, Ganzhou, 341000, China.
| | - Haixue Kuang
- Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| |
Collapse
|
13
|
Zhu WJ, Li P, Wang L, Xu YC. Hypoxia-inducible factor-1: A potential pharmacological target to manage psoriasis. Int Immunopharmacol 2020; 86:106689. [DOI: 10.1016/j.intimp.2020.106689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 12/16/2022]
|