1
|
Du R, Zhou C, Chen S, Li T, Lin Y, Xu A, Huang Y, Mei H, Huang X, Tan D, Zheng R, Liang C, Cai Y, Shao Y, Zhang W, Liu L, Zeng C. Atypical phenotypes and novel OCRL variations in southern Chinese patients with Lowe syndrome. Pediatr Nephrol 2024; 39:2377-2391. [PMID: 38589698 DOI: 10.1007/s00467-024-06356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Lowe syndrome is characterized by the presence of congenital cataracts, psychomotor retardation, and dysfunctional proximal renal tubules. This study presents a case of an atypical phenotype, investigates the genetic characteristics of eight children diagnosed with Lowe syndrome in southern China, and performs functional analysis of the novel variants. METHODS Whole-exome sequencing was conducted on eight individuals diagnosed with Lowe syndrome from three medical institutions in southern China. Retrospective collection and analysis of clinical and genetic data were performed, and functional analysis was conducted on the five novel variants. RESULTS In our cohort, the clinical symptoms of the eight Lowe syndrome individuals varied. One patient was diagnosed with Lowe syndrome but did not present with congenital cataracts. Common features among all patients included cognitive impairment, short stature, and low molecular weight proteinuria. Eight variations in the OCRL gene were identified, encompassing three previously reported and five novel variations. Among the novel variations, three nonsense mutations were determined to be pathogenic, and two patients harboring novel missense variations of uncertain significance exhibited severe typical phenotypes. Furthermore, all novel variants were associated with altered protein expression levels and impacted primary cilia formation. CONCLUSION This study describes the first case of an atypical Lowe syndrome patient without congenital cataracts in China and performs a functional analysis of novel variants in the OCRL gene, thereby expanding the understanding of the clinical manifestations and genetic diversity associated with Lowe syndrome.
Collapse
Affiliation(s)
- Rong Du
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Chengcheng Zhou
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shehong Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Tong Li
- Department of Pediatric Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Xiaoli Huang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Dongdong Tan
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Ruidan Zheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yanna Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China.
- Department of Endocrinology, Genetic, and Rare Diseases, Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, 545000, China.
| |
Collapse
|
2
|
Yang G, Mack H, Harraka P, Colville D, Savige J. Ocular manifestations of the genetic renal tubulopathies. Ophthalmic Genet 2023; 44:515-529. [PMID: 37702059 DOI: 10.1080/13816810.2023.2253901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The genetic tubulopathies are rare and heterogenous disorders that are often difficult to identify. This study examined the tubulopathy-causing genes for ocular associations that suggested their genetic basis and, in some cases, the affected gene. METHODS Sixty-seven genes from the Genomics England renal tubulopathy panel were reviewed for ocular features, and for retinal expression in the Human Protein Atlas and an ocular phenotype in mouse models in the Mouse Genome Informatics database. The genes resulted in disease affecting the proximal tubules (n = 24); the thick ascending limb of the loop of Henle (n = 10); the distal convoluted tubule (n = 15); or the collecting duct (n = 18). RESULTS Twenty-five of the tubulopathy-associated genes (37%) had ocular features reported in human disease, 49 (73%) were expressed in the retina, although often at low levels, and 16 (24%) of the corresponding mouse models had an ocular phenotype. Ocular abnormalities were more common in genes affected in the proximal tubulopathies (17/24, 71%) than elsewhere (7/43, 16%). They included structural features (coloboma, microphthalmia); refractive errors (myopia, astigmatism); crystal deposition (in oxalosis, cystinosis) and sclerochoroidal calcification (in Bartter, Gitelman syndromes). Retinal atrophy was common in the mitochondrial-associated tubulopathies. Structural abnormalities and crystal deposition were present from childhood, but sclerochoroidal calcification typically occurred after middle age. CONCLUSIONS Ocular abnormalities are uncommon in the genetic tubulopathies but may be helpful in recognizing the underlying genetic disease. The retinal expression and mouse phenotype data suggest that further ocular associations may become apparent with additional reports. Early identification may be necessary to monitor and treat visual complications.
Collapse
Affiliation(s)
- GeFei Yang
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Heather Mack
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Philip Harraka
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Deb Colville
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
3
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
4
|
Mollataheri A, Mojbafan M, Hosseini R, Houman N, Mousavi M, Otoukesh H. A Study on the CLCN5 Gene in Iranian Patients: A Report of Novel and Recurrent Mutations. Nephron Clin Pract 2023; 147:470-477. [PMID: 36646056 DOI: 10.1159/000528344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Dent's disease is an X-linked inherited renal tubular disorder characterized by proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, rickets, and end-stage renal disease. Almost 60% of patients have causative mutations in the CLCN5 gene (Dent 1), and 15% of affected individuals have mutations in the OCRL1 gene (Dent 2). The aims of this study are to identify CLCN5 mutations in Iranian families with Dent's disease and to characterize the associated clinical syndromes. METHODS We studied 14 patients from 13 unrelated Iranian families with a clinical diagnosis of Dent's disease. Proteinuria was detected in all patients. Nephrolithiasis was found in 5 patient, and hematuria in 2 patients. Most of the affected individuals had nephrocalcinosis. PCR-sequencing for the CLCN5 gene was performed in all 14 patients. Next-generation sequencing (NGS) has also been performed in one patient who we did not find causative mutation. RESULTS We identified four different CLCN5 mutations including one missense mutation (c.731C>T), one nonsense mutation (c.100C>T), and two novel mutations, consisting of one frameshift mutation (c.1241_1242dupAA) and one splicing mutation (c.805-2A>G). We also identified one OCRL1 mutation, one splicing mutation (c.1466 + 1G>A), using NGS. CONCLUSION This is the first report to characterize mutations in the CLCN5 gene in Iranian patients with Dent's disease and expands the spectrum of CLCN5 mutations by reporting two novel mutations, c.1241_1242dupAA and c.805-2A>G.
Collapse
Affiliation(s)
- Ali Mollataheri
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Marzieh Mojbafan
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Medical Genetics, Ali-Asghar Children's Hospital, Tehran, Iran
| | - Rozita Hosseini
- Department of Pediatric Nephrology, Ali-Asghar Children's Hospital, Tehran, Iran
| | - Nakisa Houman
- Department of Pediatric Nephrology, Ali-Asghar Children's Hospital, Tehran, Iran
- Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mousavi
- Department of Medical Genetics, Ali-Asghar Children's Hospital, Tehran, Iran
| | - Hasan Otoukesh
- Department of Pediatric Nephrology, Ali-Asghar Children's Hospital, Tehran, Iran
| |
Collapse
|
5
|
Arnett JJ, Li A, Yassin SH, Miller R, Taylor L, Carter CE, Shayan-Tabrizi K, Borooah S. Dent disease presenting with nyctalopia and electroretinographic correlates of vitamin A deficiency. Am J Ophthalmol Case Rep 2022; 29:101781. [PMID: 36578800 PMCID: PMC9791604 DOI: 10.1016/j.ajoc.2022.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose To report a unique case of Dent Disease presenting with nyctalopia associated with vitamin A deficiency and abnormal electroretinogram findings without prior systemic symptomatology. Observations A 16-year-old male presented with a several month history of nyctalopia and peripheral vision deficits. Central visual acuity, anterior and posterior segment examinations, and macular optical coherence tomography were unremarkable. Electroretinogram (ERG) testing revealed a rod-cone dystrophic pattern, with further workup demonstrating serum vitamin A deficiency (VAD). Laboratory evaluation revealed renal dysfunction and proteinuria with a significantly elevated urinary retinol-binding protein (RBP). Kidney biopsy showed glomerular and tubular disease.Genetic screening for inherited renal disease was performed identifying a hemizygous pathogenic variant c.2152C>T (p.Arg718*) in the Chloride Voltage-Gated Channel 5 (CLCN5) gene, confirming the diagnosis of X-linked Dent Disease. Following vitamin A supplementation, our patient reported resolution of nyctalopia and reversal of abnormal ERG findings were demonstrated. Conclusions and Importance To our knowledge, this is the first case in the literature describing Dent disease solely presenting with ophthalmic symptoms of nyctalopia and abnormal electroretinogram findings that later reversed with vitamin A repletion. This case stresses the importance for clinicians to consider renal tubular disorders in the differential for VAD.
Collapse
Affiliation(s)
- Justin J. Arnett
- Viterbi Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Alexa Li
- Viterbi Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Shaden H. Yassin
- Viterbi Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Robin Miller
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, 3020 Children's Way, San Diego, CA, 92123, USA,Department of Pediatrics, University of California, San Diego, 8910 Villa La Jolla Drive, La Jolla, CA, 92037, USA
| | - Lori Taylor
- Coast Pediatrics, Del Mar, 12845 Pointe Del Mar, Suite 200, Del Mar, CA, 92014, USA
| | - Caitlin E. Carter
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, 3020 Children's Way, San Diego, CA, 92123, USA,Department of Pediatrics, University of California, San Diego, 8910 Villa La Jolla Drive, La Jolla, CA, 92037, USA
| | - Katayoon Shayan-Tabrizi
- Department of Pediatric Pathology, Rady Children's Hospital San Diego, 3020 Children's Way, San Diego, CA, 92123, USA
| | - Shyamanga Borooah
- Viterbi Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA,Corresponding author. Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Drosataki E, Maragkou S, Dermitzaki K, Stavrakaki I, Lygerou D, Latsoudis H, Pleros C, Petrakis I, Zaganas I, Stylianou K. Dent-2 disease with a Bartter-like phenotype caused by the Asp631Glu mutation in the OCRL gene. BMC Nephrol 2022; 23:182. [PMID: 35549682 PMCID: PMC9097321 DOI: 10.1186/s12882-022-02812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dent disease is an X-linked disorder characterized by low molecular weight proteinuria (LMWP), hypercalciuria, nephrolithiasis and chronic kidney disease (CKD). It is caused by mutations in the chloride voltage-gated channel 5 (CLCN5) gene (Dent disease-1), or in the OCRL gene (Dent disease-2). It is associated with chronic metabolic acidosis; however metabolic alkalosis has rarely been reported. CASE PRESENTATION We present a family with Dent-2 disease and a Bartter-like phenotype. The main clinical problems observed in the proband included a) primary phosphaturia leading to osteomalacia and stunted growth; b) elevated serum calcitriol levels, leading to hypercalcemia, hypercalciuria, nephrolithiasis and nephrocalcinosis; c) severe salt wasting causing hypotension, hyperaldosteronism, hypokalemia and metabolic alkalosis; d) partial nephrogenic diabetes insipidus attributed to hypercalcemia, hypokalemia and nephrocalcinosis; e) albuminuria, LMWP. Phosphorous repletion resulted in abrupt cessation of hypercalciuria and significant improvement of hypophosphatemia, physical stamina and bone histology. Years later, he presented progressive CKD with nephrotic range proteinuria attributed to focal segmental glomerulosclerosis (FSGS). Targeted genetic analysis for several phosphaturic diseases was unsuccessful. Whole Exome Sequencing (WES) revealed a c.1893C > A variant (Asp631Glu) in the OCRL gene which was co-segregated with the disease in male family members. CONCLUSIONS We present the clinical characteristics of the Asp631Glu mutation in the OCRL gene, presenting as Dent-2 disease with Bartter-like features. Phosphorous repletion resulted in significant improvement of all clinical features except for progressive CKD. Angiotensin blockade improved proteinuria and stabilized kidney function for several years.
Collapse
Affiliation(s)
- Eleni Drosataki
- Nephrology Department, Heraklion University Hospital, Voutes, 71500, Heraklion, Crete, Greece
| | - Sevasti Maragkou
- Nephrology Department, Heraklion University Hospital, Voutes, 71500, Heraklion, Crete, Greece
| | - Kleio Dermitzaki
- Nephrology Department, Heraklion University Hospital, Voutes, 71500, Heraklion, Crete, Greece
| | - Ioanna Stavrakaki
- Nephrology Department, Heraklion University Hospital, Voutes, 71500, Heraklion, Crete, Greece
| | - Dimitra Lygerou
- Nephrology Department, Heraklion University Hospital, Voutes, 71500, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Christos Pleros
- Nephrology Department, Heraklion University Hospital, Voutes, 71500, Heraklion, Crete, Greece
| | - Ioannis Petrakis
- Department of Nephrology, Saarland University Medical Center, Homburg, Germany
| | - Ioannis Zaganas
- Neurogenetics Laboratory Medical School, University of Crete, Heraklion, Greece
| | - Kostas Stylianou
- Nephrology Department, Heraklion University Hospital, Voutes, 71500, Heraklion, Crete, Greece.
| |
Collapse
|
7
|
Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 2022; 18:224-240. [PMID: 34907378 DOI: 10.1038/s41581-021-00513-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Kidney stones (also known as urinary stones or nephrolithiasis) are highly prevalent, affecting approximately 10% of adults worldwide, and the incidence of stone disease is increasing. Kidney stone formation results from an imbalance of inhibitors and promoters of crystallization, and calcium-containing calculi account for over 80% of stones. In most patients, the underlying aetiology is thought to be multifactorial, with environmental, dietary, hormonal and genetic components. The advent of high-throughput sequencing techniques has enabled a monogenic cause of kidney stones to be identified in up to 30% of children and 10% of adults who form stones, with ~35 different genes implicated. In addition, genome-wide association studies have implicated a series of genes involved in renal tubular handling of lithogenic substrates and of inhibitors of crystallization in stone disease in the general population. Such findings will likely lead to the identification of additional treatment targets involving underlying enzymatic or protein defects, including but not limited to those that alter urinary biochemistry.
Collapse
Affiliation(s)
- Prince Singh
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Molecular Biology and Biochemistry, Mayo Clinic, Rochester, MN, USA
| | - David J Sas
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA. .,Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
A case of Dent disease type 2 with large deletion of OCRL diagnosed after close examination of a school urinary test. CEN Case Rep 2022; 11:366-370. [PMID: 35098431 DOI: 10.1007/s13730-022-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022] Open
Abstract
A 7-year-old boy visited our hospital for a detailed examination of proteinuria identified in a school urinary test. He had short stature, misaligned teeth, and mild intellectual disability. A urinary examination identified mild proteinuria and extremely high levels of beta-2 microglobulin. On blood examination, his protein, albumin, and creatinine levels were found to be normal; however, his lactate dehydrogenase and creatinine phosphokinase levels were slightly elevated. Upon histological examination, no abnormalities in glomeruli or tubules were found. Considering these results, we diagnosed our patient with Dent disease type 2 (DD2). Although the whole exome sequencing revealed large deletion of OCRL, which was seen only in Lowe syndrome and not in DD2 previously, our final diagnosis for the patient is DD2. A phenotypic continuum exists between Dent disease and Lowe syndrome, and several factors modify the phenotypes caused by defects in OCRL. Although patients have thus far been diagnosed with DD2 or Lowe syndrome on the basis of their symptoms, accumulation and analysis of cases with OCRL defects may hereafter enable more accurate diagnoses.
Collapse
|
9
|
Zhang J, Zhang C, Gao E, Zhou Q. Next-Generation Sequencing-Based Genetic Diagnostic Strategies of Inherited Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:425-437. [PMID: 34901190 DOI: 10.1159/000519095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND At least 10% of adults and most of the children who receive renal replacement therapy have inherited kidney diseases. These disorders substantially decrease their life quality and have a large effect on the health-care system. Multisystem complications, with typical challenges for rare disorders, including variable phenotypes and fragmented clinical and biological data, make genetic diagnosis of inherited kidney disorders difficult. In current clinical practice, genetic diagnosis is important for clinical management, estimating disease development, and applying personal treatment for patients. SUMMARY Inherited kidney diseases comprise hundreds of different disorders. Here, we have summarized various monogenic kidney disorders. These disorders are caused by mutations in genes coding for a wide range of proteins including receptors, channels/transporters, enzymes, transcription factors, and structural components that might also have a role in extrarenal organs (bone, eyes, brain, skin, ear, etc.). With the development of next-generation sequencing technologies, genetic testing and analysis become more accessible, promoting our understanding of the pathophysiologic mechanisms of inherited kidney diseases. However, challenges exist in interpreting the significance of genetic variants and translating them to guide clinical managements. Alport syndrome is chosen as an example to introduce the practical application of genetic testing and diagnosis on inherited kidney diseases, considering its clinical features, genetic backgrounds, and genetic testing for making a genetic diagnosis. KEY MESSAGES Recent advances in genomics have highlighted the complexity of Mendelian disorders, which is due to allelic heterogeneity (distinct mutations in the same gene produce distinct phenotypes), locus heterogeneity (mutations in distinct genes result in similar phenotypes), reduced penetrance, variable expressivity, modifier genes, and/or environmental factors. Implementation of precision medicine in clinical nephrology can improve the clinical diagnostic rate and treatment efficiency of kidney diseases, which requires a good understanding of genetics for nephrologists.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qing Zhou
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
10
|
Oltrabella F, Jackson-Crawford A, Yan G, Rixham S, Starborg T, Lowe M. IPIP27A cooperates with OCRL to support endocytic traffic in the zebrafish pronephric tubule. Hum Mol Genet 2021; 31:1183-1196. [PMID: 34673953 DOI: 10.1093/hmg/ddab307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023] Open
Abstract
Endocytosis is a fundamentally important process through which material is internalized into cells from the extracellular environment. In the renal proximal tubule, endocytosis of the abundant scavenger receptor megalin and its co-receptor cubilin play a vital role in retrieving low molecular weight proteins from the renal filtrate. Although we know much about megalin and its ligands, the machinery and mechanisms by which the receptor is trafficked through the endosomal system remain poorly defined. In this study, we show that Ipip27A, an interacting partner of the Lowe syndrome protein OCRL, is required for endocytic traffic of megalin within the proximal renal tubule of zebrafish larvae. Knockout of Ipip27A phenocopies the endocytic phenotype seen upon loss of OCRL, with a deficit in uptake of both fluid-phase and protein cargo, which is accompanied by a reduction in megalin abundance and altered endosome morphology. Rescue and co-depletion experiments indicate that Ipip27A functions together with OCRL to support proximal tubule endocytosis. The results therefore identify Ipip27A as a new player in endocytic traffic in the proximal tubule in vivo and support the view that defective endocytosis underlies the renal tubulopathy in Lowe syndrome and Dent-2 disease.
Collapse
Affiliation(s)
- Francesca Oltrabella
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Medical Scientific Liaison - Nephrology, Astellas Pharma, Via Dante, 20123 Milano, Italy
| | - Anthony Jackson-Crawford
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Department of Blood Sciences, Grange University Hospital, Llanyravon, Gwent, NP44 8YN
| | - Guanhua Yan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Sarah Rixham
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tobias Starborg
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
11
|
A 3D Renal Proximal Tubule on Chip Model Phenocopies Lowe Syndrome and Dent II Disease Tubulopathy. Int J Mol Sci 2021; 22:ijms22105361. [PMID: 34069732 PMCID: PMC8161077 DOI: 10.3390/ijms22105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Lowe syndrome and Dent II disease are X-linked monogenetic diseases characterised by a renal reabsorption defect in the proximal tubules and caused by mutations in the OCRL gene, which codes for an inositol-5-phosphatase. The life expectancy of patients suffering from Lowe syndrome is largely reduced because of the development of chronic kidney disease and related complications. There is a need for physiological human in vitro models for Lowe syndrome/Dent II disease to study the underpinning disease mechanisms and to identify and characterise potential drugs and drug targets. Here, we describe a proximal tubule organ on chip model combining a 3D tubule architecture with fluid flow shear stress that phenocopies hallmarks of Lowe syndrome/Dent II disease. We demonstrate the high suitability of our in vitro model for drug target validation. Furthermore, using this model, we demonstrate that proximal tubule cells lacking OCRL expression upregulate markers typical for epithelial–mesenchymal transition (EMT), including the transcription factor SNAI2/Slug, and show increased collagen expression and deposition, which potentially contributes to interstitial fibrosis and disease progression as observed in Lowe syndrome and Dent II disease.
Collapse
|
12
|
Jin YY, Huang LM, Quan XF, Mao JH. Dent disease: classification, heterogeneity and diagnosis. World J Pediatr 2021; 17:52-57. [PMID: 32248351 DOI: 10.1007/s12519-020-00357-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Dent disease is a rare tubulopathy characterized by manifestations of proximal tubular dysfunction, which occurs almost exclusively in males. It mainly presents symptoms in early childhood and may progress to end-stage renal failure between the 3rd and 5th decades of human life. According to its various genetic basis and to clinical signs and symptoms, researchers define two forms of Dent disease (Dent diseases 1 and 2) and suggest that these forms are produced by mutations in the CLCN5 and OCRL genes, respectively. Dent diseases 1 and 2 account for 60% and 15% of all Dent disease cases, and their genetic cause is generally understood. However, the genetic cause of the remaining 25% of Dent disease cases remains unidentified. DATA SOURCES All relevant peer-reviewed original articles published thus far have been screened out from PubMed and have been referenced. RESULTS Genetic testing has been used greatly to identify mutation types of CLCN5 and OCRL gene, and next-generation sequencing also has been used to identify an increasing number of unknown genotypes. Gene therapy may bring new hope to the treatment of Dent disease. The abuse of hormones and immunosuppressive agents for the treatment of Dent disease should be avoided to prevent unnecessary harm to children. CONCLUSIONS The current research progress in classification, genetic heterogeneity, diagnosis, and treatment of Dent disease reviewed in this paper enables doctors and researchers to better understand Dent disease and provides a basis for improved prevention and treatment.
Collapse
Affiliation(s)
- Yan-Yan Jin
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310006, China
| | - Li-Min Huang
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310006, China
| | - Xiao-Fang Quan
- Chigene (Beijing) Translational Medical Research Center Co. Ltd, E2 Biomedical Park, No. 88 Kechuang Sixth Ave, Yizhuang, Beijing, China
| | - Jian-Hua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Chidambaram AC, Krishnamurthy S, Darshith SL, Karunakar P, Deepthi B, Gunasekaran D, Ramamoorthy JG. A 5-year-old boy with refractory rickets, polyuria, and hypokalemic metabolic alkalosis: Answers. Pediatr Nephrol 2021; 36:297-302. [PMID: 32519157 DOI: 10.1007/s00467-020-04616-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Aakash Chandran Chidambaram
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Sriram Krishnamurthy
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India.
| | | | - Pediredla Karunakar
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Bobbity Deepthi
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | - Dhandapany Gunasekaran
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| | | |
Collapse
|
14
|
Huang LM, Mao JH. Glomerular podocyte dysfunction in inherited renal tubular disease. World J Pediatr 2021; 17:227-233. [PMID: 33625696 PMCID: PMC8253710 DOI: 10.1007/s12519-021-00417-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hereditary renal tubular disease can cause hypercalciuria, acid-base imbalance, hypokalemia, hypomagnesemia, rickets, kidney stones, etc. If these diseases are not diagnosed or treated in time, they can cause kidney damage and electrolyte disturbances, which can be detrimental to the maturation and development of the child. Glomerular involvement in renal tubular disease patients has only been considered recently. METHODS We screened 71 papers (including experimental research, clinical research, etc.) about Dent's disease, Gitelman syndrome, and cystinosis from PubMed, and made reference. RESULTS Glomerular disease was initially underestimated among the clinical signs of renal tubular disease or was treated merely as a consequence of the tubular damage. Renal tubular diseases affect glomerular podocytes through certain mechanisms resulting in functional damage, morphological changes, and glomerular lesions. CONCLUSIONS This article focuses on the progress of changes in glomerular podocyte function in Dent disease, Gitelman syndrome, and cystinosis for the purposes of facilitating clinically accurate diagnosis and scientific treatment and improving prognosis.
Collapse
Affiliation(s)
- Li-Min Huang
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou 310006, China
| | - Jian-Hua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou 310006, China.
| |
Collapse
|
15
|
Festa BP, Berquez M, Nieri D, Luciani A. Endolysosomal Disorders Affecting the Proximal Tubule of the Kidney: New Mechanistic Insights and Therapeutics. Rev Physiol Biochem Pharmacol 2021; 185:233-257. [PMID: 33649992 DOI: 10.1007/112_2020_57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial cells that line the proximal tubule of the kidney rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients. To function effectively and to achieve homeostasis, these specialized cells require the sorting and recycling of a wide array of cell surface proteins within the endolysosomal network, including signaling receptors, nutrient transporters, ion channels, and polarity markers. The dysregulation of the endolysosomal system can lead to a generalized proximal tubule dysfunction, ultimately causing severe metabolic complications and kidney disease.In this chapter, we highlight the biological functions of the genes that code endolysosomal proteins from the perspective of understanding - and potentially reversing - the pathophysiology of endolysosomal disorders affecting the proximal tubule of the kidney. These insights might ultimately lead to potential treatments for currently intractable diseases and transform our ability to regulate kidney homeostasis and health.
Collapse
Affiliation(s)
- Beatrice Paola Festa
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Daniela Nieri
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Lemaire M. Novel Fanconi renotubular syndromes provide insights in proximal tubule pathophysiology. Am J Physiol Renal Physiol 2020; 320:F145-F160. [PMID: 33283647 DOI: 10.1152/ajprenal.00214.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The various forms of Fanconi renotubular syndromes (FRTS) offer significant challenges for clinicians and present unique opportunities for scientists who study proximal tubule physiology. This review will describe the clinical characteristics, genetic underpinnings, and underlying pathophysiology of the major forms of FRST. Although the classic forms of FRTS will be presented (e.g., Dent disease or Lowe syndrome), particular attention will be paid to five of the most recently discovered FRTS subtypes caused by mutations in the genes encoding for L-arginine:glycine amidinotransferase (GATM), solute carrier family 34 (type Ii sodium/phosphate cotransporter), member 1 (SLC34A1), enoyl-CoAhydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), hepatocyte nuclear factor 4A (HNF4A), or NADH dehydrogenase complex I, assembly factor 6 (NDUFAF6). We will explore how mutations in these genes revealed unexpected mechanisms that led to compromised proximal tubule functions. We will also describe the inherent challenges associated with gene discovery studies based on findings derived from small, single-family studies by focusing the story of FRTS type 2 (SLC34A1). Finally, we will explain how extensive alternative splicing of HNF4A has resulted in confusion with mutation nomenclature for FRTS type 4.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology and Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Sakakibara N, Nagano C, Ishiko S, Horinouchi T, Yamamura T, Minamikawa S, Shima Y, Nakanishi K, Ishimori S, Morisada N, Iijima K, Nozu K. Comparison of clinical and genetic characteristics between Dent disease 1 and Dent disease 2. Pediatr Nephrol 2020; 35:2319-2326. [PMID: 32683654 DOI: 10.1007/s00467-020-04701-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dent disease is associated with low molecular weight proteinuria and hypercalciuria and caused by pathogenic variants in either of two genes: CLCN5 (Dent disease 1) and OCRL (Dent disease 2). It is generally not accompanied by extrarenal manifestations and it is difficult to distinguish Dent disease 1 from Dent disease 2 without gene testing. We retrospectively compared the characteristics of these two diseases using one of the largest cohorts to date. METHODS We performed gene testing for clinically suspected Dent disease, leading to the genetic diagnosis of 85 males: 72 with Dent disease 1 and 13 with Dent disease 2. A retrospective review of the clinical findings and laboratory data obtained from questionnaires submitted in association with the gene testing was conducted for these cases. RESULTS The following variables had significantly higher levels in Dent disease 2 than in Dent disease 1: height standard deviation score (height SDS), serum creatinine-based estimated GFR (Cr-eGFR) (median: 84 vs. 127 mL/min/1.73 m2, p < 0.01), serum aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), serum lactate dehydrogenase (LDH), serum creatine phosphokinase (CK), serum potassium, serum inorganic phosphorus, serum uric acid, urine protein/creatinine ratio (median: 3.5 vs. 1.6 mg/mg, p < 0.01), and urine calcium/creatinine ratio. There were no significant differences in serum sodium, serum calcium, alkaline phosphatase (ALP), urine β2-microglobulin, incidence of nephrocalcinosis, and prevalence of intellectual disability or autism spectrum disorder. CONCLUSIONS The clinical and laboratory features of Dent disease 1 and Dent disease 2 were shown in this study. Notably, patients with Dent disease 2 showed kidney dysfunction at a younger age, which should provide a clue for the differential diagnosis of these diseases.
Collapse
Affiliation(s)
- Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Pediatrics, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
18
|
Gill J, Wiederkehr MR. A young man with recurrent kidney stones and renal failure. Clin Nephrol Case Stud 2020; 8:85-90. [PMID: 33163328 PMCID: PMC7643200 DOI: 10.5414/cncs110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022] Open
Abstract
Dent disease is an inherited proximal renal tubulopathy leading to low molecular weight proteinuria, hypercalciuria with nephrocalcinosis and nephrolithiasis, and progressive renal failure. Two genetic mutations have been identified. The disease usually presents in childhood or early adult life and may be associated with other proximal tubular defects, which can lead to significant morbidity, especially in children. The disorder can extend to interstitial and glomerular cells, which contributes to progression to end-stage kidney disease. The pathophysiologic process remains incompletely understood, and no specific treatment is available. Dent disease is likely under-recognized. It needs to be included in the differential, especially in young males, presenting with recurrent kidney stones, proteinuria, and impaired renal function.
Collapse
Affiliation(s)
- Jasmeet Gill
- Baylor University Medical Center, Division of Nephrology, Department of Internal Medicine, and
| | - Michael R. Wiederkehr
- Baylor University Medical Center, Division of Nephrology, Department of Internal Medicine, and
- Texas A&M Health Science Center College of Medicine, Dallas Campus, Dallas, TX, USA
| |
Collapse
|
19
|
Perdomo-Ramirez A, Antón-Gamero M, Rizzo DS, Trindade A, Ramos-Trujillo E, Claverie-Martin F. Two new missense mutations in the protein interaction ASH domain of OCRL1 identified in patients with Lowe syndrome. Intractable Rare Dis Res 2020; 9:222-228. [PMID: 33139981 PMCID: PMC7586875 DOI: 10.5582/irdr.2020.03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The oculocerebrorenal syndrome of Lowe is a rare X-linked disease characterized by congenital cataracts, proximal renal tubulopathy, muscular hypotonia and mental impairment. This disease is caused by mutations in the OCRL gene encoding membrane bound inositol polyphosphate 5-phosphatase OCRL1. Here, we examined the OCRL gene of two Lowe syndrome patients and report two new missense mutations that affect the ASH domain involved in protein-protein interactions. Genomic DNA was extracted from peripheral blood of two non-related patients and their relatives. Exons and flanking intronic regions of OCRL were analyzed by direct sequencing. Several bioinformatics tools were used to assess the pathogenicity of the variants. The three-dimensional structure of wild-type and mutant ASH domains was modeled using the online server SWISS-MODEL. Clinical features suggesting the diagnosis of Lowe syndrome were observed in both patients. Genetic analysis revealed two novel missense variants, c.1907T>A (p.V636E) and c.1979A>C (p.H660P) in exon 18 of the OCRL gene confirming the clinical diagnosis in both cases. Variant c.1907T>A (p.V636E) was inherited from the patient's mother, while variant c.1979A>C (p.H660P) seems to have originated de novo. Analysis with bioinformatics tools indicated that both variants are pathogenic. Both amino acid changes affect the structure of the OCRL1 ASH domain. In conclusion, the identification of two novel missense mutations located in the OCRL1 ASH domain may shed more light on the functional importance of this domain. We suggest that p.V636E and p.H660P cause Lowe syndrome by disrupting the interaction of OCRL1 with other proteins or by impairing protein stability.
Collapse
Affiliation(s)
- Ana Perdomo-Ramirez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | - Amelia Trindade
- Departamento de Medicina, Universidade Federal de Sao Carlos, Sao Paulo, Brazil
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Felix Claverie-Martin
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Address correspondence to:Félix Claverie-Martín, Unidad de Investigación, Hospital Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010 Santa Cruz de Tenerife, Spain. E-mail:
| |
Collapse
|
20
|
Okamoto T, Sakakibara N, Nozu K, Takahashi T, Hayashi A, Sato Y, Nagano C, Matsuo M, Iijima K, Manabe A. Onset mechanism of a female patient with Dent disease 2. Clin Exp Nephrol 2020; 24:946-954. [PMID: 32666344 DOI: 10.1007/s10157-020-01926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Approximately 15% of patients with Dent disease have pathogenic variants in the OCRL gene on Xq25-26, a condition that is referred to as Dent disease 2 (Dent-2). Dent-2 patients sometimes show mild extrarenal features of Lowe syndrome, such as mild mental retardation, suggesting that Dent-2 represents a mild form of Lowe syndrome. To date, eight female patients with Lowe syndrome have been reported, but no female Dent-2 patients have been reported. METHODS In this study, we performed genetic testing of the first female Dent-2 patient to detect the presence of an OCRL variant. Aberrant splicing was demonstrated by in vivo, in vitro, and in silico assays, and skewed X-chromosome inactivation (XCI) in our patient and asymptomatic mothers of three Lowe patients with the heterozygous OCRL variant was evaluated by HUMARA assays using genomic DNA and RNA expression analysis. RESULTS Our patient had an OCRL heterozygous intronic variant of c.1603-3G > C in intron 15 that led to a 169-bp insertion in exon 16, yielding the truncating mutation r.1602_1603ins (169) (p.Val535Glyfs*6) in exon 16. HUMARA assays of leukocytes obtained from this patient demonstrated incompletely skewed XCI (not extremely skewed). On the other hand, the asymptomatic mothers of 3 Lowe patients demonstrated random XCI. These results may lead to our patient's Dent-2 phenotype. CONCLUSIONS This is the first report of a female patient clinically and genetically diagnosed with Dent-2 caused by an OCRL heterozygous splicing site variant and skewed XCI. Skewed XCI may be one of the factors associated with phenotypic diversity in female patients with Lowe syndrome and Dent-2.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Sapporo, Hokkaido, 060-8638, Japan.
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Toshiyuki Takahashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Asako Hayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuyuki Sato
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Sapporo, Hokkaido, 060-8638, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Hyogo, 651-2180, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
21
|
Gianesello L, Del Prete D, Anglani F, Calò LA. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon. Hum Genet 2020; 140:401-421. [PMID: 32860533 PMCID: PMC7889681 DOI: 10.1007/s00439-020-02219-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Dent disease is a rare genetic proximal tubulopathy which is under-recognized. Its phenotypic heterogeneity has led to several different classifications of the same disorder, but it is now widely accepted that the triad of symptoms low-molecular-weight proteinuria, hypercalciuria and nephrocalcinosis/nephrolithiasis are pathognomonic of Dent disease. Although mutations on the CLCN5 and OCRL genes are known to cause Dent disease, no such mutations are found in about 25–35% of cases, making diagnosis more challenging. This review outlines current knowledge regarding Dent disease from another perspective. Starting from the history of Dent disease, and reviewing the clinical details of patients with and without a genetic characterization, we discuss the phenotypic and genetic heterogeneity that typifies this disease. We focus particularly on all those confounding clinical signs and symptoms that can lead to a misdiagnosis. We also try to shed light on a concealed aspect of Dent disease. Although it is a proximal tubulopathy, its misdiagnosis may lead to patients undergoing kidney biopsy. In fact, some individuals with Dent disease have high-grade proteinuria, with or without hematuria, as in the clinical setting of glomerulopathy, or chronic kidney disease of uncertain origin. Although glomerular damage is frequently documented in Dent disease patients’ biopsies, there is currently no reliable evidence of renal biopsy being of either diagnostic or prognostic value. We review published histopathology reports of tubular and glomerular damage in these patients, and discuss current knowledge regarding the role of CLCN5 and OCRL genes in glomerular function.
Collapse
Affiliation(s)
- Lisa Gianesello
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| | - Franca Anglani
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy.
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Kidney Histomorphology and Molecular Biology Laboratory, Department of Medicine-DIMED, University of Padua, Via Giustiniani n° 2, 35128, Padua, Italy
| |
Collapse
|
22
|
Incomplete cryptic splicing by an intronic mutation of OCRL in patients with partial phenotypes of Lowe syndrome. J Hum Genet 2020; 65:831-839. [PMID: 32427950 DOI: 10.1038/s10038-020-0773-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/03/2023]
Abstract
Mutations of OCRL cause Lowe syndrome, which is characterised by congenital cataracts, infantile hypotonia with mental retardation, and renal tubular dysfunction and Dent-2 disease, which only affects the kidney. While few patients with an intermediate phenotype between these diseases have been reported, the mechanism underlying variability in the phenotype is unclear. We identified an intronic mutation, c.2257-5G>A, in intron 20 of OCRL in an older brother with atypical Lowe syndrome without eye involvement and a younger brother with renal phenotype alone. This mutation created a splice acceptor motif that was accompanied by a cryptic premature termination codon at the junction of exons 20 and 21. The mutation caused incomplete alternative splicing, which created a small amount of wild-type transcript and a relatively large amount of alternatively spliced transcript with a premature termination codon. In the patients' cells, the alternatively spliced transcript was degraded by nonsense-mediated decay and the wild-type transcript was significantly decreased, but not completely depleted. These findings imply that an intronic mutation creating an incomplete alternative splicing acceptor site results in a relatively low level of wild-type OCRL mRNA expression, leading to partial phenotypes of Lowe syndrome.
Collapse
|
23
|
Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA, Anglani F. From protein uptake to Dent disease: An overview of the CLCN5 gene. Gene 2020; 747:144662. [PMID: 32289351 DOI: 10.1016/j.gene.2020.144662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Proteinuria is a well-known risk factor, not only for renal disorders, but also for several other problems such as cardiovascular diseases and overall mortality. In the kidney, the chloride channel Cl-/H+ exchanger ClC-5 encoded by the CLCN5 gene is actively involved in preventing protein loss. This action becomes evident in patients suffering from the rare proximal tubulopathy Dent disease because they carry a defective ClC-5 due to CLCN5 mutations. In fact, proteinuria is the distinctive clinical sign of Dent disease, and mainly involves the loss of low-molecular-weight proteins. The identification of CLCN5 disease-causing mutations has greatly improved our understanding of ClC-5 function and of the ClC-5-related physiological processes in the kidney. This review outlines current knowledge regarding the CLCN5 gene and its protein product, providing an update on ClC-5 function in tubular and glomerular cells, and focusing on its relationship with proteinuria and Dent disease.
Collapse
Affiliation(s)
- Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| |
Collapse
|
24
|
Güngör T, Eroğlu FK, Yazılıtaş F, Gür G, Çakıcı EK, Ludwig M, Bülbül M. A case of Type 1 Dent disease presenting with isolated persistent proteinuria. Turk Arch Pediatr 2020; 55:72-75. [PMID: 32231453 PMCID: PMC7096570 DOI: 10.5152/turkpediatriars.2018.6540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023]
Abstract
Dent disease is a rare X-linked recessive tubular disorder, characterized by the triad of low molecular-weight proteinuria, hypercalciuria, nephrocalcinosis and/or nephrolithiasis. It is caused by mutations in the CLCN5 gene or OCRL gene. Thirty to 80% of affected males develop end-stage kidney disease between the ages of 30 and 50 years. Some children were reported to present with isolated persistent proteinuria and a part of these patients were diagnosed as having focal segmental glomerulosclerosis with kidney biopsy. Although there is no specific treatment, treatment of proteinuria and hypercalciuria is thought to delay the progression of the disease. For this reason, awareness of the disease findings and early diagnosis are important. In this case report, we present a boy followed-up with isolated persistent proteinuria and then diagnosed as having Dent disease with mutation analysis that showed c.328_330delT (p.Phe110Trpfs27*) in the CLCN5 gene. The importance of researching low-molecular- weight proteinuria and considering Dent disease in the differential diagnosis of children presenting with isolated persistent proteinuria has been emphasized.
Collapse
Affiliation(s)
- Tülin Güngör
- Department of Pediatric Nephrology, Dr. Sami Ulus Training and Research Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Fehime Kara Eroğlu
- Department of Pediatric Nephrology, Dr. Sami Ulus Training and Research Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Fatma Yazılıtaş
- Department of Pediatric Nephrology, Dr. Sami Ulus Training and Research Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Gökçe Gür
- Department of Pediatric Nephrology, Dr. Sami Ulus Training and Research Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Evrim Kargın Çakıcı
- Department of Pediatric Nephrology, Dr. Sami Ulus Training and Research Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Michael Ludwig
- Department of Clinical Chemistry and Pharmacology, Germany Bonn University, Bonn, Germany
| | - Mehmet Bülbül
- Department of Pediatric Nephrology, Dr. Sami Ulus Training and Research Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| |
Collapse
|
25
|
Acosta-Tapia N, Galindo JF, Baldiris R. Insights into the Effect of Lowe Syndrome-Causing Mutation p.Asn591Lys of OCRL-1 through Protein-Protein Interaction Networks and Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:1019-1027. [PMID: 31967472 DOI: 10.1021/acs.jcim.9b01077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inositol polyphosphate 5-phosphatase (OCRL-1) participates in the regulation of multiple cellular processes, through the conversion of phosphatidylinositol 4,5-phosphate to phosphatidylinositol 4-phosphate. Mutations in this protein are related to Lowe syndrome (LS) and Dent-2 disease. In this study, the impact of Lowe syndrome mutations on the interactions of OCRL-1 with other proteins was evaluated through bioinformatic and computational approaches. In the functional analysis of the interaction network of the proteins, we found that the terms of gene ontology (GO) of greater significance were related to the intracellular transport of proteins, the signal transduction mediated by small G proteins and vesicles associated with the Golgi apparatus. From the proteins present in the GO terms of greater significance Rab8a was selected because its interaction facilitates the intracellular distribution of OCRL-1. The mutation p.Asn591Lys, present in the interaction domain of OCRL-1 and Rab8a, was studied using molecular dynamics. The molecular dynamics analysis showed that the presence of this mutation causes changes in the positional fluctuations of the amino acids and affects the flexibility of the protein making the interaction with Rab8a weaker. Rab proteins establish some specific interactions, which are important for the intracellular localization of OCRL-1; therefore, our findings suggest that the phenotype observed in patients with LS, in this case, is due to the destabilizing effect of p.Asn591Lys affecting the localization of OCRL-1 and indirectly its 5-phosphatase activity in the Golgi apparatus, endosomes, and cilia.
Collapse
Affiliation(s)
- Natali Acosta-Tapia
- Programa de Biologı́a, Facultad de Ciencias Exactas y Naturales , Universidad de Cartagena , Cartagena de Indias , Colombia.,Grupo de Investigación CIPTEC, Facultad de Ingenierı́a , Fundación Universitaria Tecnológico Comfenalco , Cartagena de Indias 130015 , Colombia
| | - Johan Fabian Galindo
- Departamento de Quı́mica , Universidad Nacional de Colombia , Bogotá 111321 , Colombia
| | - Rosa Baldiris
- Programa de Biologı́a, Facultad de Ciencias Exactas y Naturales , Universidad de Cartagena , Cartagena de Indias , Colombia.,Grupo de Investigación CIPTEC, Facultad de Ingenierı́a , Fundación Universitaria Tecnológico Comfenalco , Cartagena de Indias 130015 , Colombia
| |
Collapse
|
26
|
Ye Q, Shen Q, Rao J, Zhang A, Zheng B, Liu X, Shen Y, Chen Z, Wu Y, Hou L, Jian S, Wei M, Ma M, Sun S, Li Q, Dang X, Wang Y, Xu H, Mao J. Multicenter study of the clinical features and mutation gene spectrum of Chinese children with Dent disease. Clin Genet 2020; 97:407-417. [PMID: 31674016 DOI: 10.1111/cge.13663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/21/2023]
Abstract
Dent disease is a rare X-linked recessive inherited tubular disease. In this multicenter study, the clinical presentation and genetic background of Chinese children with Dent disease are studied to improve the cognition and diagnostic ability of pediatricians. In this prospective cohort, we described the genotype and phenotype of a national cohort composed of 45 pediatric probands with Dent disease belonging to 45 families from 12 different regions of China recruited from 2014 to 2018 by building up the multicenter registration system. The CLCN5 gene from 32 affected families revealed 28 different mutations. The OCRL gene from 13 affected families revealed 13 different mutations. The incidence of low-molecular-weight proteinuria (LMWP) in both Dent disease type 1 populations and Dent disease type 2 populations was 100.0%; however, the incidence of other manifestations was not high, which was similar to previously reported data. Therefore, LMWP is a key clinical feature that should alert clinicians to the possibility of Dent disease. A high amount of LMWP combined with positive gene test results can be used as the diagnostic criteria for this disease. The diagnostic criteria are helpful in reducing the missed diagnosis of this disease and are beneficial for protecting the renal function of these patients through early diagnosis and early intervention.
Collapse
Affiliation(s)
- Qing Ye
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National clinical research center for child health, Hangzhou, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University Nanjing, China
| | - Xiaorong Liu
- Department of Nephrology, Bejing Children's Hospital Affiliated to Capital University of Medical Science, Beijing, China.,Beijing Children's Key Laboratory of Chronic Kidney Disease and Blood Purification, Beijing, China
| | - Ying Shen
- Department of Nephrology, Bejing Children's Hospital Affiliated to Capital University of Medical Science, Beijing, China.,Beijing Children's Key Laboratory of Chronic Kidney Disease and Blood Purification, Beijing, China
| | - Zhi Chen
- Department of Nephrology, Bejing Children's Hospital Affiliated to Capital University of Medical Science, Beijing, China.,Beijing Children's Key Laboratory of Chronic Kidney Disease and Blood Purification, Beijing, China
| | - Yubing Wu
- Department of Pediatric Nephrology and Rheumatology, Shengfing Hospital of China Medical University, Shenyang, China
| | - Ling Hou
- Department of Pediatric Nephrology and Rheumatology, Shengfing Hospital of China Medical University, Shenyang, China
| | - Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Beijing, China
| | - Min Wei
- Department of Pediatrics, Peking Union Medical College Hospital, Beijing, China
| | - Mingsheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Beijing, China
| | - Shuzhen Sun
- Department of Pediatric, Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital, Jinan, China
| | - Qian Li
- Department of Pediatric, Nephrology, Rheumatism and Immunology, Shandong Provincial Hospital, Jinan, China
| | - Xiqiang Dang
- Department of Pediatric, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pediatric, Xiangya Hospital Central South University, Changsha, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National clinical research center for child health, Hangzhou, China
| | | |
Collapse
|
27
|
Bezdíčka M, Langer J, Háček J, Zieg J. Dent Disease Type 2 as a Cause of Focal Segmental Glomerulosclerosis in a 6-Year-Old Boy: A Case Report. Front Pediatr 2020; 8:583230. [PMID: 33194915 PMCID: PMC7655776 DOI: 10.3389/fped.2020.583230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Dent disease is an X-linked recessive renal tubular disorder characterized by proximal tubule dysfunction. Typical features include low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, rickets, and chronic renal failure. We present a case of a 6-year-old boy with nephrotic proteinuria without hypoalbuminemia or edema. His renal biopsy revealed focal segmental glomerulosclerosis (FSGS), some of the glomeruli were globally sclerotic. Hypercalciuria was present intermittently and urine protein electrophoresis showed low molecular weight protein fraction of 50%. The next generation sequencing identified pathogenic variant in OCRL gene causing Dent disease type 2. We report an uncommon histologic finding of FSGS in Dent disease type 2 and highlight the importance of protein content examination and genetic analysis for the proper diagnosis in these complicated cases.
Collapse
Affiliation(s)
- Martin Bezdíčka
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Jan Langer
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jaromír Háček
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Jakub Zieg
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| |
Collapse
|
28
|
Preston R, Naylor RW, Stewart G, Bierzynska A, Saleem MA, Lowe M, Lennon R. A role for OCRL in glomerular function and disease. Pediatr Nephrol 2020; 35:641-648. [PMID: 31811534 PMCID: PMC7056711 DOI: 10.1007/s00467-019-04317-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Lowe syndrome and Dent-2 disease are caused by mutations in the OCRL gene, which encodes for an inositol 5-phosphatase. The renal phenotype associated with OCRL mutations typically comprises a selective proximal tubulopathy, which can manifest as Fanconi syndrome in the most extreme cases. METHODS Here, we report a 12-year-old male with nephrotic-range proteinuria and focal segmental glomerulosclerosis on renal biopsy. As a glomerular pathology was suspected, extensive investigation of tubular function was not performed. RESULTS Surprisingly, whole exome sequencing identified a genetic variant in OCRL (c1467-2A>G) that introduced a novel splice mutation leading to skipping of exon 15. In situ hybridisation of adult human kidney tissue and zebrafish larvae showed OCRL expression in the glomerulus, supporting a role for OCRL in glomerular function. In cultured podocytes, we found that OCRL associated with the linker protein IPIP27A and CD2AP, a protein that is important for maintenance of the podocyte slit diaphragm. CONCLUSION Taken together, this work suggests a previously under-appreciated role for OCRL in glomerular function and highlights the importance of investigating tubular function in patients with persistent proteinuria.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Graham Stewart
- Renal Department, Ninewells Hospital, Dundee, DD1 9SY, UK
| | | | - Moin A Saleem
- Children's and Academic Renal Unit, University of Bristol, Bristol, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester Academic Health Science Centre, Manchester University Hospital NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
29
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
30
|
Volpatti JR, Al-Maawali A, Smith L, Al-Hashim A, Brill JA, Dowling JJ. The expanding spectrum of neurological disorders of phosphoinositide metabolism. Dis Model Mech 2019; 12:12/8/dmm038174. [PMID: 31413155 PMCID: PMC6737944 DOI: 10.1242/dmm.038174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides (PIPs) are a ubiquitous group of seven low-abundance phospholipids that play a crucial role in defining localized membrane properties and that regulate myriad cellular processes, including cytoskeletal remodeling, cell signaling cascades, ion channel activity and membrane traffic. PIP homeostasis is tightly regulated by numerous inositol kinases and phosphatases, which phosphorylate and dephosphorylate distinct PIP species. The importance of these phospholipids, and of the enzymes that regulate them, is increasingly being recognized, with the identification of human neurological disorders that are caused by mutations in PIP-modulating enzymes. Genetic disorders of PIP metabolism include forms of epilepsy, neurodegenerative disease, brain malformation syndromes, peripheral neuropathy and congenital myopathy. In this Review, we provide an overview of PIP function and regulation, delineate the disorders associated with mutations in genes that modulate or utilize PIPs, and discuss what is understood about gene function and disease pathogenesis as established through animal models of these diseases. Summary: This Review highlights the intersection between phosphoinositides and the enzymes that regulate their metabolism, which together are crucial regulators of myriad cellular processes and neurological disorders.
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Almundher Al-Maawali
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Lindsay Smith
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aqeela Al-Hashim
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Neuroscience, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
31
|
Mondin VE, Ben El Kadhi K, Cauvin C, Jackson-Crawford A, Bélanger E, Decelle B, Salomon R, Lowe M, Echard A, Carréno S. PTEN reduces endosomal PtdIns(4,5)P 2 in a phosphatase-independent manner via a PLC pathway. J Cell Biol 2019; 218:2198-2214. [PMID: 31118240 PMCID: PMC6605811 DOI: 10.1083/jcb.201805155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023] Open
Abstract
This work reveals that the tumor suppressor PTEN acts through a PLC to reduce levels of endosomal PtdIns(4,5)P2, its own enzymatic product. This pathway can be chemically activated to rescue OCRL1 depletion in several disease models of the Lowe syndrome, a rare multisystemic genetic disease. The tumor suppressor PTEN dephosphorylates PtdIns(3,4,5)P3 into PtdIns(4,5)P2. Here, we make the unexpected discovery that in Drosophila melanogaster PTEN reduces PtdIns(4,5)P2 levels on endosomes, independently of its phosphatase activity. This new PTEN function requires the enzymatic action of dPLCXD, an atypical phospholipase C. Importantly, we discovered that this novel PTEN/dPLCXD pathway can compensate for depletion of dOCRL, a PtdIns(4,5)P2 phosphatase. Mutation of OCRL1, the human orthologue of dOCRL, causes oculocerebrorenal Lowe syndrome, a rare multisystemic genetic disease. Both OCRL1 and dOCRL loss have been shown to promote accumulation of PtdIns(4,5)P2 on endosomes and cytokinesis defects. Here, we show that PTEN or dPLCXD overexpression prevents these defects. In addition, we found that chemical activation of this pathway restores normal cytokinesis in human Lowe syndrome cells and rescues OCRL phenotypes in a zebrafish Lowe syndrome model. Our findings identify a novel PTEN/dPLCXD pathway that controls PtdIns(4,5)P2 levels on endosomes. They also point to a potential new strategy for the treatment of Lowe syndrome.
Collapse
Affiliation(s)
- Virginie E Mondin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Khaled Ben El Kadhi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Clothilde Cauvin
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, Centre National de la Recherche Scientifique, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | | | - Emilie Bélanger
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Rémi Salomon
- Institut des Maladies Génétiques Imagine, Hôpital Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, Centre National de la Recherche Scientifique, Paris, France
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada .,Université de Montréal, Département de Pathologie et de Biologie Cellulaire, Montreal, Canada
| |
Collapse
|
32
|
Beara-Lasic L, Cogal A, Mara K, Enders F, Mehta RA, Haskic Z, Furth SL, Trachtman H, Scheinman SJ, Milliner DS, Goldfarb DS, Harris PC, Lieske JC. Prevalence of low molecular weight proteinuria and Dent disease 1 CLCN5 mutations in proteinuric cohorts. Pediatr Nephrol 2019; 35:633-640. [PMID: 30852663 PMCID: PMC6736764 DOI: 10.1007/s00467-019-04210-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Dent disease type 1 (DD1) is a rare X-linked disorder caused mainly by CLCN5 mutations. Patients may present with nephrotic-range proteinuria leading to erroneous diagnosis of focal segmental glomerulosclerosis (FSGS) and unnecessary immunosuppressive treatments. METHODS The following cohorts were screened for CLCN5 mutations: Chronic Kidney Disease in Children (CKiD; n = 112); Multicenter FSGS-Clinical Trial (FSGS-CT) (n = 96), and Novel Therapies for Resistant FSGS Trial (FONT) (n = 30). Urinary α1-microglobulin (α1M), albumin (A), total protein (TP), and creatinine (Cr) were assessed from CKiD subjects (n = 104); DD1 patients (n = 14); and DD1 carriers (DC; n = 8). TP/Cr, α1M/Cr, α1M/TP, and A/TP from the CKiD cohort were compared with DD1 and DC. RESULTS No CLCN5 mutations were detected. TP/Cr was lower in DC and CKiD with tubulointerstitial disease than in DD1 and CKiD with glomerular disease (p < 0.002). α1M/Cr was higher in DD1 than in CKiD and DC (p < 0.001). A/TP was lower in DD1, DC, and CKiD with tubulointerstitial disease and higher in CKiD with glomerular disease (p < 0.001). Thresholds for A/TP of ≤ 0.21 and α1M/Cr of ≥ 120 mg/g (> 13.6 mg/mmol) creatinine were good screens for Dent disease. CONCLUSIONS CLCN5 mutations were not seen in screened CKiD/FSGS cohorts. In our study, a cutoff of TP/Cr > 600 mg/g (> 68 mg/mmol) and A/TP of < 0.3 had a high sensitivity and specificity to distinguish DD1 from both CKiD glomerular and tubulointerstitial cohorts. α1M/Cr ≥ 120 mg/g (> 13.6 mg/mmol) had the highest sensitivity and specificity when differentiating DD1 and studied CKiD populations.
Collapse
Affiliation(s)
- Lada Beara-Lasic
- Nephrology Division, Department of Medicine and Pediatrics, New York University Langone Health and New York University School of Medicine, New York, NY, USA.
- Rare Kidney Stone Consortium, Rochester, USA.
| | - Andrea Cogal
- Rare Kidney Stone Consortium, Rochester, USA
- Division of Nephrology, Department of Medicine and Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Kristin Mara
- Rare Kidney Stone Consortium, Rochester, USA
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Felicity Enders
- Rare Kidney Stone Consortium, Rochester, USA
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ramila A Mehta
- Rare Kidney Stone Consortium, Rochester, USA
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Zejfa Haskic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Susan L Furth
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA, USA
| | - Howard Trachtman
- Nephrology Division, Department of Medicine and Pediatrics, New York University Langone Health and New York University School of Medicine, New York, NY, USA
| | | | - Dawn S Milliner
- Rare Kidney Stone Consortium, Rochester, USA
- Division of Nephrology, Department of Medicine and Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - David S Goldfarb
- Nephrology Division, Department of Medicine and Pediatrics, New York University Langone Health and New York University School of Medicine, New York, NY, USA
- Rare Kidney Stone Consortium, Rochester, USA
| | - Peter C Harris
- Rare Kidney Stone Consortium, Rochester, USA
- Division of Nephrology, Department of Medicine and Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Rare Kidney Stone Consortium, Rochester, USA
- Division of Nephrology, Department of Medicine and Pediatrics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
IPIP27 Coordinates PtdIns(4,5)P 2 Homeostasis for Successful Cytokinesis. Curr Biol 2019; 29:775-789.e7. [PMID: 30799246 PMCID: PMC6408333 DOI: 10.1016/j.cub.2019.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
During cytokinesis, an actomyosin contractile ring drives the separation of the two daughter cells. A key molecule in this process is the inositol lipid PtdIns(4,5)P2, which recruits numerous factors to the equatorial region for contractile ring assembly. Despite the importance of PtdIns(4,5)P2 in cytokinesis, the regulation of this lipid in cell division remains poorly understood. Here, we identify a role for IPIP27 in mediating cellular PtdIns(4,5)P2 homeostasis. IPIP27 scaffolds the inositol phosphatase oculocerebrorenal syndrome of Lowe (OCRL) by coupling it to endocytic BAR domain proteins. Loss of IPIP27 causes accumulation of PtdIns(4,5)P2 on aberrant endomembrane vacuoles, mislocalization of the cytokinetic machinery, and extensive cortical membrane blebbing. This phenotype is observed in Drosophila and human cells and can result in cytokinesis failure. We have therefore identified IPIP27 as a key modulator of cellular PtdIns(4,5)P2 homeostasis required for normal cytokinesis. The results indicate that scaffolding of inositol phosphatase activity is critical for maintaining PtdIns(4,5)P2 homeostasis and highlight a critical role for this process in cell division. IPIP27 scaffolds the inositol phosphatase OCRL via coupling to BAR domain proteins IPIP27 scaffolding of OCRL is critical for cellular PtdIns(4,5)P2 homeostasis IPIP27 is required for cortical actin and membrane stability during cytokinesis IPIP27 function is conserved from flies to humans
Collapse
|
34
|
Abstract
Dent disease is an X-linked form of chronic kidney disease characterized by hypercalciuria, low molecular weight proteinuria, nephrocalcinosis, and proximal tubular dysfunction. Clinical presentation is highly variable. Male patients may present with early-onset rickets, recurrent nephrolithiasis, or insidiously with asymptomatic proteinuria or chronic kidney disease. Mutations in both the CLCN5 and OCRL1 genes have been associated with the Dent phenotype and are now classified as Dent-1 and Dent-2, respectively. This article describes the clinical presentation, laboratory evaluation, genetics, pathophysiology, management, and future therapies of Dent disease.
Collapse
Affiliation(s)
- Abdulla M Ehlayel
- Division of Nephrology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Lawrence Copelovitch
- Division of Nephrology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Zaniew M, Bökenkamp A, Kolbuc M, La Scola C, Baronio F, Niemirska A, Szczepanska M, Bürger J, La Manna A, Miklaszewska M, Rogowska-Kalisz A, Gellermann J, Zampetoglou A, Wasilewska A, Roszak M, Moczko J, Krzemien A, Runowski D, Siten G, Zaluska-Lesniewska I, Fonduli P, Zurrida F, Paglialonga F, Gucev Z, Paripovic D, Rus R, Said-Conti V, Sartz L, Chung WY, Park SJ, Lee JW, Park YH, Ahn YH, Sikora P, Stefanidis CJ, Tasic V, Konrad M, Anglani F, Addis M, Cheong HI, Ludwig M, Bockenhauer D. Long-term renal outcome in children with OCRL mutations: retrospective analysis of a large international cohort. Nephrol Dial Transplant 2018; 33:85-94. [PMID: 27708066 DOI: 10.1093/ndt/gfw350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022] Open
Abstract
Background Lowe syndrome (LS) and Dent-2 disease (DD2) are disorders associated with mutations in the OCRL gene and characterized by progressive chronic kidney disease (CKD). Here, we aimed to investigate the long-term renal outcome and identify potential determinants of CKD and its progression in children with these tubulopathies. Methods Retrospective analyses were conducted of clinical and genetic data in a cohort of 106 boys (LS: 88 and DD2: 18). For genotype-phenotype analysis, we grouped mutations according to their type and localization. To investigate progression of CKD we used survival analysis by Kaplan-Meier method using stage 3 CKD as the end-point. Results Median estimated glomerular filtration rate (eGFR) was lower in the LS group compared with DD2 (58.8 versus 87.4 mL/min/1.73 m2, P < 0.01). CKD stage II-V was found in 82% of patients, of these 58% and 28% had moderate-to-severe CKD in LS and DD2, respectively. Three patients (3%), all with LS, developed stage 5 of CKD. Survival analysis showed that LS was also associated with a faster CKD progression than DD2 (P < 0.01). On multivariate analysis, eGFR was dependent only on age (b = -0.46, P < 0.001). Localization, but not type of mutations, tended to correlate with eGFR. There was also no significant association between presence of nephrocalcinosis, hypercalciuria, proteinuria and number of adverse clinical events and CKD. Conclusions CKD is commonly found in children with OCRL mutations. CKD progression was strongly related to the underlying diagnosis but did not associate with clinical parameters, such as nephrocalcinosis or proteinuria.
Collapse
Affiliation(s)
- Marcin Zaniew
- Children's Hospital, Poznan, Poland.,Polish Registry of Inherited Tubulopathies (POLtube), Polish Society of Pediatric Nephrology, Poland
| | - Arend Bökenkamp
- Department of Pediatrics, VU Medical Center, Amsterdam, The Netherlands
| | | | - Claudio La Scola
- Nephrology and Dialysis Unit, Department of Woman, Child and Urological Diseases, Azienda Ospedaliero-Universitaria 'Sant'Orsola-Malpighi', Bologna, Italy
| | - Federico Baronio
- Endocrinology Unit, Department of Woman, Child and Urological Diseases, Azienda Ospedaliero-Universitaria 'Sant'Orsola-Malpighi', Bologna, Italy
| | - Anna Niemirska
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maria Szczepanska
- Chair and Clinical Department of Pediatrics, SMDZ in Zabrze, SUM in Katowice, Katowice, Poland
| | - Julia Bürger
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Angela La Manna
- Department of Pediatrics, II University of Naples, Naples, Italy
| | - Monika Miklaszewska
- Department of Pediatric Nephrology, Collegium Medicum of the Jagiellonian University, Cracow, Poland
| | - Anna Rogowska-Kalisz
- Department of Pediatrics, Immunology and Nephrology, Polish Mothers Memorial Hospital Research Institute, Lódz, Poland
| | - Jutta Gellermann
- Department of Pediatric Nephrology, Charité Universitätsmedizin Berlin, Charité Children's Hospital, Berlin, Germany
| | | | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Roszak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Moczko
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Dariusz Runowski
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Iga Zaluska-Lesniewska
- Department of Pediatrics, Medical University of Gdansk, Nephrology and Hypertension, Gdansk, Poland
| | | | - Franca Zurrida
- Pediatric Nephrology, Hospital G.Brotzu, Cagliari, Italy
| | - Fabio Paglialonga
- Pediatric Nephrology and Dialysis Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Zoran Gucev
- University Children's Hospital, Medical Faculty Skopje, Skopje, Macedonia
| | - Dusan Paripovic
- Nephrology Department, University Children's Hospital, Belgrade, Serbia
| | - Rina Rus
- Division of Nephrology, University Children's Hospital, Ljubljana, Slovenia
| | | | - Lisa Sartz
- Department of Pediatric and Adolescent Medicine, Skåne University Hospital, Lund, Sweden
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University Busan Paik Hospital, Busan, Korea
| | - Se Jin Park
- Department of Pediatrics, Ajou University Daewoo Hospital, Geoje, Korea
| | - Jung Won Lee
- Department of Pediatrics, Ehwa University Mokdong Hospital, Seoul, Korea
| | - Yong Hoon Park
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Yo Han Ahn
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Przemyslaw Sikora
- Polish Registry of Inherited Tubulopathies (POLtube), Polish Society of Pediatric Nephrology, Poland.,Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | | | - Velibor Tasic
- University Children's Hospital, Medical Faculty Skopje, Skopje, Macedonia
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Franca Anglani
- Laboratory of Histomorphology and Molecular Biology of the Kidney, Department of Medicine, University of Padova, Padova, Italy
| | - Maria Addis
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Detlef Bockenhauer
- University College London, Institute of Child Health and Great Ormond Street Hospital for Children, National Health Service Trust, London, UK
| |
Collapse
|
36
|
Abstract
Phosphoinositides (PIs) play pivotal roles in the regulation of many biological processes. The quality and quantity of PIs is regulated in time and space by the activity of PI kinases and PI phosphatases. The number of PI-metabolizing enzymes exceeds the number of PIs with, in many cases, more than one enzyme controlling the same biochemical step. This would suggest that the PI system has an intrinsic ability to buffer and compensate for the absence of a specific enzymatic activity. However, there are several examples of severe inherited human diseases caused by mutations in one of the PI enzymes, although other enzymes with the same activity are fully functional. The kidney depends strictly on PIs for physiological processes, such as cell polarization, filtration, solute reabsorption, and signal transduction. Indeed, alteration of the PI system in the kidney very often results in pathological conditions, both inherited and acquired. Most of the knowledge of the roles that PIs play in the kidney comes from the study of KO animal models for genes encoding PI enzymes and from the study of human genetic diseases, such as Lowe syndrome/Dent disease 2 and Joubert syndrome, caused by mutations in the genes encoding the PI phosphatases, OCRL and INPP5E, respectively.
Collapse
Affiliation(s)
- Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy .,University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
37
|
Ramos AR, Ghosh S, Erneux C. The impact of phosphoinositide 5-phosphatases on phosphoinositides in cell function and human disease. J Lipid Res 2018; 60:276-286. [PMID: 30194087 DOI: 10.1194/jlr.r087908] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/01/2018] [Indexed: 02/06/2023] Open
Abstract
Phosphoinositides (PIs) are recognized as major signaling molecules in many different functions of eukaryotic cells. PIs can be dephosphorylated by multiple phosphatase activities at the 5-, 4-, and 3- positions. Human PI 5-phosphatases belong to a family of 10 members. Except for inositol polyphosphate 5-phosphatase A, they all catalyze the dephosphorylation of PI(4,5)P2 and/or PI(3,4,5)P3 at the 5- position. PI 5-phosphatases thus directly control the levels of PI(3,4,5)P3 and participate in the fine-tuning regulatory mechanisms of PI(3,4)P2 and PI(4,5)P2 Second messenger functions have been demonstrated for PI(3,4)P2 in invadopodium maturation and lamellipodia formation. PI 5-phosphatases can use several substrates on isolated enzymes, and it has been challenging to establish their real substrate in vivo. PI(4,5)P2 has multiple functions in signaling, including interacting with scaffold proteins, ion channels, and cytoskeleton proteins. PI 5-phosphatase isoenzymes have been individually implicated in human diseases, such as the oculocerebrorenal syndrome of Lowe, through mechanisms that include lipid control. Oncogenic and tumor-suppressive functions of PI 5-phosphatases have also been reported in different cell contexts. The mechanisms responsible for genetic diseases and for oncogenic or tumor-suppressive functions are not fully understood. The regulation of PI 5-phosphatases is thus crucial in understanding cell functions.
Collapse
Affiliation(s)
- Ana Raquel Ramos
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Somadri Ghosh
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
38
|
Kumbar L, Yee J. Nephrocalcinosis: A Diagnostic Conundrum. Am J Kidney Dis 2018; 71:A12-A14. [DOI: 10.1053/j.ajkd.2017.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/24/2017] [Indexed: 11/11/2022]
|
39
|
Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease. Genes (Basel) 2018; 9:genes9010015. [PMID: 29300302 PMCID: PMC5793168 DOI: 10.3390/genes9010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys) generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr) and c.2581G>C; p.(Ala861Pro) abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.
Collapse
|
40
|
Ramos AR, Elong Edimo W, Erneux C. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul 2018; 67:40-48. [PMID: 28916189 DOI: 10.1016/j.jbior.2017.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 05/15/2023]
Abstract
Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration.
Collapse
Affiliation(s)
- Ana Raquel Ramos
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - William's Elong Edimo
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
41
|
Abdalla E, El‐Beheiry A, Dieterich K, Thevenon J, Fauré J, Rendu J. “Lowe syndrome: A particularly severe phenotype without clinical kidney involvement”. Am J Med Genet A 2017; 176:460-464. [DOI: 10.1002/ajmg.a.38572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Ebtesam Abdalla
- Department of Human GeneticsMedical Research InstituteAlexandria UniversityAlexandriaEgypt
| | - Ahmed El‐Beheiry
- Department of RadiologyAlexandria Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Klaus Dieterich
- Département de Génétique et ProcréationCHU Grenoble AlpesUniversité Grenoble AlpesGrenobleFrance
| | - Julien Thevenon
- Département de Génétique et ProcréationCHU Grenoble AlpesUniversité Grenoble AlpesGrenobleFrance
| | - Julien Fauré
- Département de Biochimie Pharmacologie ToxicologieBiochimie et Génétique MoléculaireCentre Hospitalier Universitaire Grenoble AlpesUniversité Grenoble AlpesGrenobleFrance
- Grenoble Institut des NeurosciencesInserm U1216–Eq. 4 C‐MyPathLaTroncheFrance
| | - John Rendu
- Département de Biochimie Pharmacologie ToxicologieBiochimie et Génétique MoléculaireCentre Hospitalier Universitaire Grenoble AlpesUniversité Grenoble AlpesGrenobleFrance
- Grenoble Institut des NeurosciencesInserm U1216–Eq. 4 C‐MyPathLaTroncheFrance
| |
Collapse
|
42
|
van Berkel Y, Ludwig M, van Wijk JAE, Bökenkamp A. Proteinuria in Dent disease: a review of the literature. Pediatr Nephrol 2017; 32:1851-1859. [PMID: 27757584 PMCID: PMC5579149 DOI: 10.1007/s00467-016-3499-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dent disease is a rare X-linked recessive proximal tubulopathy caused by mutations in CLCN5 (Dent-1) or OCRL (Dent-2). As a rule, total protein excretion (TPE) is low in tubular proteinuria compared with glomerular disease. Several authors have reported nephrotic-range proteinuria (NP) and glomerulosclerosis in Dent disease. Therefore, we aimed to analyze protein excretion in patients with documented CLCN5 or OCRL mutations in a systematic literature review. DESIGN PubMed and Embase were searched for cases with documented CLCN5 or OCRL mutations and (semi-)quantitative data on protein excretion. The most reliable data (i.e., TPE > protein-creatinine ratio > Albustix) was used for NP classification. RESULTS Data were available on 148 patients from 47 reports: 126 had a CLCN5 and 22 an OCRLmutation. TPE was not significantly different between both forms (p = 0.11). Fifty-five of 126 (43.7 %) Dent-1 vs 13/22 (59.1 %) Dent-2 patients met the definition of NP (p = 0.25). Serum albumin was normal in all reported cases (24/148). Glomerulosclerosis was noted in 20/32 kidney biopsies and was strongly related to tubulointerstitial fibrosis, but not to kidney function or proteinuria. CONCLUSION More than half of the patients with both forms of Dent disease have NP, and the presence of low molecular weight proteinuria in a patient with NP in the absence of edema and hypoalbuminemia should prompt genetic testing. Even with normal renal function, glomerulosclerosis and tubulointerstitial fibrosis are present in Dent disease. The role of proteinuria in the course of the disease needs to be examined further in longitudinal studies.
Collapse
Affiliation(s)
- Youri van Berkel
- Department of Pediatric Nephrology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Zaniew M, Mizerska-Wasiak M, Załuska-Leśniewska I, Adamczyk P, Kiliś-Pstrusińska K, Haliński A, Zawadzki J, Lipska-Ziętkiewicz BS, Pawlaczyk K, Sikora P, Ludwig M, Szczepańska M. Dent disease in Poland: what we have learned so far? Int Urol Nephrol 2017; 49:2005-2017. [PMID: 28815356 DOI: 10.1007/s11255-017-1676-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Dent disease (DD) is a rare tubulopathy characterized by proximal tubular dysfunction leading to chronic kidney disease (CKD). The aim of the study was to characterize patients with DD in Poland. METHODS A retrospective analysis of a national cohort with genetically confirmed diagnosis. RESULTS Of 24 males, all patients except one carried mutations in the CLCN5 gene; in one patient a mutation in the OCRL gene was disclosed. Molecular diagnosis was delayed 1 year on average (range 0-21 years). The most common features were tubular proteinuria (100%), hypercalciuria (87%), and nephrocalcinosis (56%). CKD (≤stage II) and growth deficiency were found in 45 and 22% of patients, respectively. Over time, a progression of CKD and persistence of growth impairment was noted. Subnephrotic and nephrotic proteinuria (20%) was found in most patients, but tubular proteinuria was assessed in only 67% of patients. In one family steroid-resistant nephrotic syndrome prompted a genetic testing, and reverse phenotyping. Five children (20%) underwent kidney biopsy, and two of them were treated with immunosuppressants. Hydrochlorothiazide and angiotensin-converting enzyme inhibitors were prescribed for a significant proportion of patients (42 and 37.5%, respectively), while supplemental therapy with phosphate, potassium, vitamin D (12.5% each), and alkali (4.2%) was insufficient, when compared to the percentages of patients requiring repletion. CONCLUSIONS We found CLCN5 mutations in the vast majority of Polish patients with DD. Proteinuria was the most constant finding; however, tubular proteins were not assessed commonly, likely leading to delayed molecular diagnosis and misdiagnosis in some patients. More consideration should be given to optimize the therapy.
Collapse
Affiliation(s)
- Marcin Zaniew
- Children's Hospital, ul. Krysiewicza 7/8, 61-825, Poznan, Poland. .,Polish Registry of Inherited Tubulopathies (POLtube), Polish Society of Pediatric Nephrology, Poznan, Poland.
| | | | - Iga Załuska-Leśniewska
- Department of Pediatrics, Nephrology and Hypertension, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Adamczyk
- Department and Clinics of Pediatrics, SMDZ, Medical University of Silesia in Katowice, Zabrze, Poland
| | | | - Adam Haliński
- Department of Urology, Regional Hospital, Nowa Sól, Poland
| | - Jan Zawadzki
- Department of Nephrology and Kidney Transplantation, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata S Lipska-Ziętkiewicz
- Department of Biology and Medical Genetics, Clinical Genetics Unit, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Pawlaczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Przemysław Sikora
- Polish Registry of Inherited Tubulopathies (POLtube), Polish Society of Pediatric Nephrology, Poznan, Poland.,Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Maria Szczepańska
- Department and Clinics of Pediatrics, SMDZ, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
44
|
Abstract
Lowe syndrome is an X-linked disease that is characterized by congenital cataracts, central hypotonia, intellectual disability and renal Fanconi syndrome. The disease is caused by mutations in OCRL, which encodes an inositol polyphosphate 5-phosphatase (OCRL) that acts on phosphoinositides - quantitatively minor constituents of cell membranes that are nonetheless pivotal regulators of intracellular trafficking. In this Review we summarize the considerable progress made over the past decade in understanding the cellular roles of OCRL in regulating phosphoinositide balance along the endolysosomal pathway, a fundamental system for the reabsorption of proteins and solutes by proximal tubular cells. We discuss how studies of OCRL have led to important discoveries about the basic mechanisms of membrane trafficking and describe the key features and limitations of the currently available animal models of Lowe syndrome. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterized by renal Fanconi syndrome in the absence of extrarenal pathologies. Understanding how mutations in OCRL give rise to two clinical entities with differing extrarenal manifestations represents an opportunity to identify molecular pathways that could be targeted to develop treatments for these conditions.
Collapse
|
45
|
Oliveira B, Kleta R, Bockenhauer D, Walsh SB. Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am J Physiol Renal Physiol 2016; 311:F1243-F1252. [DOI: 10.1152/ajprenal.00211.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Nephrocalcinosis describes the ectopic deposition of calcium salts in the kidney parenchyma. Nephrocalcinosis can result from a number of acquired causes but also an even greater number of genetic diseases, predominantly renal but also extrarenal. Here we provide a review of the genetic causes of nephrocalcinosis, along with putative mechanisms, illustrated by human and animal data.
Collapse
Affiliation(s)
- Ben Oliveira
- University College London, Centre for Nephrology, London, United Kingdom
| | - Robert Kleta
- University College London, Centre for Nephrology, London, United Kingdom
| | - Detlef Bockenhauer
- University College London, Centre for Nephrology, London, United Kingdom
| | - Stephen B. Walsh
- University College London, Centre for Nephrology, London, United Kingdom
| |
Collapse
|
46
|
Inoue K, Balkin DM, Liu L, Nandez R, Wu Y, Tian X, Wang T, Nussbaum R, De Camilli P, Ishibe S. Kidney Tubular Ablation of Ocrl/ Inpp5b Phenocopies Lowe Syndrome Tubulopathy. J Am Soc Nephrol 2016; 28:1399-1407. [PMID: 27895154 DOI: 10.1681/asn.2016080913] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022] Open
Abstract
Lowe syndrome and Dent disease are two conditions that result from mutations of the inositol 5-phosphatase oculocerebrorenal syndrome of Lowe (OCRL) and share the feature of impaired kidney proximal tubule function. Genetic ablation of Ocrl in mice failed to recapitulate the human phenotypes, possibly because of the redundant functions of OCRL and its paralog type 2 inositol polyphosphate-5-phosphatase (INPP5B). Germline knockout of both paralogs in mice results in early embryonic lethality. We report that kidney tubule-specific inactivation of Inpp5b on a global Ocrl-knockout mouse background resulted in low molecular weight proteinuria, phosphaturia, and acidemia. At the cellular level, we observed a striking impairment of clathrin-dependent and -independent endocytosis in proximal tubules, phenocopying what has been reported for Dent disease caused by mutations in the gene encoding endosomal proton-chloride exchange transporter 5. These results suggest that the functions of OCRL/INPP5B and proton-chloride exchange transporter 5 converge on shared mechanisms, the impairment of which has a dramatic effect on proximal tubule endocytosis.
Collapse
Affiliation(s)
| | - Daniel M Balkin
- Cell Biology.,Howard Hughes Medical Institute, and.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut
| | - Lijuan Liu
- Cell Biology.,Howard Hughes Medical Institute, and.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut.,Neuroscience, and
| | - Ramiro Nandez
- Cell Biology.,Howard Hughes Medical Institute, and.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut
| | - Yumei Wu
- Cell Biology.,Howard Hughes Medical Institute, and.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut.,Neuroscience, and
| | | | | | - Robert Nussbaum
- Department of Medicine and.,Institute of Human Genetics, University of California, San Francisco, California; and.,Howard Hughes Medical Institute, and
| | - Pietro De Camilli
- Cell Biology, .,Howard Hughes Medical Institute, and.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, Connecticut.,Neuroscience, and
| | - Shuta Ishibe
- Departments of Internal Medicine, .,Cellular and Molecular Physiology
| |
Collapse
|
47
|
Observations of a large Dent disease cohort. Kidney Int 2016; 90:430-439. [DOI: 10.1016/j.kint.2016.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 01/30/2023]
|
48
|
Abstract
The oculocerebrorenal syndrome of Lowe is a rare X-linked multisystemic disorder characterized by the triad of congenital cataracts, intellectual disability, and proximal renal tubular dysfunction. Whereas the ocular manifestations and severe muscular hypotonia are the typical first diagnostic clues apparent at birth, the manifestations of incomplete renal Fanconi syndrome are often recognized only later in life. Other characteristic features are progressive severe growth retardation and behavioral problems, with tantrums. Many patients develop a debilitating arthropathy. Treatment is symptomatic, and the life span rarely exceeds 40 years. The causative oculocerebrorenal syndrome of Lowe gene (OCRL) encodes the inositol polyphosphate 5-phosphatase OCRL-1. OCRL variants have not only been found in classic Lowe syndrome, but also in patients with a predominantly renal phenotype classified as Dent disease type 2 (Dent-2). Recent data indicate that there is a phenotypic continuum between Dent-2 disease and Lowe syndrome, suggesting that there are individual differences in the ability to compensate for the loss of enzyme function. Extensive research has demonstrated that OCRL-1 is involved in multiple intracellular processes involving endocytic trafficking and actin skeleton dynamics. This explains the multi-organ manifestations of the disease. Still, the mechanisms underlying the wide phenotypic spectrum are poorly understood, and we are far from a causative therapy. In this review, we provide an update on clinical and molecular genetic findings in Lowe syndrome and the cellular and physiological functions of OCRL-1.
Collapse
|
49
|
Anglani F, D'Angelo A, Bertizzolo LM, Tosetto E, Ceol M, Cremasco D, Bonfante L, Addis MA, Del Prete D. Nephrolithiasis, kidney failure and bone disorders in Dent disease patients with and without CLCN5 mutations. SPRINGERPLUS 2015; 4:492. [PMID: 26389017 PMCID: PMC4571032 DOI: 10.1186/s40064-015-1294-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022]
Abstract
Dent disease (DD) is a rare X-linked recessive renal tubulopathy characterised by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis and/or nephrolithiasis. DD is caused by mutations in both the CLCN5 and OCRL genes. CLCN5 encodes the electrogenic chloride/proton exchanger ClC-5 which is involved in the tubular reabsorption of albumin and LMW proteins, OCRL encodes the inositol polyphosphate 5-phosphatase, and was initially associated with Lowe syndrome. In approximately 25 % of patients, no CLCN5 and OCRL mutations were detected. The aim of our study was to evaluate whether calcium phosphate metabolism disorders and their clinical complications are differently distributed among DD patients with and without CLCN5 mutations. Sixty-four male subjects were studied and classified into three groups: Group I (with CLCN5 mutations), Group II (without CLCN5 mutations) and Group III (family members with the same CLCN5 mutation). LMWP, hypercalciuria and phosphaturic tubulopathy and the consequent clinical complications nephrocalcinosis, nephrolithiasis, bone disorders, and chronic kidney disease (CKD) were considered present or absent in each patient. We found that the distribution of nephrolithiasis, bone disorders and CKD differs among patients with and without CLCN5 mutations. Only in patients harbouring CLCN5 mutations was age-independent nephrolithiasis associated with hypercalciuria, suggesting that nephrolithiasis is linked to altered proximal tubular function caused by a loss of ClC-5 function, in agreement with ClC-5 KO animal models. Similarly, only in patients harbouring CLCN5 mutations was age-independent kidney failure associated with nephrocalcinosis, suggesting that kidney failure is the consequence of a ClC-5 dysfunction, as in ClC-5 KO animal models. Bone disorders are a relevant feature of DD phenotype, as patients were mainly young males and this complication occurred independently of age. The triad of symptoms, LMWP, hypercalciuria, and nephrocalcinosis, was present in almost all patients with CLCN5 mutations but not in those without CLCN5 mutations. This lack of homogeneity of clinical manifestations suggests that the difference in phenotypes between the two groups might reflect different pathophysiological mechanisms, probably depending on the diverse genes involved. Overall, our results might suggest that in patients without CLCN5 mutations several genes instead of the prospected third DD underpin patients’ phenotypes.
Collapse
Affiliation(s)
- Franca Anglani
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Angela D'Angelo
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Luisa Maria Bertizzolo
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Enrica Tosetto
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Monica Ceol
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Daniela Cremasco
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Luciana Bonfante
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | - Maria Antonietta Addis
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Dorella Del Prete
- Division of Nephrology, Department of Medicine DIMED, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Via Giustiniani n° 2, 35128 Padua, Italy
| | | |
Collapse
|
50
|
Mansour-Hendili L, Blanchard A, Le Pottier N, Roncelin I, Lourdel S, Treard C, González W, Vergara-Jaque A, Morin G, Colin E, Holder-Espinasse M, Bacchetta J, Baudouin V, Benoit S, Bérard E, Bourdat-Michel G, Bouchireb K, Burtey S, Cailliez M, Cardon G, Cartery C, Champion G, Chauveau D, Cochat P, Dahan K, De la Faille R, Debray FG, Dehoux L, Deschenes G, Desport E, Devuyst O, Dieguez S, Emma F, Fischbach M, Fouque D, Fourcade J, François H, Gilbert-Dussardier B, Hannedouche T, Houillier P, Izzedine H, Janner M, Karras A, Knebelmann B, Lavocat MP, Lemoine S, Leroy V, Loirat C, Macher MA, Martin-Coignard D, Morin D, Niaudet P, Nivet H, Nobili F, Novo R, Faivre L, Rigothier C, Roussey-Kesler G, Salomon R, Schleich A, Sellier-Leclerc AL, Soulami K, Tiple A, Ulinski T, Vanhille P, Van Regemorter N, Jeunemaître X, Vargas-Poussou R. Mutation Update of the CLCN5 Gene Responsible for Dent Disease 1. Hum Mutat 2015; 36:743-52. [PMID: 25907713 DOI: 10.1002/humu.22804] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023]
Abstract
Dent disease is a rare X-linked tubulopathy characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressive renal failure, and variable manifestations of other proximal tubule dysfunctions. It often progresses over a few decades to chronic renal insufficiency, and therefore molecular characterization is important to allow appropriate genetic counseling. Two genetic subtypes have been described to date: Dent disease 1 is caused by mutations of the CLCN5 gene, coding for the chloride/proton exchanger ClC-5; and Dent disease 2 by mutations of the OCRL gene, coding for the inositol polyphosphate 5-phosphatase OCRL-1. Herein, we review previously reported mutations (n = 192) and their associated phenotype in 377 male patients with Dent disease 1 and describe phenotype and novel (n = 42) and recurrent mutations (n = 24) in a large cohort of 117 Dent disease 1 patients belonging to 90 families. The novel missense and in-frame mutations described were mapped onto a three-dimensional homology model of the ClC-5 protein. This analysis suggests that these mutations affect the dimerization process, helix stability, or transport. The phenotype of our cohort patients supports and extends the phenotype that has been reported in smaller studies.
Collapse
Affiliation(s)
- Lamisse Mansour-Hendili
- Faculté de Médecine, Université Paris Descartes, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service de Génétique, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Blanchard
- Faculté de Médecine, Université Paris Descartes, Paris, France.,INSERM, UMR970, Paris-Cardiovascular Research Center, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre d'investigation clinique, Hôpital Européen Georges Pompidou, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Nelly Le Pottier
- Assistance Publique-Hôpitaux de Paris, Service de Génétique, Hôpital Européen Georges Pompidou, Paris, France
| | - Isabelle Roncelin
- Assistance Publique-Hôpitaux de Paris, Service de Génétique, Hôpital Européen Georges Pompidou, Paris, France
| | - Stéphane Lourdel
- Sorbonne Universités, UPMC Université, Paris, France.,INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR S1138, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, F-75006, France
| | - Cyrielle Treard
- Assistance Publique-Hôpitaux de Paris, Service de Génétique, Hôpital Européen Georges Pompidou, Paris, France.,INSERM, UMR970, Paris-Cardiovascular Research Center, Paris, France
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile
| | - Ariela Vergara-Jaque
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile
| | - Gilles Morin
- Service de Génétique et Oncogénétique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Estelle Colin
- Département de Biochimie et Génétique, LUNAM Angers, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Muriel Holder-Espinasse
- Département de Génétique, Centre Hospitalier Universitaire de Lille, Lille, France.,Department of Clinical Genetics, Guy's Hospital, London, United Kingdom
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares. Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France
| | - Véronique Baudouin
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Service de Néphrologie, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Stéphane Benoit
- Service de Néphrologie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Etienne Bérard
- Service de Néphrologie pédiatrique, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | - Karim Bouchireb
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Necker-Enfants-malades, Service de Néphrologie Pédiatrique, Paris, France
| | - Stéphane Burtey
- VRCM, centre de néphrologie et transplantation rénale, Aix-Marseille Université, Marseille, France
| | - Mathilde Cailliez
- Assistance Publique Hôpitaux de Marseille, Unité de Néphrologie Pédiatrique, Hôpital La Timone, Marseille, France
| | - Gérard Cardon
- Service de Néphrologie, Centre Hospitalier de Douai, Douai, France
| | - Claire Cartery
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie et dialyse, Hôpital Tenon, Paris, France
| | - Gerard Champion
- Département de Pédiatrie, LUNAM Angers, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Dominique Chauveau
- Centre Hospitalier Universitaire de Toulouse, Département de Néphrologie et Transplantation d'organes, Hôpital Rangueil, Toulouse, France
| | - Pierre Cochat
- Centre de Référence des Maladies Rénales Rares. Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France
| | - Karin Dahan
- Département de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Renaud De la Faille
- Service de Néphrologie Transplantation Dialyse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | | - Laurenne Dehoux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Service de Néphrologie, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Georges Deschenes
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Service de Néphrologie, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Estelle Desport
- Service de Néphrologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Olivier Devuyst
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stella Dieguez
- Nefrologia Infantil, Hospital General de Agudos Dr. Teodoro Álvarez, Buenos Aires, Argentina
| | - Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Michel Fischbach
- Service de Pédiatrie, Centre Hospitalier Universitaire Hautepierre, Strasbourg, France
| | - Denis Fouque
- Departement de Néphrology, Centre Hospitalier Universitaire Lyon Sud, Lyon, France
| | - Jacques Fourcade
- Service de Néphrology, Centre Hospitalier de Chambery, Chambery, France
| | - Hélène François
- Assistance Publique-Hôpitaux de Paris, Hôpital Kremlin Bicêtre, Service de Néphrologie, Le Kremlin-Bicêtre, France
| | - Brigitte Gilbert-Dussardier
- Centre Hospitalier Universitaire de Poitiers, Service de Génétique, EA 3808, Université de Poitiers, Poitiers, France
| | - Thierry Hannedouche
- Hôpitaux Universitaires de Strasbourg, Service de Néphrologie et Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Pascal Houillier
- Faculté de Médecine, Université Paris Descartes, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR S1138, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, F-75006, France.,Assistance Publique Hôpitaux de Paris, Département de Physiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Hassan Izzedine
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Service de Néphrologie, Paris, France
| | - Marco Janner
- Department of Paediatric Endocrinology, Diabetology and Metabolism, University of Berne Children's Hospital, Berne, Switzerland
| | - Alexandre Karras
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Néphrologie, Paris, France
| | - Bertrand Knebelmann
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Necker-Enfants-malades, Service de Néphrologie adulte, Paris, France
| | - Marie-Pierre Lavocat
- Département de Pédiatrie, Centre Hospitalier Universitaire de Saint Etienne, Hôpital Nord, Saint Etienne, France
| | - Sandrine Lemoine
- Hospices Civils de Lyon, Service d'Exploration Fonctionnelle Rénale, Hôpital Edouard-Herriot, Lyon, France
| | - Valérie Leroy
- Hôpital Jeanne de Flandre, Service de Néphrologie Pédiatrique, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Chantal Loirat
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Service de Néphrologie, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Marie-Alice Macher
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Service de Néphrologie, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | | | - Denis Morin
- Unité de Néphrologie Pédiatrique, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Patrick Niaudet
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Necker-Enfants-malades, Service de Néphrologie Pédiatrique, Paris, France
| | - Hubert Nivet
- Service de Néphrologie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - François Nobili
- Unité de Néphrologie Pédiatrie, Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Robert Novo
- Hôpital Jeanne de Flandre, Service de Néphrologie Pédiatrique, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Laurence Faivre
- Centre de Génétique, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Claire Rigothier
- Service de Néphrologie Transplantation Dialyse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | | - Remi Salomon
- Faculté de Médecine, Université Paris Descartes, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Necker-Enfants-malades, Service de Néphrologie Pédiatrique, Paris, France
| | - Andreas Schleich
- Institute of Nephrology Statspital Waid Zuerich, Zuerich, Switzerland
| | - Anne-Laure Sellier-Leclerc
- Centre de Référence des Maladies Rénales Rares. Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France
| | | | - Aurélien Tiple
- Centre Hospitalier Universitaire Gabriel-Montpied Service de Néphrologie, Clermont-Ferrand, France
| | - Tim Ulinski
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Assistance Publique-Hôpitaux de Paris, Service de Néphrologie et Transplantation Rénale, Hôpital Trousseau, Paris, France
| | - Philippe Vanhille
- Centre Hospitalier de Valenciennes, Service de Néphrologie et Médecine Interne, Valenciennes, France
| | - Nicole Van Regemorter
- Université Libre de Bruxelles, Hôpital Erasme Département de Génétique Médicale, Brussels, Belgium
| | - Xavier Jeunemaître
- Faculté de Médecine, Université Paris Descartes, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service de Génétique, Hôpital Européen Georges Pompidou, Paris, France.,INSERM, UMR970, Paris-Cardiovascular Research Center, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Service de Génétique, Hôpital Européen Georges Pompidou, Paris, France.,INSERM, UMR970, Paris-Cardiovascular Research Center, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| |
Collapse
|