1
|
Perez KM, Strobel KM, Hendrixson DT, Brandon O, Hair AB, Workneh R, Abayneh M, Nangia S, Hoban R, Kolnik S, Rent S, Salas A, Ojha S, Valentine GC. Nutrition and the gut-brain axis in neonatal brain injury and development. Semin Perinatol 2024; 48:151927. [PMID: 38897828 DOI: 10.1016/j.semperi.2024.151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Early nutritional exposures, including during embryogenesis and the immediate postnatal period, affect offspring outcomes in both the short- and long-term. Alterations of these modifiable exposures shape the developing gut microbiome, intestinal development, and even neurodevelopmental outcomes. A gut-brain axis exists, and it is intricately connected to early life feeding and nutritional exposures. Here, we seek to discuss the (1) origins of the gut-brain access and relationship with neurodevelopment, (2) components of human milk (HM) beyond nutrition and their role in the developing newborn, and (3) clinical application of nutritional practices, including fluid management and feeding on the development of the gut-brain axis, and long-term neurodevelopmental outcomes. We conclude with a discussion on future directions and unanswered questions that are critical to provide further understanding and insight into how clinicians and healthcare providers can optimize early nutritional practices to ensure children not only survive, but thrive, free of neurodevelopmental impairment.
Collapse
Affiliation(s)
- Krystle M Perez
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Katie M Strobel
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - D Taylor Hendrixson
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Olivia Brandon
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Amy B Hair
- Division of Neonatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Redeat Workneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Mahlet Abayneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sushma Nangia
- Department of Neonatology, Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Rebecca Hoban
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sarah Kolnik
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sharla Rent
- Division of Neonatology, Duke University, Durham, NC, United States of America
| | - Ariel Salas
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gregory C Valentine
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America; Department of Oral Health Sciences, University of Washington, Seattle, WA, United States of America; Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
2
|
Emmanuel C, Oran A, Jensen ET, Fichorova RN, Gower WA, Perrin EM, Sanderson K, South AM, Gogcu S, Shenberger J, Singh R, Makker K, Thompson AL, Santos H, Fry RC, O'Shea TM. Neonatal inflammation and its association with asthma and obesity in late childhood among individuals born extremely preterm. Pediatr Res 2024:10.1038/s41390-024-03325-x. [PMID: 38914762 DOI: 10.1038/s41390-024-03325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/06/2024] [Accepted: 04/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Asthma and obesity are frequent outcomes among individuals born extremely preterm and are associated with decreased lifespan. Neonatal inflammation is associated with chronic neurodevelopmental disorders; however, it is less studied in association with other later childhood chronic disorders in this population. METHODS Fourteen hospitals in 5 U.S. states enrolled 1506 infants born before 28 weeks of gestation in the Extremely Low Gestational Age Newborn cohort in 2004-2014. Neonatal blood spots were collected on postnatal days 1, 7, 14, 21, and 28, and used to measure 14 inflammation-related proteins. Associations were evaluated between high (top quartile) levels of proteins and two chronic health disorders at ages 10 and 15 years: physician-diagnosed asthma and obesity (body mass index ≥95th percentile). RESULTS Few associations were found between high levels of 14 inflammation-related proteins, either on a single day or on multiple days, and either asthma or obesity. Similarly, few associations were found in analyses stratified by sex or presence/absence of prenatal inflammation. CONCLUSIONS In extremely preterm newborns, systemic elevations of inflammation-related proteins during the neonatal period were not associated with childhood asthma and obesity outcomes at 10 or 15 years of age. IMPACT In the large multi-center Extremely Low Gestational Age Newborn (ELGAN) cohort, sustained elevation of neonatal levels of inflammation-related proteins was not consistently associated with asthma or obesity outcomes at 10 or 15 years of age. This finding contrasts with reported associations of perinatal inflammation with obesity at 2 years and neurodevelopmental disorders at 2-15 years in the ELGANs, suggesting that unlike neurodevelopment, peripubertal obesity and asthma may be driven by later childhood exposures. Future research on perinatal mechanisms of childhood asthma and obesity should account for both fetal and later exposures and pathways in addition to inflammation at birth.
Collapse
Affiliation(s)
- Crisma Emmanuel
- University of North Carolina School of Nursing, Chapel Hill, NC, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth T Jensen
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
| | - Raina N Fichorova
- Brigham and Women's Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - William A Gower
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Eliana M Perrin
- Department of Pediatrics, Johns Hopkins University School of Medicine and School of Nursing, Baltimore, MD, USA
| | - Keia Sanderson
- Department of Medicine-Nephrology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew M South
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
- Departments of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Semsa Gogcu
- Departments of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeffrey Shenberger
- Connecticut Children's Hospital, Hartford, CT and University of Connecticut School of Medicine, Farmington, CT, USA
| | - Rachana Singh
- Department of Pediatrics, Tufts University School of Medicine, Boston, MA, USA
| | - Kartikeya Makker
- Department of Pediatrics, Johns Hopkins University School of Medicine and School of Nursing, Baltimore, MD, USA
| | - Amanda L Thompson
- Department of Anthropology, University of North Carolina, Chapel Hill, NC, USA
| | - Hudson Santos
- University of Miami School of Nursing, Miami, FL, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - T M O'Shea
- Brigham and Women's Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Dhillon SK, Lear CA, Davidson JO, Magawa S, Gunn AJ, Bennet L. The neural and cardiovascular effects of exposure of gram-positive bacterial inflammation in preterm fetal sheep. J Cereb Blood Flow Metab 2024; 44:955-969. [PMID: 37824725 PMCID: PMC11318397 DOI: 10.1177/0271678x231197380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 10/14/2023]
Abstract
Perinatal infection or inflammation are associated with adverse neurodevelopmental effects and cardiovascular impairments in preterm infants. Most preclinical studies have examined the effects of gram-negative bacterial inflammation on the developing brain, although gram-positive bacterial infections are a major contributor to adverse outcomes. Killed Su-strain group 3 A streptococcus pyogenes (Picibanil, OK-432) is being used for pleurodesis in fetal hydrothorax/chylothorax. We therefore examined the neural and cardiovascular effects of clinically relevant intra-plural infusions of Picibanil. Chronically instrumented preterm (0.7 gestation) fetal sheep received an intra-pleural injection of low-dose (0.1 mg, n = 8) or high-dose (1 mg, n = 8) Picibanil or saline-vehicle (n = 8). Fetal brains were collected for histology one-week after injection. Picibanil exposure was associated with sustained diffuse white matter inflammation and loss of immature and mature oligodendrocytes and subcortical neurons, and associated loss of EEG power. These neural effects were not dose-dependent. Picibanil was also associated with acute changes in heart rate and attenuation of the maturational increase in mean arterial pressure. Even a single exposure to a low-dose gram-positive bacterial-mediated inflammation during the antenatal period is associated with prolonged changes in vascular and neural function.
Collapse
Affiliation(s)
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Lee AC, Cherkerzian S, Tofail F, Folger LV, Ahmed S, Rahman S, Chowdhury NH, Khanam R, Olson I, Oken E, Fichorova R, Nelson CA, Baqui AH, Inder T. Perinatal inflammation, fetal growth restriction, and long-term neurodevelopmental impairment in Bangladesh. Pediatr Res 2024:10.1038/s41390-024-03101-x. [PMID: 38589559 DOI: 10.1038/s41390-024-03101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND There are limited data on the impact of perinatal inflammation on child neurodevelopment in low-middle income countries and among growth-restricted infants. METHODS Population-based, prospective birth cohort study of 288 infants from July 2016-March 2017 in Sylhet, Bangladesh. Umbilical cord blood was analyzed for interleukin(IL)-1α, IL-1β, IL-6, IL-8, and C-reactive protein(CRP). Child neurodevelopment was assessed at 24 months with Bayley-III Scales of Infant Development. We determined associations between cord blood inflammation and neurodevelopmental outcomes, controlling for potential confounders. RESULTS 248/288 (86%) live born infants were followed until 24 months, among whom 8.9% were preterm and 45.0% small-for-gestational-age(SGA) at birth. Among all infants, elevated concentrations (>75%) of CRP and IL-6 at birth were associated with increased odds of fine motor delay at 24 months; elevated CRP was also associated with lower receptive communication z-scores. Among SGA infants, elevated IL-1α was associated with cognitive delay, IL-8 with language delay, CRP with lower receptive communication z-scores, and IL-1β with lower expressive communication and motor z-scores. CONCLUSIONS In rural Bangladesh, perinatal inflammation was associated with impaired neurodevelopment at 24 months. The associations were strongest among SGA infants and noted across several biomarkers and domains, supporting the neurobiological role of inflammation in adverse fetal development, particularly in the setting of fetal growth restriction. IMPACT Cord blood inflammation was associated with fine motor and language delays at 24 months of age in a community-based cohort in rural Bangladesh. 23.4 million infants are born small-for-gestational-age (SGA) globally each year. Among SGA infants, the associations between cord blood inflammation and adverse outcomes were strong and consistent across several biomarkers and neurodevelopmental domains (cognitive, motor, language), supporting the neurobiological impact of inflammation prominent in growth-restricted infants. Prenatal interventions to prevent intrauterine growth restriction are needed in low- and middle-income countries and may also result in long-term benefits on child development.
Collapse
Affiliation(s)
- Anne Cc Lee
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Sara Cherkerzian
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Fahmida Tofail
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, 1212, Bangladesh
| | - Lian V Folger
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | | | - Sayedur Rahman
- Projahnmo Research Foundation, Banani, Dhaka, 1213, Bangladesh
| | | | - Rasheda Khanam
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ingrid Olson
- Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Emily Oken
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Raina Fichorova
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Charles A Nelson
- Harvard Medical School, Boston, MA, 02115, USA
- Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Graduate School of Education, Boston, MA, 02138, USA
| | - Abdullah H Baqui
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Terrie Inder
- Center for Neonatal Research, Children's Hospital of Orange County, Orange, CA, 92868, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
5
|
Alshamrani KM, Alkenawi AA, Kaifi RE, Alhulil KA, Munshi WM, Alqurayqiri AF, Alshehri FA, Abdulmannan HI, Ghulam EM, Tasslaq SE, Aldhebaib AM. The barriers, motives, perceptions, and attitudes toward research among radiology practitioners and interns in Saudi Arabia: a cross-sectional study. Front Med (Lausanne) 2023; 10:1266285. [PMID: 37877018 PMCID: PMC10593452 DOI: 10.3389/fmed.2023.1266285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Background Research and the use of evidence-based practices are imperative to the advancement of diagnostic imaging modalities. The aim of this study was to assess the perceptions and attitudes of radiology practitioners (i.e., Technicians, Technologists or Specialists, and Senior Specialists) and interns in King Abdulaziz Medical Cities (KAMCs), Kingdom of Saudi Arabia, toward research, and to explore the various barriers and obstacles that hinder their research efforts. Methods A cross-sectional descriptive investigation was carried out from December 2022 to March 2023 among 112-KAMCs' radiology practitioners and interns, using previously developed and validated questionnaire comprised of five distinct sections, each serving a specific purpose, and with a non-probability convenient sampling technique. Descriptive statistics were generated for participants' demographics, and chi-square and fisher's exact tests were used to examine the association between participants' demographics and their involvement in research. Results Among the 137 KAMCs' radiology practitioners and interns who were invited to participate, 112 responded and completed the questionnaire, resulting in an overall response rate of 81.75%. Radiology practitioners and interns from various medical imaging subspecialties were found to be involved in research to the extent of 83%, with nearly half (40.9%) of them have had publications, and 53.3% of these publications being either cross-sectional studies or retrospective clinical studies. A lack of time (66.1%), a lack of a professional supervisor support program (50.9%), and deficiency in research skills (45.5%) were common obstacles that may impede the participants' ability to conduct research. The most common motives for participants to conduct research were the desire to improve their resumes (69.6%), get accepted into postgraduate radiology programs (58%), and improve their research skills (52.7%). Conclusion KAMCs' radiology practitioners and interns have a positive attitude toward performing research. Despite the high percentage (83%) of those involved in research, the number of publications remains low. A crucial step to advancing the profession's evidence base is engaging radiology practitioners and interns in research and encouraging radiology practitioner-led research. The study findings can serve as a valuable basis for designing developmental programs aimed at overcoming research obstacles among healthcare professionals in Saudi Arabia.
Collapse
Affiliation(s)
- Khalid M. Alshamrani
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard—Health Affairs, Jeddah, Saudi Arabia
| | - Abdulkader A. Alkenawi
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard—Health Affairs, Jeddah, Saudi Arabia
| | - Reham E. Kaifi
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard—Health Affairs, Jeddah, Saudi Arabia
| | - Khaled A. Alhulil
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wael M. Munshi
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Abdulaziz F. Alqurayqiri
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Faisal A. Alshehri
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Hawazen I. Abdulmannan
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard—Health Affairs, Jeddah, Saudi Arabia
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Enas M. Ghulam
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard—Health Affairs, Jeddah, Saudi Arabia
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sameer E. Tasslaq
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard—Health Affairs, Jeddah, Saudi Arabia
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al-Ahsa, Saudi Arabia
| | - Ali M. Aldhebaib
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard—Health Affairs, Jeddah, Saudi Arabia
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
O'Shea TM, McGrath M, Aschner JL, Lester B, Santos HP, Marsit C, Stroustrup A, Emmanuel C, Hudak M, McGowan E, Patel S, Fry RC. Environmental influences on child health outcomes: cohorts of individuals born very preterm. Pediatr Res 2023; 93:1161-1176. [PMID: 35948605 PMCID: PMC9363858 DOI: 10.1038/s41390-022-02230-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022]
Abstract
The National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) Program was designed to address solution-oriented research questions about the links between children's early life environment and their risks of pre-, peri-, and post-natal complications, asthma, obesity, neurodevelopmental disorders, and positive health. Children born very preterm are at increased risk for many of the outcomes on which ECHO focuses, but the contributions of environmental factors to this risk are not well characterized. Three ECHO cohorts consist almost exclusively of individuals born very preterm. Data provided to ECHO from cohorts can be used to address hypotheses about (1) differential risks of chronic health and developmental conditions between individuals born very preterm and those born at term; (2) health disparities across social determinants of health; and (3) mechanisms linking early-life exposures and later-life outcomes among individuals born very preterm. IMPACT: The National Institutes of Health's Environmental Influences on Child Health Outcomes Program is conducting solution-oriented research on the links between children's environment and health. Three ECHO cohorts comprise study participants born very preterm; these cohorts have enrolled, to date, 1751 individuals born in 14 states in the U.S. in between April 2002 and March 2020. Extensive data are available on early-life environmental exposures and child outcomes related to neurodevelopment, asthma, obesity, and positive health. Data from ECHO preterm cohorts can be used to address questions about the combined effects of preterm birth and environmental exposures on child health outcomes.
Collapse
Affiliation(s)
- T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Monica McGrath
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Judy L Aschner
- Department of Pediatrics, Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barry Lester
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Annemarie Stroustrup
- Departments of Pediatrics and Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra, Northwell Health, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Crisma Emmanuel
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
| | - Mark Hudak
- Department of Pediatrics, University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Elisabeth McGowan
- Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Simran Patel
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Eaves LA, Enggasser AE, Camerota M, Gogcu S, Gower WA, Hartwell H, Jackson WM, Jensen E, Joseph RM, Marsit CJ, Roell K, Santos HP, Shenberger JS, Smeester L, Yanni D, Kuban KCK, O'Shea TM, Fry RC. CpG methylation patterns in placenta and neonatal blood are differentially associated with neonatal inflammation. Pediatr Res 2023; 93:1072-1084. [PMID: 35764815 PMCID: PMC10289042 DOI: 10.1038/s41390-022-02150-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Infants born extremely premature are at increased risk for health complications later in life for which neonatal inflammation may be a contributing biological driver. Placental CpG methylation provides mechanistic information regarding the relationship between prenatal epigenetic programming, prematurity, neonatal inflammation, and later-in-life health. METHODS We contrasted CpG methylation in the placenta and neonatal blood spots in relation to neonatal inflammation in the Extremely Low Gestational Age Newborn (ELGAN) cohort. Neonatal inflammation status was based on the expression of six inflammation-related proteins, assessed as (1) day-one inflammation (DOI) or (2) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 postnatal weeks). Epigenome-wide CpG methylation was assessed in 354 placental samples and 318 neonatal blood samples. RESULTS Placental CpG methylation displayed the strongest association with ISSI (48 CpG sites) but was not associated with DOI. This was in contrast to CpG methylation in blood spots, which was associated with DOI (111 CpG sites) and not with ISSI (one CpG site). CONCLUSIONS Placental CpG methylation was strongly associated with ISSI, a measure of inflammation previously linked to later-in-life cognitive impairment, while day-one neonatal blood methylation was associated with DOI. IMPACT Neonatal inflammation increases the risk of adverse later-life outcomes, especially in infants born extremely preterm. CpG methylation in the placenta and neonatal blood spots were evaluated in relation to neonatal inflammation assessed via circulating proteins as either (i) day-one inflammation (DOI) or (ii) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 weeks). Tissue specificity was observed in epigenetic-inflammatory relationships: placental CpG methylation was associated with ISSI, neonatal blood CpG methylation was associated with DOI. Supporting the placental origins of disease framework, placental epigenetic patterns are associated with a propensity for ISSI in neonates.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam E Enggasser
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Semsa Gogcu
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - William A Gower
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wesley M Jackson
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth Jensen
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Nursing & Health Studies, University of Miami, Miami, FL, USA
| | - Jeffrey S Shenberger
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diana Yanni
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Karl C K Kuban
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Boston University Medical Center, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Abstract
Individuals born extremely preterm (before 28 weeks of gestation) comprise only about 0.7% of births in the United States and an even lower proportion in other high resource countries. However, these individuals account for a disproportionate number of children with cerebral palsy, intellectual deficit, autism spectrum disorder, attention deficit hyperactivity disorder, and epilepsy. This review describes two large multiple center cohorts comprised of individuals born extremely preterm: the EPICURE cohort, recruited 1995 in the United Kingdom and the Republic of Ireland, and the Extremely Low Gestational Age Newborn (ELGAN), recruited 2002-2004 in five states in the United States. The primary focus of these studies has been neurodevelopmental disorders, but also of interest are growth, respiratory illness, and parent- and self-reported global health and well-being. Both of these studies indicate that among individuals born extremely preterm the risks of most neurodevelopmental disorders are increased. Early life factors that contribute to this risk include perinatal brain damage, some of which can be identified using neonatal head ultrasound, bronchopulmonary dysplasia, and neonatal systemic inflammation. Prenatal factors, particularly the family's socioeconomic position, also appear to contribute to risk. For most adverse outcomes, the risk is higher in males. Young adults born extremely preterm who have neurodevelopmental impairment, as compared to those without such impairment, rate their quality of life lower. However, young adults born extremely preterm who do not have neurodevelopmental impairments rate their quality of life as being similar to that of young adults born at term. Finally, we summarize the current state of interventions designed to improve the life course of extremely premature infants, with particular focus on efforts to prevent premature birth and on postnatal efforts to prevent adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Genevieve L Taylor
- Genevieve L Taylor MD: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine
| | - T Michael O'Shea
- T. Michael O'Shea, MD, MPH: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine.
| |
Collapse
|
9
|
Bach AM, Xie W, Piazzoli L, Jensen SKG, Afreen S, Haque R, Petri WA, Nelson CA. Systemic inflammation during the first year of life is associated with brain functional connectivity and future cognitive outcomes. Dev Cogn Neurosci 2022; 53:101041. [PMID: 34973509 PMCID: PMC8728426 DOI: 10.1016/j.dcn.2021.101041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/09/2021] [Accepted: 11/27/2021] [Indexed: 01/01/2023] Open
Abstract
The first years of life are a sensitive period of rapid neural and immune system development vulnerable to the impact of adverse experiences. Several studies support inflammation as a consequence of various adversities and an exposure negatively associated with developmental outcomes. The mechanism by which systemic inflammation may affect brain development and later cognitive outcomes remains unclear. In this longitudinal cohort study, we examine the associations between recurrent systemic inflammation, defined as C-reactive protein elevation on ≥ 2 of 4 measurements across the first year of life, electroencephalography (EEG) functional connectivity (FC) at 36 months, and composite cognitive outcomes at 3, 4, and 5 years among 122 children living in a limited-resource setting in Dhaka, Bangladesh. Recurrent systemic inflammation during the first year of life is significantly negatively associated with cognitive outcomes at 3, 4, and 5 years, after accounting for stunting and family care indicators (a measure of stimulation in the home environment). Recurrent systemic inflammation is significantly positively associated with parietal-occipital FC in the Beta band at 36 months, which in turn is significantly negatively associated with composite cognitive scores at 3 and 4 years. However, FC does not mediate the relationship between recurrent systemic inflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Ashley M Bach
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard T.H. Chan School of Public Health, USA
| | - Wanze Xie
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Laura Piazzoli
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard Medical School, USA
| | | | - Sajia Afreen
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - William A Petri
- Division of Infectious Diseases, University of Virginia School of Medicine, USA
| | - Charles A Nelson
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, USA; Harvard Medical School, USA; Harvard Graduate School of Education, USA.
| |
Collapse
|
10
|
Cochran DM, Jensen ET, Frazier JA, Jalnapurkar I, Kim S, Roell KR, Joseph RM, Hooper SR, Santos HP, Kuban KCK, Fry RC, O’Shea TM. Association of prenatal modifiable risk factors with attention-deficit hyperactivity disorder outcomes at age 10 and 15 in an extremely low gestational age cohort. Front Hum Neurosci 2022; 16:911098. [PMID: 36337853 PMCID: PMC9630552 DOI: 10.3389/fnhum.2022.911098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background The increased risk of developing attention-deficit hyperactivity disorder (ADHD) in extremely preterm infants is well-documented. Better understanding of perinatal risk factors, particularly those that are modifiable, can inform prevention efforts. Methods We examined data from the Extremely Low Gestational Age Newborns (ELGAN) Study. Participants were screened for ADHD at age 10 with the Child Symptom Inventory-4 (N = 734) and assessed at age 15 with a structured diagnostic interview (MINI-KID) to evaluate for the diagnosis of ADHD (N = 575). We studied associations of pre-pregnancy maternal body mass index (BMI), pregestational and/or gestational diabetes, maternal smoking during pregnancy (MSDP), and hypertensive disorders of pregnancy (HDP) with 10-year and 15-year ADHD outcomes. Relative risks were calculated using Poisson regression models with robust error variance, adjusted for maternal age, maternal educational status, use of food stamps, public insurance status, marital status at birth, and family history of ADHD. We defined ADHD as a positive screen on the CSI-4 at age 10 and/or meeting DSM-5 criteria at age 15 on the MINI-KID. We evaluated the robustness of the associations to broadening or restricting the definition of ADHD. We limited the analysis to individuals with IQ ≥ 70 to decrease confounding by cognitive functioning. We evaluated interactions between maternal BMI and diabetes status. We assessed for mediation of risk increase by alterations in inflammatory or neurotrophic protein levels in the first week of life. Results Elevated maternal BMI and maternal diabetes were each associated with a 55-65% increase in risk of ADHD, with evidence of both additive and multiplicative interactions between the two exposures. MSDP and HDP were not associated with the risk of ADHD outcomes. There was some evidence for association of ADHD outcomes with high levels of inflammatory proteins or moderate levels of neurotrophic proteins, but there was no evidence that these mediated the risk associated with maternal BMI or diabetes. Conclusion Contrary to previous population-based studies, MSDP and HDP did not predict ADHD outcomes in this extremely preterm cohort, but elevated maternal pre-pregnancy BMI, maternal diabetes, and perinatal inflammatory markers were associated with increased risk of ADHD at age 10 and/or 15, with positive interaction between pre-pregnancy BMI and maternal diabetes.
Collapse
Affiliation(s)
- David M. Cochran
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
- *Correspondence: David M. Cochran,
| | - Elizabeth T. Jensen
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Isha Jalnapurkar
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Sohye Kim
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Kyle R. Roell
- Department of Environmental Sciences and Engineering, Institute for Environmental Health Solutions, University of North Carolina School, Chapel Hill, NC, United States
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Stephen R. Hooper
- Department of Health Sciences, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Hudson P. Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States
| | - Karl C. K. Kuban
- Division of Neurology (Pediatric Neurology), Department of Pediatrics, Boston Medical Center and Boston University, Boston, MA, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Institute for Environmental Health Solutions, University of North Carolina School, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Leifsdottir K, Jost K, Siljehav V, Thelin EP, Lassarén P, Nilsson P, Haraldsson Á, Eksborg S, Herlenius E. The cerebrospinal fluid proteome of preterm infants predicts neurodevelopmental outcome. Front Pediatr 2022; 10:921444. [PMID: 35928685 PMCID: PMC9343678 DOI: 10.3389/fped.2022.921444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Survival rate increases for preterm infants, but long-term neurodevelopmental outcome predictors are lacking. Our primary aim was to determine whether a specific proteomic profile in cerebrospinal fluid (CSF) of preterm infants differs from that of term infants and to identify novel biomarkers of neurodevelopmental outcome in preterm infants. METHODS Twenty-seven preterm infants with median gestational age 27 w + 4 d and ten full-term infants were enrolled prospectively. Protein profiling of CSF were performed utilizing an antibody suspension bead array. The relative levels of 178 unique brain derived proteins and inflammatory mediators, selected from the Human Protein Atlas, were measured. RESULTS The CSF protein profile of preterm infants differed from that of term infants. Increased levels of brain specific proteins that are associated with neurodevelopment and neuroinflammatory pathways made up a distinct protein profile in the preterm infants. The most significant differences were seen in proteins involved in neurodevelopmental regulation and synaptic plasticity, as well as components of the innate immune system. Several proteins correlated with favorable outcome in preterm infants at 18-24 months corrected age. Among the proteins that provided strong predictors of outcome were vascular endothelial growth factor C, Neurocan core protein and seizure protein 6, all highly important in normal brain development. CONCLUSION Our data suggest a vulnerability of the preterm brain to postnatal events and that alterations in protein levels may contribute to unfavorable neurodevelopmental outcome.
Collapse
Affiliation(s)
- Kristin Leifsdottir
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,The Children's Hospital of Iceland, Reykjavik, Iceland
| | - Kerstin Jost
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Siljehav
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Lassarén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nilsson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | | | - Staffan Eksborg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Zhang C, Zhao X, Cheng M, Wang K, Zhang X. The Effect of Intraventricular Hemorrhage on Brain Development in Premature Infants: A Synthetic MRI Study. Front Neurol 2021; 12:721312. [PMID: 34566865 PMCID: PMC8458889 DOI: 10.3389/fneur.2021.721312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022] Open
Abstract
Objectives: Synthetic MRI can obtain multiple parameters in one scan, including T1 and T2 relaxation time, proton density (PD), brain volume, etc. This study aimed to investigate the parameter values T1 and T2 relaxation time, PD, and volume characteristics of intraventricular hemorrhage (IVH) newborn brain, and the ability of synthetic MRI parameters T1 and T2 relaxation time and PD to diagnose IVH. Materials and methods: The study included 50 premature babies scanned with conventional and synthetic MRI. Premature infants were allocated to the case group (n = 15) and NON IVH (n = 35). The T1, T2, PD values, and brain volume were obtained by synthetic MRI. Then we assessed the impact of IVH on these parameters. Results: In the posterior limbs of the internal capsule (PLIC), genu of the corpus callosum (GCC), central white matter (CWM), frontal white matter (FWM), and cerebellum (each p < 0.05), the T1 and T2 relaxation times of the IVH group were significantly prolonged. There were significant differences also in PD. The brain volume in many parts were also significantly reduced, which was best illustrated in gray matter (GM), cerebrospinal fluid and intracranial volume, and brain parenchymal fraction (BPF) (each p < 0.001, t = −5.232 to 4.596). The differential diagnosis ability of these quantitative values was found to be excellent in PLIC, CWM, and cerebellum (AUC 0.700–0.837, p < 0.05). Conclusion: The quantitative parameters of synthetic MRI show well the brain tissue characteristic values and brain volume changes of IVH premature infants. T1 and T2 relaxation times and PD contribute to the diagnosis and evaluation of IVH.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare, MR Research China, Beijing, China
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Bangma JT, Hartwell H, Santos HP, O'Shea TM, Fry RC. Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm. Pediatr Res 2021; 89:326-335. [PMID: 33184498 PMCID: PMC7658618 DOI: 10.1038/s41390-020-01236-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023]
Abstract
Individuals born extremely preterm are at significant risk for impaired neurodevelopment. After discharge from the neonatal intensive care, associations between the child's well-being and factors in the home and social environment become increasingly apparent. Mothers' prenatal health and socioeconomic status are associated with neurodevelopmental outcomes, and emotional and behavioral problems. Research on early life risk factors and on mechanisms underlying inter-individual differences in neurodevelopment later in life can inform the design of personalized approaches to prevention. Here, we review early life predictors of inter-individual differences in later life neurodevelopment among those born extremely preterm. Among biological mechanisms that mediate relationships between early life predictors and later neurodevelopmental outcomes, we highlight evidence for disrupted placental processes and regulated at least in part via epigenetic mechanisms, as well as perinatal inflammation. In relation to these mechanisms, we focus on four prenatal antecedents of impaired neurodevelopment, namely, (1) fetal growth restriction, (2) maternal obesity, (3) placental microorganisms, and (4) socioeconomic adversity. In the future, this knowledge may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm. IMPACT: This review highlights early life risk factors and mechanisms underlying inter-individual differences in neurodevelopment later in life. The review emphasizes research on early life risk factors (fetal growth restriction, maternal obesity, placental microorganisms, and socioeconomic adversity) and on mechanisms (disrupted placental processes and perinatal inflammation) underlying inter-individual differences in neurodevelopment later in life. The findings highlighted here may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm.
Collapse
Affiliation(s)
- Jacqueline T Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Galinsky R, van de Looij Y, Mitchell N, Dean JM, Dhillon SK, Yamaguchi K, Lear CA, Wassink G, Davidson JO, Nott F, Zahra VA, Kelly SB, King VJ, Sizonenko SV, Bennet L, Gunn AJ. Magnetic Resonance Imaging Correlates of White Matter Gliosis and Injury in Preterm Fetal Sheep Exposed to Progressive Systemic Inflammation. Int J Mol Sci 2020; 21:ijms21238891. [PMID: 33255257 PMCID: PMC7727662 DOI: 10.3390/ijms21238891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Progressive fetal infection/inflammation is strongly associated with neural injury after preterm birth. We aimed to test the hypotheses that progressively developing fetal inflammation leads to neuroinflammation and impaired white matter development and that the histopathological changes can be detected using high-field diffusion tensor magnetic resonance imaging (MRI). Chronically instrumented preterm fetal sheep at 0.7 of gestation were randomly assigned to receive intravenous saline (control; n = 6) or a progressive infusion of lipopolysaccharide (LPS, 200 ng intravenous over 24 h then doubled every 24 h for 5 days to induce fetal inflammation, n = 7). Sheep were killed 10 days after starting the infusions, for histology and high-field diffusion tensor MRI. Progressive LPS infusion was associated with increased circulating interleukin (IL)-6 concentrations and moderate increases in carotid artery perfusion and the frequency of electroencephalogram (EEG) activity (p < 0.05 vs. control). In the periventricular white matter, fractional anisotropy (FA) was increased, and orientation dispersion index (ODI) was reduced (p < 0.05 vs. control for both). Histologically, in the same brain region, LPS infusion increased microglial activation and astrocyte numbers and reduced the total number of oligodendrocytes with no change in myelination or numbers of immature/mature oligodendrocytes. Numbers of astrocytes in the periventricular white matter were correlated with increased FA and reduced ODI signal intensities. Astrocyte coherence was associated with increased FA. Moderate astrogliosis, but not loss of total oligodendrocytes, after progressive fetal inflammation can be detected with high-field diffusion tensor MRI.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria 3800, Australia
| | - Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, Gynaecology & Obstetrics, School of Medicine, University of Geneva, 1015 Geneva, Switzerland; (Y.v.d.L.); (S.V.S.)
| | - Natasha Mitchell
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Justin M. Dean
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Simerdeep K. Dhillon
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Kyohei Yamaguchi
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Christopher A. Lear
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Joanne O. Davidson
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Fraser Nott
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
| | - Valerie A. Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
| | - Sharmony B. Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; (F.N.); (V.A.Z.); (S.B.K.)
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria 3800, Australia
| | - Victoria J. King
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Stéphane V. Sizonenko
- Division of Child Development & Growth, Department of Pediatrics, Gynaecology & Obstetrics, School of Medicine, University of Geneva, 1015 Geneva, Switzerland; (Y.v.d.L.); (S.V.S.)
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
| | - Alistair J. Gunn
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (R.G.); (N.M.); (J.M.D.); (S.K.D.); (K.Y.); (C.A.L.); (G.W.); (J.O.D.); (V.J.K.); (L.B.)
- Correspondence:
| |
Collapse
|
15
|
Newville J, Maxwell JR, Kitase Y, Robinson S, Jantzie LL. Perinatal Opioid Exposure Primes the Peripheral Immune System Toward Hyperreactivity. Front Pediatr 2020; 8:272. [PMID: 32670993 PMCID: PMC7332770 DOI: 10.3389/fped.2020.00272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Abstract
The increased incidence of opioid use during pregnancy warrants investigation to reveal the impact of opioid exposure on the developing fetus. Exposure during critical periods of development could have enduring consequences for affected individuals. Particularly, evidence is mounting that developmental injury can result in immune priming, whereby subsequent immune activation elicits an exaggerated immune response. This maladaptive hypersensitivity to immune challenge perpetuates dysregulated inflammatory signaling and poor health outcomes. Utilizing an established preclinical rat model of perinatal methadone exposure, we sought to investigate the consequences of developmental opioid exposure on in vitro activation of peripheral blood mononuclear cells (PBMCs). We hypothesize that PBMCs from methadone-exposed rats would exhibit abnormal chemokine and cytokine expression at baseline, with exaggerated chemokine and cytokine production following immune stimulation compared to saline-exposed controls. On postnatal day (P) 7, pup PMBCs were isolated and cultured, pooling three pups per n. Following 3 and 24 h, the supernatant from cultured PMBCs was collected and assessed for inflammatory cytokine and chemokine expression at baseline or lipopolysaccharide (LPS) stimulation using multiplex electrochemiluminescence. Following 3 and 24 h, baseline production of proinflammatory chemokine and cytokine levels were significantly increased in methadone PBMCs (p < 0.0001). Stimulation with LPS for 3 h resulted in increased tumor necrosis factor (TNF-α) and C-X-C motif chemokine ligand 1 (CXCL1) expression by 3.5-fold in PBMCs from methadone-exposed PBMCs compared to PBMCs from saline-exposed controls (p < 0.0001). Peripheral blood mononuclear cell hyperreactivity was still apparent at 24 h of LPS stimulation, evidenced by significantly increased TNF-α, CXCL1, interleukin 6 (IL-6), and IL-10 production by methadone PMBCs compared to saline control PBMCs (p < 0.0001). Together, we provide evidence of increased production of proinflammatory molecules from methadone PBMCs at baseline, in addition to sustained hyperreactivity relative to saline-exposed controls. Exaggerated peripheral immune responses exacerbate inflammatory signaling, with subsequent consequences on many organ systems throughout the body, such as the developing nervous system. Enhanced understanding of these inflammatory mechanisms will allow for appropriate therapeutic development for infants who were exposed to opioids during development. Furthermore, these data highlight the utility of this in vitro PBMC assay technique for future biomarker development to guide specific treatment for patients exposed to opioids during gestation.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jessie R. Maxwell
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Departments of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
16
|
Oldenburg KS, O’Shea TM, Fry RC. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes. Semin Fetal Neonatal Med 2020; 25:101115. [PMID: 32444251 PMCID: PMC7363586 DOI: 10.1016/j.siny.2020.101115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among individuals born very preterm, perinatal inflammation, particularly if sustained or recurring, is highly likely to contribute to adverse neurodevelopmental outcomes, including cerebral white matter damage, cerebral palsy, cognitive impairment, attention-deficit/hyperactivity disorder, and autism spectrum disorder. Antecedents and correlates of perinatal inflammation include socioeconomic disadvantage, maternal obesity, maternal infections, fetal growth restriction, neonatal sepsis, necrotizing enterocolitis, and prolonged mechanical ventilation. Genetic factors can modify susceptibility to perinatal inflammation and to neurodevelopmental disorders. Preliminary evidence supports a role of epigenetic markers as potential mediators of the presumed effects of preterm birth and/or its consequences on neurodevelopment later in life. Further study is needed of factors such as sex, psychosocial stressors, and environmental exposures that could modify the relationship of early life inflammation to later neurodevelopmental impairments. Also needed are pharmacological and non-pharmacological interventions to attenuate inflammation towards the goal of improving the neurodevelopment of individuals born very preterm.
Collapse
Affiliation(s)
- Kirsi S. Oldenburg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - T. Michael O’Shea
- Department of Pediatrics (Neonatology), University of North Carolina School of Medicine
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| |
Collapse
|
17
|
Serelaxin activates eNOS, suppresses inflammation, attenuates developmental delay and improves cognitive functions of neonatal rats after germinal matrix hemorrhage. Sci Rep 2020; 10:8115. [PMID: 32415164 PMCID: PMC7229117 DOI: 10.1038/s41598-020-65144-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Germinal matrix hemorrhage (GMH) is a detrimental form of neonatal CNS injury. Following GMH-mediated eNOS inhibition, inflammation arises, contributing to GMH-induced brain injury. We investigated the beneficial effects of Serelaxin, a clinical tested recombinant Relaxin-2 protein, on brain injury after GMH in rats. We investigated whether effects of Serelaxin are mediated by its ability to activate the GMH-suppressed eNOS pathway resulting in attenuation of inflammatory marker overproduction. GMH was induced by intraparenchymal injection of bacterial collagenase (0.3U). Seven day old Sprague–Dawley rat pups (P7) were used (n = 63). GMH animals were divided in vehicle or serelaxin treated (3 µg once, 30 µg once, 30 µg multiple, i.p., starting 30 after GMH and then daily). Sham operated animals were used. We monitored the developmental profile working memory and spatial function (T-maze and open field test respectively). At day 28, all rats underwent MRI-scans for assessment of changes in cortical thickness and white matter loss. Effects of Serelaxin on eNOS pathway activation and post-GMH inflammation were evaluated. We demonstrated that Serelaxin dose-dependently attenuated GMH-induced developmental delay, protected brain and improved cognitive functions of rats after GMH. That was associated with the decreased post-GMH inflammation, mediated at least partly by amelioration of GMH-induced eNOS inhibition.
Collapse
|
18
|
Virlouvet AL, Pansiot J, Toumazi A, Colella M, Capewell A, Guerriero E, Storme T, Rioualen S, Bourmaud A, Biran V, Baud O. In-line filtration in very preterm neonates: a randomized controlled trial. Sci Rep 2020; 10:5003. [PMID: 32193413 PMCID: PMC7081338 DOI: 10.1038/s41598-020-61815-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/26/2020] [Indexed: 11/30/2022] Open
Abstract
In-line filtration is increasingly used in critically-ill infants but its benefits, by preventing micro-particle infusion in very preterm neonates, remain to be demonstrated. We conducted a randomized controlled trial among very preterm infants allocated to receive either in-line filtration of all the intra-venous lines or standard care without filters. The primary outcome was differences greater than 20% in the median changes in pro-inflammatory cytokine serum concentrations measured at day 3 and day 8 (+/-1) using a Luminex multianalytic profiling technique. Major neonatal complications were analyzed as secondary predefined outcomes. We randomized 146 infants, assigned to filter (n = 73) or control (n = 73) group. Difference over 20% in pro-inflammatory cytokine concentration between day 3 and day 8 was not found statistically different between the two groups, both in intent-to-treat (with imputation) and per protocol (without imputation) analyses. The incidences of most of neonatal complications were found to be similar. Hence, this trial did not evidence a beneficial effect of in-line filtration in very preterm infants on the inflammatory response syndrome and neonatal morbidities. These data should be interpreted according to local standards in infusion preparation and central line management.
Collapse
Affiliation(s)
- Anne-Laure Virlouvet
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France
- Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Julien Pansiot
- Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Artemis Toumazi
- Assistance Publique-Hôpitaux de Paris, Unit of Clinical Epidemiology, Robert Debré children's hospital, University of Paris, Inserm U1123 and CIC-EC, 1426, Paris, France
| | - Marina Colella
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France
- Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | | | - Emilie Guerriero
- Assistance Publique-Hôpitaux de Paris, Department of Pharmacy, Robert Debré children's hospital, Paris, France
| | - Thomas Storme
- Assistance Publique-Hôpitaux de Paris, Department of Pharmacy, Robert Debré children's hospital, Paris, France
| | - Stéphane Rioualen
- Department of Neonatal Medicine, Brest University Hospital, Brest, France
| | - Aurélie Bourmaud
- Assistance Publique-Hôpitaux de Paris, Unit of Clinical Epidemiology, Robert Debré children's hospital, University of Paris, Inserm U1123 and CIC-EC, 1426, Paris, France
| | - Valérie Biran
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France
- Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Olivier Baud
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France.
- Delegation Paris 7, Inserm U1141, University of Paris, Paris, France.
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Carroll L, Owen LA. Current evidence and outcomes for retinopathy of prematurity prevention: insight into novel maternal and placental contributions. EXPLORATION OF MEDICINE 2020; 1:4-26. [PMID: 32342063 PMCID: PMC7185238 DOI: 10.37349/emed.2020.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a blinding morbidity of preterm infants, which represents a significant clinical problem, accounting for up to 40% of all childhood blindness. ROP displays a range of severity, though even mild disease may result in life-long visual impairment. This is complicated by the fact that our current treatments have significant ocular and potentially systemic effects. Therefore, disease prevention is desperately needed to mitigate the life-long deleterious effects of ROP for preterm infants. Although ROP demonstrates a delayed onset of retinal disease following preterm birth, representing a potential window for prevention, we have been unable to sufficiently alter the natural disease course and meaningfully prevent ROP. Prevention therapeutics requires knowledge of early ROP molecular changes and risk, occurring prior to clinical retinal disease. While we still have an incomplete understanding of these disease mechanisms, emerging data integrating contributions of maternal/placental pathobiology with ROP are poised to inform novel approaches to prevention. Herein, we review the molecular basis for current prevention strategies and the clinical outcomes of these interventions. We also discuss how insights into early ROP pathophysiology may be gained by a better understanding of maternal and placental factors playing a role in preterm birth.
Collapse
Affiliation(s)
- Lara Carroll
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 4132, USA
| |
Collapse
|