1
|
Prediction of High Bell Stages of Necrotizing Enterocolitis Using a Mathematic Formula for Risk Determination. CHILDREN 2022; 9:children9050604. [PMID: 35626781 PMCID: PMC9139239 DOI: 10.3390/children9050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Necrotizing enterocolitis (NEC) continues to cause high morbidity and mortality. Identifying early predictors for severe NEC is essential to improve therapy and optimize timing for surgical intervention. We present a retrospective study of patients with NEC, treated between 2010 and 2020, trying to identify factors influencing the severity of NEC. Within the study period, 88 affected infants with NEC or NEC-like symptoms are analyzed. A multiple logistic regression analysis reveals the following three independent predictors for NEC in Bell stage III: red blood cell transfusion (p = 0.027 with odds ratio (OR) = 3.298), sonographic findings (p = 0.037; OR = 6.496 for patients with positive vs. patients without pathological findings) and cardiac anatomy (p = 0.015; OR = 1.922 for patients with patent ductus arteriosus (PDA) vs. patients with congenital heart disease (CHD); OR = 5.478/OR = 2.850 for patients with CHD/PDA vs. patients without cardiac disease). Results are summarized in a clinical score for daily application in clinical routine. The score is easy to apply and combines clinically established parameters, helping to determine the timing of surgical intervention.
Collapse
|
2
|
Davies AE, Williams RL, Lugano G, Pop SR, Kearns VR. In vitro and computational modelling of drug delivery across the outer blood-retinal barrier. Interface Focus 2020; 10:20190132. [PMID: 32194934 PMCID: PMC7061949 DOI: 10.1098/rsfs.2019.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to produce rapid, cost-effective and human-relevant data has the potential to accelerate the development of new drug delivery systems. Intraocular drug delivery is an area undergoing rapid expansion, due to the increase in sight-threatening diseases linked to increasing age and lifestyle factors. The outer blood-retinal barrier (OBRB) is important in this area of drug delivery, as it separates the eye from the systemic blood flow. This study reports the development of complementary in vitro and in silico models to study drug transport from silicone oil across the OBRB. Monolayer cultures of a human retinal pigmented epithelium cell line, ARPE-19, were added to chambers and exposed to a controlled flow to simulate drug clearance across the OBRB. Movement of dextran molecules and release of ibuprofen from silicone oil in this model were measured. Corresponding simulations were developed using COMSOL Multiphysics computational fluid dynamics software and validated using independent in vitro datasets. Computational simulations were able to predict dextran movement and ibuprofen release, with all of the features of the experimental release profiles being observed in the simulated data. Simulated values for peak concentrations of permeated dextran and ibuprofen released from silicone oil were within 18% of the in vitro results. This model could be used as a predictive tool for drug transport across this important tissue.
Collapse
Affiliation(s)
- Alys E. Davies
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Gaia Lugano
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Serban R. Pop
- Department of Computer Science, University of Chester, Chester, UK
| | - Victoria R. Kearns
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Cakir U, Tayman C, Yarci E, Halil H, Buyuktiryaki M, Ulu HO, Yucel C, Oguz SS. Novel useful markers for follow-up of necrotizing enterocolitis: endocan and interleukin-33. J Matern Fetal Neonatal Med 2018; 33:2333-2341. [PMID: 30431380 DOI: 10.1080/14767058.2018.1548601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: To ascertain the diagnostic value of endocan and interleukin (IL)-33 in infants with necrotizing enterocolitis (NEC) and to compare their effectiveness with C-reactive protein (CRP) and interleukin-6 (IL-6).Methods: Eighty-four preterm infants including control (n = 42) and NEC (n = 42) were eligible. Blood samples were obtained from infants in the NEC for the assessment of CRP, IL-6, endocan, and IL-33 serum levels at the time of diagnosis (first day), at the third and seventh days of NEC. Endocan, IL-33, CRP, and IL-6 serum levels were measured at the 14th day of life in the control group.Results: Serum levels of endocan, IL-33, CRP, and IL-6 were significantly higher in the NEC group compared to the control group at the first, third, and seventh days (p < .05). IL-33 and endocan levels continued to rise in the consequent days in patients with stage III NEC (p < .05). Serum endocan and IL-33 levels gradually increased in patients who underwent surgery (p < .05). Serum endocan levels were higher in patients with stage III NEC than those in the stage II NEC at the diagnosis.Conclusions: Serum levels of IL-33 and endocan can be used as markers in the diagnosis and follow-up of NEC.
Collapse
Affiliation(s)
- Ufuk Cakir
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Cuneyt Tayman
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Erbu Yarci
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Halid Halil
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Mehmet Buyuktiryaki
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Hulya Ozkan Ulu
- Division of Pediatric Surgery, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Cigdem Yucel
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Serife Suna Oguz
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| |
Collapse
|
4
|
Cakir U, Tayman C, Serkant U, Yakut HI, Cakir E, Ates U, Koyuncu I, Karaogul E. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:297-308. [PMID: 30005955 DOI: 10.1016/j.jep.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Necrotizing enterocolitis (NEC) is the most important gastrointestinal emergency affecting especially preterm infants and causes severe morbidities and mortality. However, there is no cure. Oxidant stress, inflammation, apoptosis, as well as prematurity are believed to responsible in the pathogenesis of the disease. Ginger and its compounds have anti-inflammatory, antimicrobial, anti-oxidant properties and immunomodulatory, cytoprotective/regenerative actions. AIM OF THE STUDY This study aimed to evaluate the beneficial effects of ginger on the intestinal damage in an experimental rat model of NEC. MATERIALS AND METHODS Thirty newborn Wistar rats were divided into three groups: NEC, NEC + ginger and control in this experimental study. NEC was induced by injection of intraperitoneal lipopolysaccharide, feeding with enteral formula, hypoxia-hyperoxia and cold stress exposure. The pups in the NEC + ginger group were orally administered ginger at a dose of 1000 mg/kg/day. Proximal colon and ileum were excised. Histopathological, immunohistochemical (TUNEL for apoptosis, caspase 3 and 8) and biochemical assays including xanthine oxidase (XO), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malonaldehyde (MDA) and myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin1β (IL-1β), and interleukin 6 (IL-6) activity were evaluated. RESULTS Compared with the NEC group, the rat pups in the NEC + ginger group had better clinical disease scores and weight gain (p < 0.05). Macroscopic evaluation, Histopathologic and apoptosis assessment (TUNEL, caspase 3 and 8) releaved that severity of intestinal damage were significantly lower in the NEC + ginger group (p < 0.05). The levels of TNF-α, IL-1β and IL-6 in the ginger treated group were significantly decreased (P < 0.05). The GSH-Px and SOD levels of the ginger treated group were significantly preserved in the NEC + ginger group (p < 0.05). The tissue XO, MDA and MPO levels of the NEC + ginger group were significantly lower than those in the NEC group (P < 0.05). CONCLUSION Ginger therapy efficiently ameliorated the severity of intestinal damage in NEC and may be a promising treatment option.
Collapse
Affiliation(s)
- Ufuk Cakir
- Department of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity Education and Research Hospital, Ankara, Turkey.
| | - Cuneyt Tayman
- Health Sciences University, Zekai Tahir Burak Maternity Education and Research Hospital, Ankara, Turkey.
| | - Utku Serkant
- Department of Biochemistry, Golbası Public Hospital, Ankara, Turkey.
| | - Halil Ibrahim Yakut
- Department of Pediatrics, Health Sciences University, Ankara Hematology Oncology Children Education and Research Hospital, Ankara, Turkey.
| | - Esra Cakir
- Health Sciences University, Anesthesiology and Clinical of Critical Care, Ankara Numune Education and Research Hospital, Ankara, Turkey.
| | - Ufuk Ates
- Department of Pediatric Surgery, Ankara University Faculty of Medicine, Ankara, Turkey.
| | - Ismail Koyuncu
- Harran University Faculty of Medicine Department of Biochemistry, Sanlıurfa, Turkey.
| | - Eyyup Karaogul
- Harran University Engineering Faculty Food Science and Technology, Sanlıurfa, Turkey.
| |
Collapse
|
5
|
Gross Margolis K, Vittorio J, Talavera M, Gluck K, Li Z, Iuga A, Stevanovic K, Saurman V, Israelyan N, Welch MG, Gershon MD. Enteric serotonin and oxytocin: endogenous regulation of severity in a murine model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G386-G398. [PMID: 28774871 PMCID: PMC5792212 DOI: 10.1152/ajpgi.00215.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC), a gastrointestinal inflammatory disease of unknown etiology that may also affect the liver, causes a great deal of morbidity and mortality in premature infants. We tested the hypothesis that signaling molecules, which are endogenous to the bowel, regulate the severity of intestinal and hepatic damage in an established murine NEC model. Specifically, we postulated that mucosal serotonin (5-HT), which is proinflammatory, would exacerbate experimental NEC and that oxytocin (OT), which is present in enteric neurons and is anti-inflammatory, would oppose it. Genetic deletion of the 5-HT transporter (SERT), which increases and prolongs effects of 5-HT, was found to increase the severity of systemic manifestations, intestinal inflammation, and associated hepatotoxicity of experimental NEC. In contrast, genetic deletion of tryptophan hydroxylase 1 (TPH1), which is responsible for 5-HT biosynthesis in enterochromaffin (EC) cells of the intestinal mucosa, and TPH inhibition with LP-920540 both decrease the severity of experimental NEC in the small intestine and liver. These observations suggest that 5-HT from EC cells helps to drive the inflammatory damage to the gut and liver that occurs in the murine NEC model. Administration of OT decreased, while the OT receptor antagonist atosiban exacerbated, the intestinal inflammation of experimental NEC. Data from the current investigation are consistent with the tested hypotheses-that the enteric signaling molecules, 5-HT (positively) and OT (negatively) regulate severity of inflammation in a mouse model of NEC. Moreover, we suggest that mucosally restricted inhibition of 5-HT biosynthesis and/or administration of OT may be useful in the treatment of NEC.NEW & NOTEWORTHY Serotonin (5-HT) and oxytocin reciprocally regulate the severity of intestinal inflammation and hepatotoxicity in a murine model of necrotizing enterocolitis (NEC). Selective depletion of mucosal 5-HT through genetic deletion or inhibition of tryptophan hydroxylase-1 ameliorates, while deletion of the 5-HT uptake transporter, which increases 5-HT availability, exacerbates the severity of NEC. In contrast, oxytocin reduces, while the oxytocin receptor antagonist atosiban enhances, NEC severity. Peripheral tryptophan hydroxylase inhibition may be useful in treatment of NEC.
Collapse
Affiliation(s)
- Kara Gross Margolis
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York; .,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Jennifer Vittorio
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Maria Talavera
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Karen Gluck
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Zhishan Li
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Alina Iuga
- 2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Korey Stevanovic
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Virginia Saurman
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Narek Israelyan
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Martha G. Welch
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and ,3Department of Psychiatry, Columbia University Medical Center, New York, New York
| | - Michael D. Gershon
- 2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
6
|
Yi X, Chang X, Wang J, Yan C, Zhang B. Intestinal trefoil factor increased the Bcl-2 level in a necrotizingenterocolitis neonate rat model. Turk J Med Sci 2016; 46:921-5. [PMID: 27513274 DOI: 10.3906/sag-1501-65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/28/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The aim of this study was to investigate the therapeutic effect of intestinal trefoil factor (ITF) on necrotizing enterocolitis (NEC) by observing the pathological changes and detecting the protein level differences in Caspase-3, Bax, and Bcl-2 in an NEC neonate rat model. MATERIALS AND METHODS A Wistar rat model of NEC was established and 30 one-day-old neonate Wistar rats were randomly divided into three groups including a normal control (group A), NEC rats treated with 0.2 ml physiological saline through intraperitoneal (i.p.) injection (group B), and NEC rats treated with 0.2 mg ITF by i.p injection (group C). RESULTS Compared with group B, there were statistically significant differences in Caspase-3, Bax, and Bcl-2 levels in groups A and C(P < 0.05). Moreover, there was a significant difference in the Bcl-2 level between groups A and B (P < 0.05). CONCLUSION ITF alleviated injury of the intestinal tract in neonate rats with NEC and this mechanism was possibly related to a reduction in the expression of Caspase-3 and Bax and the increase in Bcl-2 expression.
Collapse
Affiliation(s)
- Xiaolian Yi
- Department of Pediatrics, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Xiaojun Chang
- Department of Pediatrics, Yuhang District Maternity and Child Care Centers of Hangzhou City, Hangzhou, China
| | - Jijie Wang
- Department of Pediatrics, Yuhang District Maternity and Child Care Centers of Hangzhou City, Hangzhou, China
| | - Caixia Yan
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Binghong Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Markel TA, Engelstad H, Poindexter BB. Predicting disease severity of necrotizing enterocolitis: how to identify infants for future novel therapies. J Clin Neonatol 2014; 3:1-9. [PMID: 24741531 PMCID: PMC3982330 DOI: 10.4103/2249-4847.128717] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Necrotizing enterocolitis (NEC) remains a very devastating problem within the very low birth weight neonatal population. Several experimental therapies are being tested in animal models and soon may be ready for human trials. Despite this progress, we currently have no way to identify infants who would be optimal targets for therapy. Specifically, we are unable to predict which infants will progress to the more severe Bell's stage of disease that may necessitate surgery. Ideally, an algorithm could be constructed that would encompass multiple neonatal and maternal risk factors as well as potential biologic markers of disease so that these infants could be identified in a more timely fashion. This review summarizes the known risk factors and biomarkers of disease in hopes of stimulating clinical research to identify such an “early warning” NEC algorithm.
Collapse
Affiliation(s)
- Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Holly Engelstad
- Department of Pediatrics, Section of Neonatology, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brenda B Poindexter
- Department of Pediatrics, Section of Neonatology, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Investigation of inflammation and tissue patterning in the gut using a Spatially Explicit General-purpose Model of Enteric Tissue (SEGMEnT). PLoS Comput Biol 2014; 10:e1003507. [PMID: 24675765 PMCID: PMC3967920 DOI: 10.1371/journal.pcbi.1003507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023] Open
Abstract
The mucosa of the intestinal tract represents a finely tuned system where tissue structure strongly influences, and is turn influenced by, its function as both an absorptive surface and a defensive barrier. Mucosal architecture and histology plays a key role in the diagnosis, characterization and pathophysiology of a host of gastrointestinal diseases. Inflammation is a significant factor in the pathogenesis in many gastrointestinal diseases, and is perhaps the most clinically significant control factor governing the maintenance of the mucosal architecture by morphogenic pathways. We propose that appropriate characterization of the role of inflammation as a controller of enteric mucosal tissue patterning requires understanding the underlying cellular and molecular dynamics that determine the epithelial crypt-villus architecture across a range of conditions from health to disease. Towards this end we have developed the Spatially Explicit General-purpose Model of Enteric Tissue (SEGMEnT) to dynamically represent existing knowledge of the behavior of enteric epithelial tissue as influenced by inflammation with the ability to generate a variety of pathophysiological processes within a common platform and from a common knowledge base. In addition to reproducing healthy ileal mucosal dynamics as well as a series of morphogen knock-out/inhibition experiments, SEGMEnT provides insight into a range of clinically relevant cellular-molecular mechanisms, such as a putative role for Phosphotase and tensin homolog/phosphoinositide 3-kinase (PTEN/PI3K) as a key point of crosstalk between inflammation and morphogenesis, the protective role of enterocyte sloughing in enteric ischemia-reperfusion and chronic low level inflammation as a driver for colonic metaplasia. These results suggest that SEGMEnT can serve as an integrating platform for the study of inflammation in gastrointestinal disease.
Collapse
|
9
|
Probiotics and prebiotics in neonatal necrotizing enterocolitis: New opportunities for translational research. ACTA ACUST UNITED AC 2014; 21:35-46. [PMID: 24594006 DOI: 10.1016/j.pathophys.2013.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neonatal necrotizing enterocolitis (NEC) in premature infants has been recognized as a defined disease entity for at least four decades. Although survival has increased due to the advent of more sophisticated intensive care, incidence and long term health impacts due to NEC remain unchanged and no preventive therapy is currently available. Different probiotic strains of bacteria have been examined in their ability to prevent NEC with varied but encouraging results. Undigestable prebiotic sugars known to promote the growth of probiotic bacteria in the colon have been used in neonates with no clear benefit. The literature on NEC and probiotics is now cluttered with more reviews and meta-analyses than number of clinical trials. On the other hand, significant new information is available on microbiota and their impact on gut immunity. This review attempts to reiterate the risk factors of NEC and the pathogenesis of NEC with special reference to gut permeability. The reader is then introduced to gut microbiota, uniqueness and differences among probiotic strains, and how multiple resident flora talk to each other in the community setting in the human gut. After presenting a concise review of available clinical research results, the reader is challenged to question as to why no precise answer is available at present. Some modalities to examine the complex microflora and changes in the neonatal gut are then proposed including non-invasive methods and mathematical modeling. The review concludes by attracting the reader's attention to known immunomodulators of inflammation and injury. Justice to this review will be done only if the readers, clinical, and basic science investigators from multiple fields gather courage for a paradigm shift and embark on understanding the pathophysiology of the disease and attempt to discern the difference from equally preterm, equally vulnerable neonates that do not develop NEC. Learning about the developing microbiota in neonatal gut and its immunological impacts on the host in the face of many variables will provide a leap in our pursuit to select better, if not the best candidate probiotics, and put them to work against this stubborn disease that continues to take a toll on our precious neonates and the society.
Collapse
|
10
|
A mathematical model representing cellular immune development and response to Salmonella of chicken intestinal tissue. J Theor Biol 2013; 330:75-87. [PMID: 23603730 DOI: 10.1016/j.jtbi.2013.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/28/2022]
Abstract
The aim of this study was to create a dynamic mathematical model of the development of the cellular branch of the intestinal immune system of poultry during the first 42 days of life and of its response towards an oral infection with Salmonella enterica serovar Enteritidis. The system elements were grouped in five important classes consisting of intra- and extracellular S. Enteritidis bacteria, macrophages, CD4+, and CD8+ cells. Twelve model variables were described by ordinary differential equations, including 50 parameters. Parameter values were estimated from literature or from own immunohistochemistry data. The model described the immune development in non-infected birds with an average R² of 0.87. The model showed less accuracy in reproducing the immune response to S. Enteritidis infection, with an average R² of 0.51, although model response did follow observed trends in time. Evaluation of the model against independent data derived from several infection trials showed strong/significant deviations from observed values. Nevertheless, it was shown that the model could be used to simulate the effect of varying input parameters on system elements response, such as the number of immune cells at hatch. Model simulations allowed one to study the sensitivity of the model outcome for varying model inputs. The initial number of immune cells at hatch was shown to have a profound impact on the predicted development in the number of systemic S. Enteritidis bacteria after infection. The theoretical contribution of this work is the identification of responses in system elements of the developing intestinal immune system of poultry obtaining a mathematical representation which allows one to explore the relationships between these elements under contrasting environmental conditions during different stages of intestinal development.
Collapse
|
11
|
Barber J, Tronzo M, Harold Horvat C, Clermont G, Upperman J, Vodovotz Y, Yotov I. A three-dimensional mathematical and computational model of necrotizing enterocolitis. J Theor Biol 2012; 322:17-32. [PMID: 23228363 DOI: 10.1016/j.jtbi.2012.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/26/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022]
Abstract
Necrotizing enterocolitis (NEC) is a severe disease that affects the gastrointestinal (GI) tract of premature infants. Different areas of NEC research have often been isolated from one another and progress on the role of the inflammatory response in NEC, on the dynamics of epithelial layer healing, and on the positive effects of breast feeding have not been synthesized to produce a more integrated understanding of the pathogenesis of NEC. We seek to synthesize these areas of research by creating a mathematical model that incorporates the current knowledge on these aspects. Unlike previous models that are based on ordinary differential equations, our mathematical model takes into account not only transient effects but also spatial effects. A system of nonlinear transient partial differential equations is solved numerically using cell-centered finite differences and an explicit Euler method. The model is used to track the evolution of a prescribed initial injured area in the intestinal wall. It is able to produce pathophysiologically realistic results; decreasing the initial severity of the injury in the system and introducing breast feeding to the system both lead to healthier overall simulations, and only a small fraction of epithelial injuries lead to full-blown NEC. In addition, in the model, changing the initial shape of the injured area can significantly alter the overall outcome of a simulation. This finding suggests that taking into account spatial effects may be important in assessing the outcome for a given NEC patient. This model can provide a platform with which to test competing hypotheses regarding pathological mechanisms of inflammation in NEC, suggest experimental approaches by which to clarify pathogenic drivers of NEC, and may be used to derive potential intervention strategies.
Collapse
Affiliation(s)
- Jared Barber
- Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Valeyev NV, Hundhausen C, Umezawa Y, Kotov NV, Williams G, Clop A, Ainali C, Ouzounis C, Tsoka S, Nestle FO. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin. PLoS Comput Biol 2010; 6:e1001024. [PMID: 21152006 PMCID: PMC2996319 DOI: 10.1371/journal.pcbi.1001024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022] Open
Abstract
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes. A functional immune system requires complex interactions among diverse cell types, mediated by a variety of cytokines. These interactions include phenomena such as positive and negative feedback loops that can be experimentally characterized by dose-dependent cytokine production measurements. However, any experimental approach is not only limited with regard to the number of cell-cell interactions that can be studied at a given time, but also does not have the capacity to assess or predict the overall immune response which is the result of complex interdependent immune cell interactions. Therefore, experimental data need to be viewed from a theoretical perspective allowing the quantitative modeling of immune cell interactions. Here, we propose a strategy for a quantitative description of multiple interactions between immune cell populations based on their cytokine production profiles. The model predicts that the modified feedback loop interactions can result in the appearance of alternative steady-states causing the switch-like immune system effect that is experimentally observed in pathologic phenotypes. Overall, the quantitative description of immune cell interactions via cytokine signaling reported here offers new insights into understanding and predicting normal and pathological immune system responses.
Collapse
Affiliation(s)
- Najl V Valeyev
- St John's Institute of Dermatology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R, Okonkwo DO, Verdolini-Abbott K, Constantine G, An G, Vodovotz Y. Translational systems biology of inflammation: potential applications to personalized medicine. Per Med 2010; 7:549-559. [PMID: 21339856 PMCID: PMC3041597 DOI: 10.2217/pme.10.45] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A central goal of industrialized nations is to provide personalized, preemptive and predictive medicine, while maintaining healthcare costs at a minimum. To do so, we must confront and gain an understanding of inflammation, a complex, nonlinear process central to many diseases that affect both industrialized and developing nations. Herein, we describe the work aimed at creating a rational, engineering-oriented and evidence-based synthesis of inflammation geared towards rapid clinical application. This comprehensive approach, which we call 'Translational Systems Biology', to date has been utilized for in silico studies of sepsis, trauma/hemorrhage/traumatic brain injury, acute liver failure and wound healing. This framework has now allowed us to suggest how to modulate acute inflammation in a rational and individually optimized fashion using engineering principles applied to a biohybrid device. We suggest that we are on the cusp of fulfilling the promise of in silico modeling for personalized medicine for inflammatory disease.
Collapse
Affiliation(s)
- Qi Mi
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Sports Medicine & Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Yee-Key Li
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cordelia Ziraldo
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ali Ghuma
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maxim Mikheev
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Squires
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, PA, USA
| | - Katherine Verdolini-Abbott
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory Constantine
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Departments of Mathematics & Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary An
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Yoram Vodovotz
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Duro D, Kalish LA, Johnston P, Jaksic T, McCarthy M, Martin C, Dunn JCY, Brandt M, Nobuhara KK, Sylvester KG, Moss RL, Duggan C. Risk factors for intestinal failure in infants with necrotizing enterocolitis: a Glaser Pediatric Research Network study. J Pediatr 2010; 157:203-208.e1. [PMID: 20447649 PMCID: PMC3217834 DOI: 10.1016/j.jpeds.2010.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 12/02/2009] [Accepted: 02/16/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine risk factors for intestinal failure (IF) in infants undergoing surgery for necrotizing enterocolitis (NEC). STUDY DESIGN Infants were enrolled in a multicenter prospective cohort study. IF was defined as the requirement for parenteral nutrition for >or= 90 days. Logistic regression was used to identify predictors of IF. RESULTS Among 473 patients enrolled, 129 had surgery and had adequate follow-up data, and of these patients, 54 (42%) developed IF. Of the 265 patients who did not require surgery, 6 (2%) developed IF (OR 31.1, 95% CI, 12.9 - 75.1, P < .001). Multivariate analysis identified the following risk factors for IF: use of parenteral antibiotics on the day of NEC diagnosis (OR = 16.61, P = .022); birth weight < 750 grams, (OR = 9.09, P < .001); requirement for mechanical ventilation on the day of NEC diagnosis (OR = 6.16, P = .009); exposure to enteral feeding before NEC diagnosis (OR=4.05, P = .048); and percentage of small bowel resected (OR = 1.85 per 10 percentage point greater resection, P = .031). CONCLUSION The incidence of IF among infants undergoing surgical treatment for NEC is high. Variables characteristic of severe NEC (low birth weight, antibiotic use, ventilator use, and greater extent of bowel resection) were associated with the development of IF.
Collapse
Affiliation(s)
- Debora Duro
- Division of Gastroenterology and Nutrition, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, Sarkar J, Squires RH, Okonkwo DO, Gerlach J, Zamora R, Luckhart S, Ermentrout B, An G. Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 2010; 32:181-95. [PMID: 20170421 PMCID: PMC3134151 DOI: 10.3109/08923970903369867] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a complex, non-linear process central to many of the diseases that affect both developed and emerging nations. A systems-based understanding of inflammation, coupled to translational applications, is therefore necessary for efficient development of drugs and devices, for streamlining analyses at the level of populations, and for the implementation of personalized medicine. We have carried out an iterative and ongoing program of literature analysis, generation of prospective data, data analysis, and computational modeling in various experimental and clinical inflammatory disease settings. These simulations have been used to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals for in silico studies associated with the clinical settings of sepsis, trauma, acute liver failure, and wound healing to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation; and to gain insight into host-pathogen interactions in malaria, necrotizing enterocolitis, and sepsis. These simulations have converged with other systems biology approaches (e.g., functional genomics) to aid in the design of new drugs or devices geared towards modulating inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ impacts via tissue damage/dysfunction. This framework has now allowed us to suggest how to modulate acute inflammation in a rational, individually optimized fashion. This plethora of computational and intertwined experimental/engineering approaches is the cornerstone of Translational Systems Biology approaches for inflammatory diseases.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Inflammation is a complex, multiscale biological response to threats - both internal and external - to the body, which is also required for proper healing of injured tissue. In turn, damaged or dysfunctional tissue stimulates further inflammation. Despite continued advances in characterizing the cellular and molecular processes involved in the interactions between inflammation and tissue damage, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective therapies for various inflammatory conditions. We have suggested the concept of translational systems biology, defined as a focused application of computational modeling and engineering principles to pathophysiology primarily in order to revise clinical practice. This chapter reviews the existing, translational applications of computational simulations and related approaches as applied to inflammation.
Collapse
|
17
|
Young C, Sharma R, Handfield M, Mai V, Neu J. Biomarkers for infants at risk for necrotizing enterocolitis: clues to prevention? Pediatr Res 2009; 65:91R-97R. [PMID: 19190533 PMCID: PMC2929681 DOI: 10.1203/pdr.0b013e31819dba7d] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Necrotizing enterocolitis (NEC) is the most common severe gastrointestinal emergency that affects premature newborns. This disease often has a rapid onset with few, if any, antecedent signs that can be used to reliably predict its occurrence. Its rapid onset and progression to death, as well as its severe morbidity when the infant survives, begs for early diagnostic tools that may be used in determining those infants who would be at greatest risk for development of the disease and for whom early preventative measures could be targeted. Although studies have suggested efficacy of several techniques such as breath hydrogen, inflammatory mediators in blood, urine or stool, and genetic markers, these all have drawbacks limiting their use. The application of newly developed "omic" approaches may provide biomarkers for early diagnosis and targeted prevention of this disease.
Collapse
Affiliation(s)
- Christopher Young
- Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Renu Sharma
- Department of Pediatrics, University of Florida, Jacksonville, Florida 32209
| | - Martin Handfield
- Department of Oral Biology and Center for Molecular Microbiology, University of Florida, Gainesville, Florida 32610
| | - Volker Mai
- Department of Microbiology, University of Florida, Gainesville, Florida 32610
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
18
|
Abstract
Necrotizing enterocolitis is one of the most common gastrointestinal disease processes affecting infants in the neonatal intensive care unit. Its morbidity and mortality are substantial. This devastating and challenging process results in immediate and long-term morbidities for the affected infant and frustrates the clinician who struggles to prevent the process, recognize it when it does develop, and provide management techniques to enhance the outcome.
Collapse
|
19
|
Abstract
Inflammation is a complex, multi-scale biologic response to stress that is also required for repair and regeneration after injury. Despite the repository of detailed data about the cellular and molecular processes involved in inflammation, including some understanding of its pathophysiology, little progress has been made in treating the severe inflammatory syndrome of sepsis. To address the gap between basic science knowledge and therapy for sepsis, a community of biologists and physicians is using systems biology approaches in hopes of yielding basic insights into the biology of inflammation. “Systems biology” is a discipline that combines experimental discovery with mathematical modeling to aid in the understanding of the dynamic global organization and function of a biologic system (cell to organ to organism). We propose the term translational systems biology for the application of similar tools and engineering principles to biologic systems with the primary goal of optimizing clinical practice. We describe the efforts to use translational systems biology to develop an integrated framework to gain insight into the problem of acute inflammation. Progress in understanding inflammation using translational systems biology tools highlights the promise of this multidisciplinary field. Future advances in understanding complex medical problems are highly dependent on methodological advances and integration of the computational systems biology community with biologists and clinicians.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
20
|
Buddington RK, Bering SB, Thymann T, Sangild PT. Aldohexose malabsorption in preterm pigs is directly related to the severity of necrotizing enterocolitis. Pediatr Res 2008; 63:382-7. [PMID: 18356743 DOI: 10.1203/pdr.0b013e318165bfed] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Necrotizing enterocolitis (NEC) causes morbidity and mortality among preterm infants and is associated with nutrient malabsorption. Therefore, a preterm pig model that spontaneously develops NEC was used to investigate the relationship between severity of NEC lesions and galactose absorption in vivo and carrier-mediated glucose absorption by intact mid small intestine. Preterm pigs collected by caesarian section at 92% of gestation received parenteral nutrition with and without minimal enteral nutrition for 48 h before conversion to enteral nutrition with colostrum or an enteral formula. Pigs were killed when symptoms of NEC were observed or after 36-40 h of enteral nutrition. NEC lesions decreased in vivo absorption of galactose and mannitol by more than 50% and abolished carrier-mediated glucose uptake by tissues with lesions. Moreover, when NEC lesions were restricted to the colon, small intestinal tissues that seemed clinically healthy had decreased in vitro glucose absorption due to reduced uptake via the sodium-dependent glucose transporter with little or no involvement of the apical facilitative glucose carrier. The present findings reveal a direct relationship between the severity of NEC lesions and the magnitude of sugar malabsorption that is detectable before clinical symptoms are evident.
Collapse
Affiliation(s)
- Randal K Buddington
- Department of Health and Sports Sciences, University of Memphis, Memphis, Tennessee 39152, USA.
| | | | | | | |
Collapse
|
21
|
Blakely ML, Gupta H, Lally KP. Surgical management of necrotizing enterocolitis and isolated intestinal perforation in premature neonates. Semin Perinatol 2008; 32:122-6. [PMID: 18346536 DOI: 10.1053/j.semperi.2008.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Necrotizing enterocolitis (NEC) and isolated intestinal perforation (IP) are two relatively common disease conditions that require neonatal surgical therapy. The early mortality rate approaches 50%, and survivors frequently have growth and neurodevelopmental impairment. Much discussion has occurred regarding whether initial drain placement alone or laparotomy with resection of diseased intestine should be the initial surgical therapy. Several recent prospective studies have shown that the early mortality rate is likely not significantly different after either of these surgical approaches. Major morbidity, especially the likelihood for neurodevelopmental impairment, may be different in the two treatment groups. Further prospective trials are needed to further explore this question and are planned. Studies focusing on prevention of NEC and IP and also on improved medical treatment are needed to allow a major advance in the outcomes of infants with NEC and IP. As these studies are being performed, trials evaluating existing medical and surgical therapies are also needed.
Collapse
Affiliation(s)
- Martin L Blakely
- Division of Pediatric Surgery, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | |
Collapse
|
22
|
Mi Q, Swigon D, Rivière B, Cetin S, Vodovotz Y, Hackam DJ. One-dimensional elastic continuum model of enterocyte layer migration. Biophys J 2007; 93:3745-52. [PMID: 17704181 PMCID: PMC2084247 DOI: 10.1529/biophysj.107.112326] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Necrotizing enterocolitis is the leading cause of death from gastrointestinal disease in preterm infants. It results from an injury to the mucosal lining of the intestine, leading to translocation of bacteria and endotoxin into the circulation. Intestinal mucosal defects are repaired by the process of intestinal restitution, during which enterocytes migrate from healthy areas to sites of injury. In this article, we develop a mathematical model of migration of enterocytes during experimental necrotizing enterocolitis. The model is based on a novel assumption of elastic deformation of the cell layer and incorporates the following effects: i), mobility promoting force due to lamellipod formation, ii), mobility impeding adhesion to the cell matrix, and iii), enterocyte proliferation. Our model successfully reproduces the behavior observed for enterocyte migration on glass coverslips, namely the dependence of migration speed on the distance from the wound edge, and the finite propagation distance in the absence of proliferation that results in an occasional failure to close the wound. It also qualitatively reproduces the dependence of migration speed on integrin concentration. The model is applicable to the closure of a wound with a linear edge and, after calibration with experimental data, could be used to predict the effect of chemical agents on mobility, adhesion, and proliferation of enterocytes.
Collapse
Affiliation(s)
- Qi Mi
- Department of Mathematics, Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|