1
|
Gábris F, Kajtár B, Kellermayer Z, Balogh P. Quantitative Analysis of NKX2-3 Expression in Human Colon: An Immunohistochemical Study. J Histochem Cytochem 2024; 72:11-23. [PMID: 38063211 PMCID: PMC10795564 DOI: 10.1369/00221554231217336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/31/2023] Open
Abstract
In mice, Nkx2-3 homeodomain transcription factor defines the vascular specification of secondary and tertiary lymphoid tissues of the intestines. In human studies, polymorphisms in NKX2-3 have been identified as a susceptibility factor in inflammatory bowel diseases, whereas in mice, its absence is associated with protection against experimental colitis and enhanced intestinal epithelial proliferation. Here, we investigated the expression of NKX2-3 in normal, polyp, and adenocarcinoma human colon samples using immunohistochemistry and quantitative morphometry, correlating its expression with endothelial and mesenchymal stromal markers. Our results revealed that the expression of NKX2-3 is regionally confined to the lamina propria and lamina muscularis mucosae, and its production is restricted mostly to endothelial cells and smooth muscle cells with variable co-expression of CD34, alpha smooth muscle antigen (αSMA), and vascular adhesion protein-1 (VAP-1). The frequency of NKX2-3-positive cells and intensity of expression correlated inversely with aging. Furthermore, in most colorectal carcinoma samples, we observed a significant reduction of NKX2-3 expression. These findings indicate that the NKX2-3 transcription factor is produced by both endothelial and non-endothelial tissue constituents in the colon, and its expression changes during aging and in colorectal malignancies. (J Histochem Cytochem XX: XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Fanni Gábris
- Department of Immunology and Biotechnology
- Medical School, University of Pécs, Pécs, Hungary, and Lymphoid Organogenesis Research Team, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | | | - Zoltán Kellermayer
- Department of Immunology and Biotechnology
- Medical School, University of Pécs, Pécs, Hungary, and Lymphoid Organogenesis Research Team, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology
- Medical School, University of Pécs, Pécs, Hungary, and Lymphoid Organogenesis Research Team, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Asfa S, Toy HI, Arshinchi Bonab R, Chrousos GP, Pavlopoulou A, Geronikolou SA. Soft Tissue Ewing Sarcoma Cell Drug Resistance Revisited: A Systems Biology Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6288. [PMID: 37444135 PMCID: PMC10341845 DOI: 10.3390/ijerph20136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Ewing sarcoma is a rare type of cancer that develops in the bones and soft tissues. Drug therapy represents an extensively used modality for the treatment of sarcomas. However, cancer cells tend to develop resistance to antineoplastic agents, thereby posing a major barrier in treatment effectiveness. Thus, there is a need to uncover the molecular mechanisms underlying chemoresistance in sarcomas and, hence, to enhance the anticancer treatment outcome. In this study, a differential gene expression analysis was conducted on high-throughput transcriptomic data of chemoresistant versus chemoresponsive Ewing sarcoma cells. By applying functional enrichment analysis and protein-protein interactions on the differentially expressed genes and their corresponding products, we uncovered genes with a hub role in drug resistance. Granted that non-coding RNA epigenetic regulators play a pivotal role in chemotherapy by targeting genes associated with drug response, we investigated the non-coding RNA molecules that potentially regulate the expression of the detected chemoresistance genes. Of particular importance, some chemoresistance-relevant genes were associated with the autonomic nervous system, suggesting the involvement of the latter in the drug response. The findings of this study could be taken into consideration in the clinical setting for the accurate assessment of drug response in sarcoma patients and the application of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Halil Ibrahim Toy
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - George P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Styliani A. Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
3
|
Wang B, Fang W, Qin D, He Q, Lan C. Susceptibility of PCSK2 Polymorphism to Hirschsprung Disease in Southern Chinese Children. Clin Exp Gastroenterol 2023; 16:59-64. [PMID: 37215434 PMCID: PMC10198172 DOI: 10.2147/ceg.s393340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Hirschsprung's disease (HSCR) is a developmental defect of the enteric nervous system (ENS), which is caused by abnormal development of enteric neural crest cells. Its occurrence is caused by genetic factors and environmental factors. It has been reported that single nucleotide polymorphisms (SNPs) of proprotein convertase subtilisin/kexin type 2 (PCSK2) gene are associated with HSCR. However, the correlation of HSCR in southern Chinese population is still unclear. Methods We assessed the association of rs16998727 with HSCR susceptibility in southern Chinese children using TaqMan SNP genotyping analysis of 2943 samples, including 1470 HSCR patients and 1473 controls. The association test between rs16998727 and phenotypes was performed using multivariable logistic regression analysis. Results We got an unexpected result, PCSK2 SNP rs16998727 was not significantly different from HSCR and its HSCR subtypes: S-HSCR (OR = 1.08, 95% IC: 0.93~1.27, P_adj = 0.3208), L-HSCR (OR = 1.07, 95% IC: 0.84~1.36, P_adj = 0.5958) and TCA (OR = 0.94, 95% IC: 0.61~1.47, P_adj = 0.8001). Conclusion In summary, we report that rs16998727 (PCSK2 and OTOR) is not associated with the risk of HSCR in southern Chinese population.
Collapse
Affiliation(s)
- Bingtong Wang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Wenlin Fang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Dingjiang Qin
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Qiuming He
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Chaoting Lan
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| |
Collapse
|
4
|
Hasan GM, Shamsi A, Sohal SS, Alam M, Hassan MI. Structure-Based Identification of Natural Compounds as Potential RET-Kinase Inhibitors for Therapeutic Targeting of Neurodegenerative Diseases. J Alzheimers Dis 2023; 95:1519-1533. [PMID: 37718821 DOI: 10.3233/jad-230698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Tyrosine-protein kinase receptor Ret (RET), a proto-oncogene, is considered as an attractive drug target for cancer and neurodegenerative diseases, including Alzheimer's disease (AD). OBJECTIVE We aimed to identify potential inhibitors of RET kinase among natural compounds present in the ZINC database. METHODS A multistep structure-based virtual screening approach was used to identify potential RET kinase inhibitors based on their binding affinities, docking scores, and interactions with the biologically important residues of RET kinase. To further validate the potential of these compounds as therapeutic leads, molecular dynamics (MD) simulations for 100 ns were carried out and subsequently evaluated the stability, conformational changes, and interaction mechanism of RET in-complex with the elucidated compounds. RESULTS Two natural compounds, ZINC02092851 and ZINC02726682, demonstrated high affinity, specificity for the ATP-binding pocket of RET and drug-likeness properties. The MD simulation outputs indicated that the binding of both compounds stabilizes the RET structure and leads to fewer conformational changes. CONCLUSIONS The findings suggest that ZINC02092851 and ZINC02726682 may be potential inhibitors for RET, offering valuable leads for drug development against RET-associated diseases. Our study provides a promising avenue for developing new therapeutic strategies against complex diseases, including AD. Identifying natural compounds with high affinity and specificity for RET provides a valuable starting point for developing novel drugs that could help combat these debilitating diseases.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Biochemistry College of Medicine Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group Department of Laboratory Medicine School of Health Sciences College of Health and Medicine University of Tasmania, Launceston, Tasmania, Australia
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Kong Y, Allison DB, Zhang Q, He D, Li Y, Mao F, Li C, Li Z, Zhang Y, Wang J, Wang C, Brainson CF, Liu X. The kinase PLK1 promotes the development of <i>Kras</i>/<i>Tp53</i>-mutant lung adenocarcinoma through transcriptional activation of the receptor RET. Sci Signal 2022; 15:eabj4009. [PMID: 36194647 PMCID: PMC9737055 DOI: 10.1126/scisignal.abj4009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tumor databases revealed that increased PLK1 abundance in LUAD correlated with mutations in KRAS and p53, with tumor stage, and with reduced survival in patients. In a mouse model of KRAS<sup>G12D</sup>-driven, p53-deficient LUAD, PLK1 overexpression increased tumor burden, decreased tumor cell differentiation, and reduced animal survival. PLK1 overexpression in cultured cells and mice indirectly increased the expression of the gene encoding the receptor tyrosine kinase RET by phosphorylating the transcription factor TTF-1. Signaling by RET and mutant KRAS in these tumors converged to activate the mitogen-activated protein kinase (MAPK) pathway. Pharmacological inhibition of the MAPK pathway kinase MEK combined with inhibition of either RET or PLK1 markedly suppressed tumor growth. Our findings show that PLK1 can amplify MAPK signaling and reveal a potential target for stemming progression in lung cancers with high PLK1 abundance.
Collapse
Affiliation(s)
- Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yuntong Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Corresponding author.
| |
Collapse
|
6
|
Comparative role of SOX10 gene in the gliogenesis of central, peripheral, and enteric nervous systems. Differentiation 2022; 128:13-25. [DOI: 10.1016/j.diff.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
7
|
Román-Gil MS, Pozas J, Rosero-Rodríguez D, Chamorro-Pérez J, Ruiz-Granados Á, Caracuel IR, Grande E, Molina-Cerrillo J, Alonso-Gordoa T. Resistance to RET targeted therapy in Thyroid Cancer: Molecular basis and overcoming strategies. Cancer Treat Rev 2022; 105:102372. [DOI: 10.1016/j.ctrv.2022.102372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/07/2022]
|
8
|
Li Q, Feng Y, Xue Y, Zhan X, Fu Y, Gui G, Zhou W, Richard JP, Taga A, Li P, Mao X, Maragakis NJ, Ying M. Edaravone activates the GDNF/RET neurotrophic signaling pathway and protects mRNA-induced motor neurons from iPS cells. Mol Neurodegener 2022; 17:8. [PMID: 35012575 PMCID: PMC8751314 DOI: 10.1186/s13024-021-00510-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal cord motor neurons (MNs) from human iPS cells (iPSCs) have wide applications in disease modeling and therapeutic development for amyotrophic lateral sclerosis (ALS) and other MN-associated neurodegenerative diseases. We need highly efficient MN differentiation strategies for generating iPSC-derived disease models that closely recapitulate the genetic and phenotypic complexity of ALS. An important application of these models is to understand molecular mechanisms of action of FDA-approved ALS drugs that only show modest clinical efficacy. Novel mechanistic insights will help us design optimal therapeutic strategies together with predictive biomarkers to achieve better efficacy. METHODS We induce efficient MN differentiation from iPSCs in 4 days using synthetic mRNAs coding two transcription factors (Ngn2 and Olig2) with phosphosite modification. These MNs after extensive characterization were applied in electrophysiological and neurotoxicity assays as well as transcriptomic analysis, to study the neuroprotective effect and molecular mechanisms of edaravone, an FDA-approved drug for ALS, for improving its clinical efficacy. RESULTS We generate highly pure and functional mRNA-induced MNs (miMNs) from control and ALS iPSCs, as well as embryonic stem cells. Edaravone alleviates H2O2-induced neurotoxicity and electrophysiological dysfunction in miMNs, demonstrating its neuroprotective effect that was also found in the glutamate-induced miMN neurotoxicity model. Guided by the transcriptomic analysis, we show a previously unrecognized effect of edaravone to induce the GDNF receptor RET and the GDNF/RET neurotrophic signaling in vitro and in vivo, suggesting a clinically translatable strategy to activate this key neuroprotective signaling. Notably, edaravone can replace required neurotrophic factors (BDNF and GDNF) to support long-term miMN survival and maturation, further supporting the neurotrophic function of edaravone-activated signaling. Furthermore, we show that edaravone and GDNF combined treatment more effectively protects miMNs from H2O2-induced neurotoxicity than single treatment, suggesting a potential combination strategy for ALS treatment. CONCLUSIONS This study provides methodology to facilitate iPSC differentiation and disease modeling. Our discoveries will facilitate the development of optimal edaravone-based therapies for ALS and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Li
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
| | - Yi Feng
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
| | - Yingchao Xue
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
| | - Xiping Zhan
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059 USA
| | - Yi Fu
- Department of Endocrinology, Key Laboratory of Endocrinology, NHC, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Gege Gui
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Weiqiang Zhou
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jean-Philippe Richard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Arens Taga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Pan Li
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xiaobo Mao
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Nicholas J. Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 North Broadway, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
9
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
10
|
Zhang T, Joubert P, Ansari-Pour N, Zhao W, Hoang PH, Lokanga R, Moye AL, Rosenbaum J, Gonzalez-Perez A, Martínez-Jiménez F, Castro A, Muscarella LA, Hofman P, Consonni D, Pesatori AC, Kebede M, Li M, Gould Rothberg BE, Peneva I, Schabath MB, Poeta ML, Costantini M, Hirsch D, Heselmeyer-Haddad K, Hutchinson A, Olanich M, Lawrence SM, Lenz P, Duggan M, Bhawsar PMS, Sang J, Kim J, Mendoza L, Saini N, Klimczak LJ, Islam SMA, Otlu B, Khandekar A, Cole N, Stewart DR, Choi J, Brown KM, Caporaso NE, Wilson SH, Pommier Y, Lan Q, Rothman N, Almeida JS, Carter H, Ried T, Kim CF, Lopez-Bigas N, Garcia-Closas M, Shi J, Bossé Y, Zhu B, Gordenin DA, Alexandrov LB, Chanock SJ, Wedge DC, Landi MT. Genomic and evolutionary classification of lung cancer in never smokers. Nat Genet 2021; 53:1348-1359. [PMID: 34493867 PMCID: PMC8432745 DOI: 10.1038/s41588-021-00920-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/15/2021] [Indexed: 12/26/2022]
Abstract
Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rachel Lokanga
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Hospital Federation OncoAge, Nice Hospital, University Côte d'Azur, Nice, France
| | - Dario Consonni
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela C Pesatori
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Michael Kebede
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mengying Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bonnie E Gould Rothberg
- Smilow Cancer Hospital, Yale-New Haven Health, New Haven, CT, USA
- Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Iliana Peneva
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Maria Luana Poeta
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Manuela Costantini
- Department of Urology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Hirsch
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Olanich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Petra Lenz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maire Duggan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Praphulla M S Bhawsar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laura Mendoza
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Burcak Otlu
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Thomas Ried
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
Fancelli S, Caliman E, Mazzoni F, Brugia M, Castiglione F, Voltolini L, Pillozzi S, Antonuzzo L. Chasing the Target: New Phenomena of Resistance to Novel Selective RET Inhibitors in Lung Cancer. Updated Evidence and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051091. [PMID: 33806299 PMCID: PMC7961559 DOI: 10.3390/cancers13051091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary REarranged during Transfection (RET) is an emerging target for several types of cancer, including non-small cell lung cancer (NSCLC). The recent U.S. FDA approval of pralsetinib and selpercatinib raises issues regarding the emergence of secondary mutations and amplifications involved in parallel signaling pathways and receptors, liable for resistance mechanisms. The aim of this review is to explore recent knowledge on RET resistance in NSCLC in pre-clinic and in clinical settings and accordingly, the state-of-the-art in new drugs or combination of drugs development. Abstract The potent, RET-selective tyrosine kinase inhibitors (TKIs) pralsetinib and selpercatinib, are effective against the RET V804L/M gatekeeper mutants, however, adaptive mutations that cause resistance at the solvent front RET G810 residue have been found, pointing to the need for the development of the next-generation of RET-specific TKIs. Also, as seen in EGFR- and ALK-driven NSCLC, the rising of the co-occurring amplifications of KRAS and MET could represent other escaping mechanisms from direct inhibition. In this review, we summarize actual knowledge on RET fusions, focusing on those involved in NSCLC, the results of main clinical trials of approved RET-inhibition drugs, with particular attention on recent published results of selective TKIs, and finally, pre-clinical evidence regarding resistance mechanisms and suggestion on hypothetical and feasible drugs combinations and strategies viable in the near future.
Collapse
Affiliation(s)
- Sara Fancelli
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Enrico Caliman
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Francesca Mazzoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Francesca Castiglione
- Pathological Histology and Molecular Diagnostics Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Luca Voltolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Thoraco-Pulmonary Surgery Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy; (S.F.); (E.C.); (F.M.); (M.B.); (S.P.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Correspondence: ; Tel.: +39-055-7948406
| |
Collapse
|
12
|
Morita S, Takeshima K, Ariyasu H, Furukawa Y, Kishimoto S, Tsuji T, Uraki S, Mishima H, Kinoshita A, Takahashi Y, Inaba H, Iwakura H, Furuta H, Nishi M, Doi A, Murata SI, Yoshiura KI, Akamizu T. Expression of unfolded protein response markers in the pheochromocytoma with Waardenburg syndrome: a case report. BMC Endocr Disord 2020; 20:90. [PMID: 32571297 PMCID: PMC7309974 DOI: 10.1186/s12902-020-00574-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is clinically emergent to further understand the pathological mechanism to advance therapeutic strategy for endocrine tumors. A high amount of secretory protein with tumorigenic triggers are thought to induce unfolded protein response in endoplasmic reticulum in endocrine tumors, but its evidence is limited. CASE PRESENTATION A 40-year-old woman had an approximately 10-year history of intermittent headaches. After the incidental detection of a mass in her right adrenal gland by CT scan, she was admitted to our hospital. She had been diagnosed as type 1 Waardenburg syndrome with the symptoms of dystopia canthorum, blue iris, and left sensorineural hearing loss. Urinary catecholamine levels were markedly elevated. 123I-MIBG scintigraphy showed uptake in the mass in her adrenal gland. After the adrenalectomy, her headaches disappeared and urinary catecholamine levels decreased to normal range within 2 weeks. Genome sequencing revealed germline mutation of c.A175T (p.Ile59Phe) in transcription factor PAX3 gene and somatic novel mutation of c.1893_1898del (p. Asp631_Leu633delinsGlu) in proto-oncogene RET in her pheochromocytoma. RNA expression levels of RET were increased 139 times in her pheochromocytoma compared with her normal adrenal gland. Those of unfolded protein response markers, Bip/GRP78, CHOP, ATF4, and ATF6, were also increased in the pheochromocytoma. CONCLUSION We report a rare case of pheochromocytoma with type 1 Waardenburg syndrome. This is the first case to show the activation of unfolded protein response in the pheochromocytoma with the novel somatic mutation in RET gene. Our findings may support that unfolded protein response is activated in endocrine tumors, which potentially could be a candidate of therapeutic target.
Collapse
Affiliation(s)
- Shuhei Morita
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan.
| | - Ken Takeshima
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Hiroyuki Ariyasu
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Yasushi Furukawa
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Shohei Kishimoto
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Tomoya Tsuji
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Shinsuke Uraki
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuichi Takahashi
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Hiroto Furuta
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Masahiro Nishi
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Asako Doi
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| | - Shin-Ichi Murata
- Department of Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, Wakayama, 641-8509, Japan
| |
Collapse
|
13
|
Gattelli A, Hynes NE, Schor IE, Vallone SA. Ret Receptor Has Distinct Alterations and Functions in Breast Cancer. J Mammary Gland Biol Neoplasia 2020; 25:13-26. [PMID: 32080788 DOI: 10.1007/s10911-020-09445-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Ret receptor tyrosine kinase is a proto-oncogene that participates in development of various cancers. Several independent studies have recently identified Ret as a key player in breast cancer. Although Ret overexpression and function have been under investigation, mainly in estrogen receptor positive breast cancer, a more comprehensive analysis of the impact of recurring Ret alterations in breast cancer is needed. This review consolidates the current knowledge of Ret alterations and their potential effects in breast cancer. We discuss and integrate data on Ret changes in different breast cancer subtypes and potential function in progression, as well as the participation of distinct Ret network signaling partners in these processes. We propose that it will be essential to define a shared molecular feature of tumors with alteration in Ret receptor, be this at the genetic level or via overexpression in order to design effective therapies to target the Ret pathway. Here we review experimental evidence from basic research and pre-clinical studies concentrating on Ret alterations as potential biomarkers for recurrence, and we discuss the possibility that targeting the Ret pathway might in the future become a treatment for breast cancer.
Collapse
Affiliation(s)
- Albana Gattelli
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina.
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina.
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, CH-4058, Basel, Switzerland
- University of Basel, CH-4002, Basel, Switzerland
| | - Ignacio E Schor
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA, CABA, Argentina
| | - Sabrina A Vallone
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| |
Collapse
|
14
|
Lantieri F, Gimelli S, Viaggi C, Stathaki E, Malacarne M, Santamaria G, Grossi A, Mosconi M, Sloan-Béna F, Prato AP, Coviello D, Ceccherini I. Copy number variations in candidate genomic regions confirm genetic heterogeneity and parental bias in Hirschsprung disease. Orphanet J Rare Dis 2019; 14:270. [PMID: 31767031 PMCID: PMC6878652 DOI: 10.1186/s13023-019-1205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
Background Hirschsprung Disease (HSCR) is a congenital defect of the intestinal innervations characterized by complex inheritance. Many susceptibility genes including RET, the major HSCR gene, and several linked regions and associated loci have been shown to contribute to disease pathogenesis. Nonetheless, a proportion of patients still remains unexplained. Copy Number Variations (CNVs) have already been involved in HSCR, and for this reason we performed Comparative Genomic Hybridization (CGH), using a custom array with high density probes. Results A total of 20 HSCR candidate regions/genes was tested in 55 sporadic patients and four patients with already known chromosomal aberrations. Among 83 calls, 12 variants were experimentally validated, three of which involving the HSCR crucial genes SEMA3A/3D, NRG1, and PHOX2B. Conversely RET involvement in HSCR does not seem to rely on the presence of CNVs while, interestingly, several gains and losses did co-occur with another RET defect, thus confirming that more than one predisposing event is necessary for HSCR to develop. New loci were also shown to be involved, such as ALDH1A2, already found to play a major role in the enteric nervous system. Finally, all the inherited CNVs were of maternal origin. Conclusions Our results confirm a wide genetic heterogeneity in HSCR occurrence and support a role of candidate genes in expression regulation and cell signaling, thus contributing to depict further the molecular complexity of the genomic regions involved in the Enteric Nervous System development. The observed maternal transmission bias for HSCR associated CNVs supports the hypothesis that in females these variants might be more tolerated, requiring additional alterations to develop HSCR disease.
Collapse
Affiliation(s)
- Francesca Lantieri
- Dipartimento di Scienze della Salute, sezione di Biostatistica, Universita' degli Studi di Genova, 16132, Genoa, Italy
| | - Stefania Gimelli
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Chiara Viaggi
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Elissavet Stathaki
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Michela Malacarne
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy.,Present address: U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, 16148, Italy
| | - Giuseppe Santamaria
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Alice Grossi
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Manuela Mosconi
- UOC Chirurgia Pediatrica, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Frédérique Sloan-Béna
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Alessio Pini Prato
- UOC Chirurgia Pediatrica, Istituto Giannina Gaslini, 16148, Genoa, Italy.,Present address: Children Hospital, AON SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Domenico Coviello
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy.,Present address: U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, 16148, Italy
| | - Isabella Ceccherini
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy.
| |
Collapse
|
15
|
Yang W, Chen SC, Lai JY, Ming YC, Chen JC, Chen PL. Distinctive genetic variation of long-segment Hirschsprung's disease in Taiwan. Neurogastroenterol Motil 2019; 31:e13665. [PMID: 31240788 DOI: 10.1111/nmo.13665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital disorder with the absence of myenteric and submucosal ganglion cells within distal gut. Due to multigenic inheritance and interactions, we employed next-generation sequencing (NGS) to investigate genetic backgrounds of long-segment HSCR (L-HSCR) in Taiwan. METHODS Genomic DNA extracted from peripheral blood of L-HSCR patients was subjected to capture-based NGS, based on a 31-gene panel. The variants with allele frequency <0.05 and predicted by computational methods as deleterious were further validated by Sanger sequencing in patients and their family as well to tell de novo from inherited variants. RESULTS Between 2015/04 and 2018/05, this study enrolled 23 L-HSCR patients, including 15 (65.2%) sporadic cases and 8 (34.8%) familial patients in 4 different families. Six sporadic and seven familial cases showed possible harmful variants across eight different genes, accounting for an overall detection rate of 56.5%. These variants mainly resided in SEMA3C, followed by RET, NRG1, and NTRK1. Three sporadic and 2 familial cases exhibited strong pathogenic variants as a deletional frameshift or stop codon in RET, L1CAM or NRG1. In a HSCR family, the father passed on a pathogenic RET frameshift to two daughters; however, only one developed HSCR. CONCLUSION Using NGS, we disclosed deleterious mutations such as a frameshift or stop codon in either familial or sporadic patients. Our cases with isolated L-HSCR or even total colonic aganglionosis appeared to exhibit complex patterns of inheritance and incomplete penetrance even in families with the same genetic variants, reflecting the possible effects of environmental factors and genetic modifiers.
Collapse
Affiliation(s)
- Wendy Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Jin-Yao Lai
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Ching Ming
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan.,Departments of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Wang XJ, Camilleri M. Chronic Megacolon Presenting in Adolescents or Adults: Clinical Manifestations, Diagnosis, and Genetic Associations. Dig Dis Sci 2019; 64:2750-2756. [PMID: 30953226 PMCID: PMC6744965 DOI: 10.1007/s10620-019-05605-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic megacolon is rarely encountered in clinical practice beyond infancy or early childhood. Most cases are sporadic, and some are familial megacolon and present during adolescence or adulthood. There is a need for diagnostic criteria and identifying genetic variants reported in non-Hirschsprung's megacolon. METHODS PubMed search was conducted using specific key words. RESULTS This article reviews the clinical manifestations, current diagnostic criteria, and intraluminal measurements of colonic compliance to confirm the diagnosis when the radiological imaging is not conclusive. Normal ranges of colonic compliance at 20, 30, and 44 mmHg distension are provided. The diverse genetic associations with chronic acquired megacolon beyond childhood are reviewed, including the potential association of SEMA3F gene in a family with megacolon. CONCLUSIONS Measuring colonic compliance could be standardized and simplified by measuring volume at 20, 30, and 44 mmHg distension to identify megacolon when radiology is inconclusive. Diverse genetic associations with chronic acquired megacolon beyond childhood have been identified.
Collapse
Affiliation(s)
- Xiao Jing Wang
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton Bldg., Rm. 8-110, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton Bldg., Rm. 8-110, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Bachetti T, Ceccherini I. Causative and commonPHOX2Bvariants define a broad phenotypic spectrum. Clin Genet 2019; 97:103-113. [DOI: 10.1111/cge.13633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Tiziana Bachetti
- Laboratorio Neurobiologia dello Sviluppo, Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV)Università di Genova Genova Italy
| | | |
Collapse
|
18
|
Cossais F, Lange C, Barrenschee M, Möding M, Ebsen M, Vogel I, Böttner M, Wedel T. Altered enteric expression of the homeobox transcription factor Phox2b in patients with diverticular disease. United European Gastroenterol J 2019; 7:349-357. [PMID: 31019703 DOI: 10.1177/2050640618824913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Background Diverticular disease, a major gastrointestinal disorder, is associated with modifications of the enteric nervous system, encompassing alterations of neurochemical coding and of the tyrosine receptor kinase Ret/GDNF pathway. However, molecular factors underlying these changes remain to be determined. Objectives We aimed to characterise the expression of Phox2b, an essential regulator of Ret and of neuronal subtype development, in the adult human enteric nervous system, and to evaluate its potential involvement in acute diverticulitis. Methods Site-specific gene expression of Phox2b in the adult colon was analysed by quantitative polymerase chain reaction. Colonic specimens of adult controls and patients with diverticulitis were subjected to quantitative polymerase chain reaction for Phox2b and dual-label immunochemistry for Phox2b and the neuronal markers RET and tyrosine hydroxylase or the glial marker S100β. Results The results indicate that Phox2b is physiologically expressed in myenteric neuronal and glial subpopulations in the adult enteric nervous system. Messenger RNA expression of Phox2b was increased in patients with diverticulitis and both neuronal, and glial protein expression of Phox2b were altered in these patients. Conclusions Alterations of Phox2b expression may contribute to the enteric neuropathy observed in diverticular disease. Future studies are required to characterise the functions of Phox2b in the adult enteric nervous system and to determine its potential as a therapeutic target in gastrointestinal disorders.
Collapse
Affiliation(s)
- François Cossais
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Lange
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Marie Möding
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Ebsen
- Department of Pathology, Städtisches Krankenhaus Kiel, Kiel, Germany
| | - Ilka Vogel
- Department of Surgery, Städtisches Krankenhaus Kiel, Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
19
|
GT-repeat extension in the IL11 promoter is associated with Hirschsprung's disease (HSCR). Gene 2018; 677:163-168. [DOI: 10.1016/j.gene.2018.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022]
|
20
|
Khatami F, Tavangar SM. Multiple Endocrine Neoplasia Syndromes from Genetic and Epigenetic Perspectives. Biomark Insights 2018; 13:1177271918785129. [PMID: 30013307 PMCID: PMC6043927 DOI: 10.1177/1177271918785129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple endocrine neoplasia (MEN) syndromes are infrequent inherited disorders in which more than one endocrine glands develop noncancerous (benign) or cancerous (malignant) tumors or grow excessively without forming tumors. There are 3 famous and well-known forms of MEN syndromes (MEN 1, MEN 2A, and MEN 2B) and a newly documented one (MEN4). These syndromes are infrequent and occurred in all ages and both men and women. Usually, germ line mutations that can be resulted in neoplastic transformation of anterior pituitary, parathyroid glands, and pancreatic islets in addition to gastrointestinal tract can be an indicator for MEN1. The medullary thyroid cancer (MTC) in association with pheochromocytoma and/or multiple lesions of parathyroid glands with hyperparathyroidism can be pointer of MEN2 which can be subgrouped into the MEN 2A, MEN 2B, and familial MTC syndromes. There are no distinct biochemical markers that allow identification of familial versus nonfamilial forms of the tumors, but familial MTC usually happens at a younger age than sporadic MTC. The MEN1 gene (menin protein) is in charge of MEN 1 disease, CDNK1B for MEN 4, and RET proto-oncogene for MEN 2. The focus over the molecular targets can bring some hope for both diagnosis and management of MEN syndromes. In the current review, we look at this disease and responsible genes and their cell signaling pathway involved.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Di Zanni E, Adamo A, Belligni E, Lerone M, Martucciello G, Mattioli G, Pini Prato A, Ravazzolo R, Silengo M, Bachetti T, Ceccherini I. Common PHOX2B poly-alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1770-1777. [PMID: 28433712 DOI: 10.1016/j.bbadis.2017.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023]
Abstract
HSCR is a congenital disorder of the enteric nervous system, characterized by the absence of neurons along a variable length of the gut resulting from loss-of-function RET mutations. Congenital Central Hypoventilation Syndrome (CCHS) is a rare neurocristopathy characterized by impaired response to hypercapnia and hypoxemia caused by heterozygous mutations of the PHOX2B gene, mostly polyalanine (polyA) expansions but also missense, nonsense, and frameshift mutations, while polyA contractions are common in the population and believed neutral. HSCR associated CCHS can present in patients carrying PHOX2B mutations. Indeed, RET expression is orchestrated by different transcriptional factors among which PHOX2B, thus suggesting its possible role in HSCR pathogenesis. Following the observation of HSCR patients carrying in frame trinucleotide deletions within the polyalanine stretch in exon 3 (polyA contractions), we have verified the hypothesis that these PHOX2B variants do reduce its transcriptional activity, likely resulting in a down-regulation of RET expression and, consequently, favouring the development of the HSCR phenotype. Using proper reporter constructs, we show here that the in vitro transactivation of the RET promoter by different HSCR-associated PHOX2B polyA variants has resulted significantly lower compared to the effect of PHOX2B wild type protein. In particular, polyA contractions do induce a reduced transactivation of the RET promoter, milder compared to the severe polyA expansions associated with CCHS+HSCR, and correlated with the length of the deleted trait, with a more pronounced effect when contractions are larger.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Elga Belligni
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Margherita Lerone
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Giuseppe Martucciello
- UOC Chirurgia, Istituto Giannina Gaslini, 16148 Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | | | | | - Roberto Ravazzolo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | - Margherita Silengo
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Tiziana Bachetti
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | | |
Collapse
|
22
|
Roy-Carson S, Natukunda K, Chou HC, Pal N, Farris C, Schneider SQ, Kuhlman JA. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics 2017; 18:290. [PMID: 28403821 PMCID: PMC5389105 DOI: 10.1186/s12864-017-3653-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The goal of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed. RESULTS Thousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP) w37 ]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP-negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development. CONCLUSION We report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders.
Collapse
Affiliation(s)
- Sweta Roy-Carson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kevin Natukunda
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hsien-Chao Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present Address: National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Narinder Pal
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: North Central Regional Plant Introduction Station, 1305 State Ave, Ames, IA, 50014, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.,Present address: Pioneer Hi-Bred International, Johnson, IA, 50131, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,642 Science II, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
23
|
Taylor CR, Montagne WA, Eisen JS, Ganz J. Molecular fingerprinting delineates progenitor populations in the developing zebrafish enteric nervous system. Dev Dyn 2016; 245:1081-1096. [PMID: 27565577 DOI: 10.1002/dvdy.24438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To understand the basis of nervous system development, we must learn how multipotent progenitors generate diverse neuronal and glial lineages. We addressed this issue in the zebrafish enteric nervous system (ENS), a complex neuronal and glial network that regulates essential intestinal functions. Little is currently known about how ENS progenitor subpopulations generate enteric neuronal and glial diversity. RESULTS We identified temporally and spatially dependent progenitor subpopulations based on coexpression of three genes essential for normal ENS development: phox2bb, sox10, and ret. Our data suggest that combinatorial expression of these genes delineates three major ENS progenitor subpopulations, (1) phox2bb + /ret- /sox10-, (2) phox2bb + /ret + /sox10-, and (3) phox2bb + /ret + /sox10+, that reflect temporal progression of progenitor maturation during migration. We also found that differentiating zebrafish neurons maintain phox2bb and ret expression, and lose sox10 expression. CONCLUSIONS Our data show that zebrafish enteric progenitors constitute a heterogeneous population at both early and late stages of ENS development and suggest that marker gene expression is indicative of a progenitor's fate. We propose that a progenitor's expression profile reveals its developmental state: "younger" wave front progenitors express all three genes, whereas more mature progenitors behind the wave front selectively lose sox10 and/or ret expression, which may indicate developmental restriction. Developmental Dynamics 245:1081-1096, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charlotte R Taylor
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - William A Montagne
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA. .,Current address: Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
25
|
Enguix-Riego MV, Torroglosa A, Fernández RM, Moya-Jiménez MJ, de Agustín JC, Antiñolo G, Borrego S. Identification of different mechanisms leading to PAX6 down-regulation as potential events contributing to the onset of Hirschsprung disease. Sci Rep 2016; 6:21160. [PMID: 26879676 PMCID: PMC4754768 DOI: 10.1038/srep21160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
Hirschsprung disease (HSCR) is attributed to a failure of neural crest derived cells to migrate, proliferate, differentiate or survive in the bowel wall during embryonic Enteric Nervous System (ENS) development. This process requires a wide and complex variety of molecules and signaling pathways which are activated by transcription factors. In an effort to better understand the etiology of HSCR, we have designed a study to identify new transcription factors participating in different stages of the colonization process. A differential expression study has been performed on a set of transcription factors using Neurosphere-like bodies from both HSCR and control patients. Differential expression levels were found for CDYL, MEIS1, STAT3 and PAX6. A significantly lower expression level for PAX6 in HSCR patients, would suit with the finding of an over-representation of the larger tandem (AC)m(AG)n repeats within the PAX6 promoter in HSCR patients, with the subsequent loss of protein P300 binding. Alternatively, PAX6 is a target for DNMT3B-dependant methylation, a process already proposed as a mechanism with a role in HSCR. Such decrease in PAX6 expression may influence in the proper function of signaling pathways involved in ENS with the confluence of additional genetic factors to the manifestation of HSCR phenotype.
Collapse
Affiliation(s)
- María Valle Enguix-Riego
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - Raquel María Fernández
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, Seville, 41013, Spain
| | - Juan Carlos de Agustín
- Department of Pediatric Surgery, General University Hospital Gregorio Marañon, Madrid, 28009, Spain
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine. Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| |
Collapse
|
26
|
Huang J, Dang R, Torigoe D, Lei C, Lan X, Chen H, Sasaki N, Wang J, Agui T. Identification of genetic loci affecting the severity of symptoms of Hirschsprung disease in rats carrying Ednrbsl mutations by quantitative trait locus analysis. PLoS One 2015; 10:e0122068. [PMID: 25790447 PMCID: PMC4366197 DOI: 10.1371/journal.pone.0122068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/12/2015] [Indexed: 01/17/2023] Open
Abstract
Hirschsprung’s disease (HSCR) is a congenital disease in neonates characterized by the absence of the enteric ganglia in a variable length of the distal colon. This disease results from multiple genetic interactions that modulate the ability of enteric neural crest cells to populate developing gut. We previously reported that three rat strains with different backgrounds (susceptible AGH-Ednrbsl/sl, resistant F344-Ednrbsl/sl, and LEH-Ednrbsl/sl) but the same null mutation of Ednrb show varying severity degrees of aganglionosis. This finding suggests that strain-specific genetic factors affect the severity of HSCR. Consistent with this finding, a quantitative trait locus (QTL) for the severity of HSCR on chromosome (Chr) 2 was identified using an F2 intercross between AGH and F344 strains. In the present study, we performed QTL analysis using an F2 intercross between the susceptible AGH and resistant LEH strains to identify the modifier/resistant loci for HSCR in Ednrb-deficient rats. A significant locus affecting the severity of HSCR was also detected within the Chr 2 region. These findings strongly suggest that a modifier gene of aganglionosis exists on Chr 2. In addition, two potentially causative SNPs (or mutations) were detected upstream of a known HSCR susceptibility gene, Gdnf. These SNPs were possibly responsible for the varied length of gut affected by aganglionosis.
Collapse
Affiliation(s)
- Jieping Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (RD); (CL)
| | - Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (RD); (CL)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Jinxi Wang
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
27
|
Cheng WWC, Tang CSM, Gui HS, So MT, Lui VCH, Tam PKH, Garcia-Barcelo MM. Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung disease-like phenotype. World J Gastroenterol 2015; 21:2040-2046. [PMID: 25717236 PMCID: PMC4326138 DOI: 10.3748/wjg.v21.i7.2040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/01/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of IKBKAP (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein) in the development of enteric nervous system (ENS) and Hirschsprung disease (HSCR).
METHODS: In this study, we injected a morpholino that blocked the translation of ikbkap protein to 1-cell stage zebrafish embryos. The phenotype in the ENS was analysed by antibody staining of the pan-neuronal marker HuC/D followed by enteric neuron counting. The mean numbers of enteric neurons were compared between the morphant and the control. We also studied the expressions of ret and phox2bb, which are involved in ENS development, in the ikbkap morpholino injected embryos by quantitative reverse transcriptase polymerase chain reaction and compared them with the control.
RESULTS: We observed aganglionosis (χ2, P < 0.01) and a reduced number of enteric neurons (38.8 ± 9.9 vs 50.2 ± 17.3, P < 0.05) in the zebrafish embryos injected with ikbkap translation-blocking morpholino (morphant) when compared with the control embryos. Specificity of the morpholino was confirmed by similar results obtained using a second non-overlapping morpholino that blocked the translation of ikbkap. We further studied the morphant by analysing the expression levels of genes involved in ENS development such as ret, phox2bb and sox10, and found that phox2bb, the ortholog of human PHOX2B, was significantly down-regulated (0.51 ± 0.15 vs 1.00 ± 0, P < 0.05). Although we also observed a reduction in the expression of ret, the difference was not significant.
CONCLUSION: Loss of IKBKAP contributed to HSCR as demonstrated by functional analysis in zebrafish embryos.
Collapse
|
28
|
Fernández LP, López-Márquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 2015; 11:29-42. [PMID: 25350068 DOI: 10.1038/nrendo.2014.186] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.
Collapse
Affiliation(s)
- Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
29
|
Li Y, Kido T, Garcia-Barcelo MM, Tam PKH, Tabatabai ZL, Lau YFC. SRY interference of normal regulation of the RET gene suggests a potential role of the Y-chromosome gene in sexual dimorphism in Hirschsprung disease. Hum Mol Genet 2014; 24:685-97. [PMID: 25267720 DOI: 10.1093/hmg/ddu488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Hirschsprung disease (HSCR) is a complex congenital disorder, arising from abnormalities in enteric nervous system (ENS) development. There is a gender disparity among the patients, with the male to female ratio as high as 5 : 1. Loss-of-function mutations of HSCR genes and haploinsufficiency of their gene products are the primary pathogenic mechanisms for disease development. Recent studies identified over half of the HSCR disease susceptibility genes as targets for the sex-determining factor SRY, suggesting that this Y-encoded transcription factor could be involved in sexual dimorphism in HSCR. Among the SRY targets, the tyrosine kinase receptor RET represents the most important disease gene, whose mutations account for half of the familial and up to one-third of the sporadic forms of HSCR. RET is regulated by a distal and a proximal enhancer at its promoter, in which PAX3 and NKX2-1 are the resident transcription factors respectively. We show that the SRY-box 10 (SOX10) co-activator interacts and forms transcriptional complexes with PAX3 and NKX2-1 in a sequence-independent manner and exacerbates their respective transactivation activities on the RET promoter. SRY competitively displaces SOX10 in such transcription complexes and represses their regulatory functions on RET. Hence SRY could be a Y-located negative modifier of RET expression; and if it is ectopically expressed during ENS development, such SRY repression could result in RET protein haploinsufficiency and promotion of HSCR development, thereby contributing to sexual dimorphism in HSCR.
Collapse
Affiliation(s)
- Yunmin Li
- Department of Medicine Institute for Human Genetics, University of California, San Francisco, USA and
| | - Tatsuo Kido
- Department of Medicine Institute for Human Genetics, University of California, San Francisco, USA and
| | - Maria M Garcia-Barcelo
- Division of Pediatric Surgery, Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Paul K H Tam
- Division of Pediatric Surgery, Department of Surgery, The University of Hong Kong, Hong Kong, China
| | | | - Yun-Fai Chris Lau
- Department of Medicine Institute for Human Genetics, University of California, San Francisco, USA and
| |
Collapse
|
30
|
Zhang SC, Chen F, Jiang KL, Yuan ZW, Wang WL. Comparative proteomic profiles of the normal and aganglionic hindgut in human Hirschsprung disease. Pediatr Res 2014; 75:754-61. [PMID: 24608570 DOI: 10.1038/pr.2014.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/04/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is the third most common congenital disorder of the gastrointestinal tract. This study aims to elucidate changes in protein expression between the normal and aganglionic hindgut in human HSCR. METHODS The biopsies were obtained from the normal and aganglionic hindgut in human HSCR, and the comparative proteomics were analyzed by mass spectrometry (MS)-based two-dimensional gel electrophoresis (2DE). RESULTS A total of 932-986 protein spots were identified in each of the gut segments, among which 30 spots had at least an eightfold difference in volume (%). Of the 30 differentially expressed spots, 15 proteins were identified via sequence analysis. Among these 15 proteins, eight were upregulated and seven were downregulated in the aganglionic group. The well-represented classes included biomarkers of enteric ganglions, extracellular matrix proteins, LIM domain proteins, serum proteins, and other pleiotropic proteins. Five proteins were selected and verified by western blotting and real-time PCR, and the results were consistent with the results of 2DE. CONCLUSION MS-based 2DE can help to identify pathological relevant proteins in HSCR; it defines an extensive protein catalog of the normal and aganglionic hindgut and may constitute the basis to understand pathophysiological mechanisms related to the HSCR.
Collapse
Affiliation(s)
- Shu-Cheng Zhang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang Chen
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kai-Lei Jiang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zheng-Wei Yuan
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Lin Wang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Young GT, Gutteridge A, Fox HDE, Wilbrey AL, Cao L, Cho LT, Brown AR, Benn CL, Kammonen LR, Friedman JH, Bictash M, Whiting P, Bilsland JG, Stevens EB. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol Ther 2014; 22:1530-1543. [PMID: 24832007 PMCID: PMC4435594 DOI: 10.1038/mt.2014.86] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/02/2014] [Indexed: 12/25/2022] Open
Abstract
The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.
Collapse
Affiliation(s)
| | | | - Heather DE Fox
- Pfizer Neusentis, Cambridge, UK; Current address: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Julia H Friedman
- Oncology Research Unit, Pfizer Global Research and Development, Pearl River, NY, USA
| | | | | | | | | |
Collapse
|
32
|
Zhu JJ, Kam MK, Garcia-Barceló MM, Tam PKH, Lui VCH. HOXB5 binds to multi-species conserved sequence (MCS+9.7) of RET gene and regulates RET expression. Int J Biochem Cell Biol 2014; 51:142-9. [PMID: 24794774 DOI: 10.1016/j.biocel.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 12/20/2022]
Abstract
RET gene is crucial for the development of enteric nervous system, and dys-regulation of RET expression causes Hirschsprung disease. HOXB5 regulates RET transcription, and perturbations in transcriptional regulation by HOXB5 caused reduced RET expression and defective enteric nervous system development in mice. The mechanisms by which HOXB5 regulate RET transcription are unclear. Thus, unraveling the regulatory mechanisms of HOXB5 on RET transcription could lead to a better understanding of the etiology of Hirschsprung disease. In this study, we identified and confirmed HOXB5 binding to the multi-species conserved sequence (MCS+9.7) in the first intron of the RET gene. We developed a RET mini-gene reporter system, and showed that MCS+9.7 enhanced HOXB5 trans-activation from RET promoter in human neuroblastoma SK-N-SH cells and in chick embryos. The deletion of HOXB5 binding site interfered with HOXB5 trans-activation. Furthermore, transfection of HOXB5 induced endogenous RET transcription, enhanced the co-precipitation of TATA-box binding protein with the transcription start site of RET, and induced histone H3K4 trimethylation in chromatin regions upstream and downstream of RET transcription start site. In conclusion, (i) HOXB5 physically interacted with MCS+9.7 and enhanced RET transcription, (ii) HOXB5 altered chromatin conformation and histone modification of RET locus, which could facilitate the formation of transcription complex, and enhance RET transcription, (iii) expression of RET was mediated by a complex regulatory network of transcription factors functioning in a synergistic, additive and/or independent manners. Hence, dys-regulation of RET expression by HOXB5 could result in insufficient RET expression and Hirschsprung disease.
Collapse
Affiliation(s)
- Joe Jiang Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Faculty of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Mandy KaMan Kam
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Maria-Mercè Garcia-Barceló
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Paul Kwong Hang Tam
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Vincent Chi Hang Lui
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
33
|
Abstract
The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers - most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET.
Collapse
Affiliation(s)
- Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
34
|
Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol 2013; 382:330-43. [DOI: 10.1016/j.ydbio.2013.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
|
35
|
Gisser JM, Cohen AR, Yin H, Gariepy CE. A novel bidirectional interaction between endothelin-3 and retinoic acid in rat enteric nervous system precursors. PLoS One 2013; 8:e74311. [PMID: 24040226 PMCID: PMC3767828 DOI: 10.1371/journal.pone.0074311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/02/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung's aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. METHODS Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. RESULTS Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. CONCLUSIONS A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations.
Collapse
Affiliation(s)
- Jonathan M. Gisser
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| | - Ariella R. Cohen
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Han Yin
- The Biostatistics Shared Resources, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cheryl E. Gariepy
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
36
|
Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 2013; 305:G1-24. [PMID: 23639815 PMCID: PMC3725693 DOI: 10.1152/ajpgi.00452.2012] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations.
Collapse
Affiliation(s)
- Jonathan I. Lake
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and ,2Department of Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
Induction of RET dependent and independent pro-inflammatory programs in human peripheral blood mononuclear cells from Hirschsprung patients. PLoS One 2013; 8:e59066. [PMID: 23527089 PMCID: PMC3601093 DOI: 10.1371/journal.pone.0059066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/12/2013] [Indexed: 12/22/2022] Open
Abstract
Hirschsprung disease (HSCR) is a rare congenital anomaly characterized by the absence of enteric ganglia in the distal intestinal tract. While classified as a multigenic disorder, the altered function of the RET tyrosine kinase receptor is responsible for the majority of the pathogenesis of HSCR. Recent evidence demonstrate a strong association between RET and the homeostasis of immune system. Here, we utilize a unique cohort of fifty HSCR patients to fully characterize the expression of RET receptor on both innate (monocytes and Natural Killer lymphocytes) and adaptive (B and T lymphocytes) human peripheral blood mononuclear cells (PBMCs) and to explore the role of RET signaling in the immune system. We show that the increased expression of RET receptor on immune cell subsets from HSCR individuals correlates with the presence of loss-of-function RET mutations. Moreover, we demonstrate that the engagement of RET on PBMCs induces the modulation of several inflammatory genes. In particular, RET stimulation with glial-cell line derived neurotrophic factor family (GDNF) and glycosyl-phosphatidylinositol membrane anchored co-receptor α1 (GFRα1) trigger the up-modulation of genes encoding either for chemokines (CCL20, CCL2, CCL3, CCL4, CCL7, CXCL1) and cytokines (IL-1β, IL-6 and IL-8) and the down-regulation of chemokine/cytokine receptors (CCR2 and IL8-Rα). Although at different levels, the modulation of these “RET-dependent genes” occurs in both healthy donors and HSCR patients. We also describe another set of genes that, independently from RET stimulation, are differently regulated in healthy donors versus HSCR patients. Among these “RET-independent genes”, there are CSF-1R, IL1-R1, IL1-R2 and TGFβ-1, whose levels of transcripts were lower in HSCR patients compared to healthy donors, thus suggesting aberrancies of inflammatory responses at mucosal level. Overall our results demonstrate that immune system actively participates in the physiopathology of HSCR disease by modulating inflammatory programs that are either dependent or independent from RET signaling.
Collapse
|
38
|
Fernández RM, Mathieu Y, Luzón-Toro B, Núñez-Torres R, González-Meneses A, Antiñolo G, Amiel J, Borrego S. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. PLoS One 2013; 8:e54043. [PMID: 23342068 PMCID: PMC3544660 DOI: 10.1371/journal.pone.0054043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is a congenital malformation of the hindgut resulting from a disruption of neural crest cell migration during embryonic development. It has a complex genetic aetiology with several genes involved in its pathogenesis. PHOX2B plays a key function in the development of neural crest derivatives, and heterozygous mutations cause a complex dysautonomia associating HSCR, Congenital Central Hypoventilation Syndrome (CCHS) and neuroblastoma (NB) in various combinations. In order to determine the role of PHOX2B in isolated HSCR, we performed a mutational screening in a cohort of 207 Spanish HSCR patients. Our most relevant finding has been the identification of a de novo and novel deletion (c.393_410del18) in a patient with HSCR. Results of in silico and functional assays support its pathogenic effect related to HSCR. Therefore our results support that PHOX2B loss-of-function is a rare cause of HSCR phenotype.
Collapse
Affiliation(s)
- Raquel María Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Yves Mathieu
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Rocío Núñez-Torres
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | | | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Jeanne Amiel
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
- * E-mail:
| |
Collapse
|
39
|
Barlow AJ, Dixon J, Dixon M, Trainor PA. Tcof1 acts as a modifier of Pax3 during enteric nervous system development and in the pathogenesis of colonic aganglionosis. Hum Mol Genet 2013; 22:1206-17. [PMID: 23283078 DOI: 10.1093/hmg/dds528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hirschsprung disease (HSCR) is a human congenital disorder, defined by the absence of ganglia from variable lengths of the colon. These ganglia comprise the enteric nervous system (ENS) and are derived from migratory neural crest cells (NCCs). The inheritance of HSCR is complex, often non-Mendelian and characterized by variable penetrance. Although extensive research has identified many key players in the pathogenesis of Hirschsprung disease, a large number of cases remain genetically undefined. Therefore, additional unidentified genes or modifiers must contribute to the etiology and pathogenesis of Hirschsprung disease. We have discovered that Tcof1 may be one such modifier. Haploinsufficiency of Tcof1 in mice results in a reduction of vagal NCCs and their delayed migration along the length of the gut during early development. This alone, however, is not sufficient to cause colonic aganglionosis as alterations in the balance of NCC proliferation and differentiation ensures NCC colonize the entire length of the gut of Tcof1(+/-) mice by E18.5. In contrast, Tcof1 haploinsufficiency is able to sensitize Pax3(+/-) mice to colonic aganglionosis. Although, Pax3 heterozygous mice do not show ENS defects, compound Pax3;Tcof1 heterozygous mice exhibit cumulative apoptosis which severely reduces the NCC population that migrates into the foregut. In addition, the proliferative capacity of these NCC is also diminished. Taken together with the opposing effects of Pax3 and Tcof1 on NCC differentiation, the synergistic haploinsufficiency of Tcof1 and Pax3 results in colonic aganglionosis in mice and may contribute to the pathogenesis of Hirschsprung disease.
Collapse
Affiliation(s)
- Amanda J Barlow
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
40
|
Moore SW. Chromosomal and related Mendelian syndromes associated with Hirschsprung's disease. Pediatr Surg Int 2012; 28:1045-58. [PMID: 23001136 DOI: 10.1007/s00383-012-3175-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Hirschsprung's disease (HSCR) is a fairly frequent cause of intestinal obstruction in children. It is characterized as a sex-linked heterogonous disorder with variable severity and incomplete penetrance giving rise to a variable pattern of inheritance. Although Hirschsprung's disease occurs as an isolated phenotype in at least 70% of cases, it is not infrequently associated with a number of congenital abnormalities and associated syndromes, demonstrating a spectrum of congenital anomalies. Certain of these syndromic phenotypes have been linked to distinct genetic sites, indicating underlying genetic associations of the disease and probable gene-gene interaction, in its pathogenesis. These associations with HSCR include Down's syndrome and other chromosomal anomalies, Waardenburg syndrome and other Dominant sensorineural deafness, the Congenital Central Hypoventilation and Mowat-Wilson and other brain-related syndromes, as well as the MEN2 and other tumour associations. A number of other autosomal recessive syndromes include the Shah-Waardenburg, the Bardet-Biedl and Cartilage-hair hypoplasia, Goldberg-Shprintzen syndromes and other syndromes related to cholesterol and fat metabolism among others. The genetics of Hirschsprung's disease are highly complex with the majority of known genetic sites relating to the main susceptibility pathways (RET an EDNRB). Non-syndromic non-familial, short-segment HSCR appears to represent a non-Mendelian condition with variable expression and sex-dependent penetrance. Syndromic and familial forms, on the other hand, have complex patterns of inheritance and being reported as autosomal dominant, recessive and polygenic patterns of inheritance. The phenotypic variability and incomplete penetrance observed in Hirschsprung's disease could also be explained by the involvement of modifier genes, especially in its syndromic forms. In this review, we look at the chromosomal and Mendelian associations and their underlying signalling pathways, to obtain a better understanding of the pathogenetic mechanisms involved in developing aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- S W Moore
- Division of Pediatric Surgery, Department of Surgical Sciences, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, South Africa.
| |
Collapse
|
41
|
Jo MH, Lee CH, Ali BA, Alarifi SA, Al-Khedhairy AA, Kim S. A bioinformatics approach for in vivo imaging of endogenous MicroRNA targets during neurogenesis. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
42
|
Wallace AS, Anderson RB. Genetic interactions and modifier genes in Hirschsprung's disease. World J Gastroenterol 2011; 17:4937-44. [PMID: 22174542 PMCID: PMC3236992 DOI: 10.3748/wjg.v17.i45.4937] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/09/2011] [Accepted: 06/16/2011] [Indexed: 02/06/2023] Open
Abstract
Hirschsprung’s disease is a congenital disorder that occurs in 1:5000 live births. It is characterised by an absence of enteric neurons along a variable region of the gastrointestinal tract. Hirschsprung’s disease is classified as a multigenic disorder, because the same phenotype is associated with mutations in multiple distinct genes. Furthermore, the genetics of Hirschsprung’s disease are highly complex and not strictly Mendelian. The phenotypic variability and incomplete penetrance observed in Hirschsprung’s disease also suggests the involvement of modifier genes. Here, we summarise the current knowledge of the genetics underlying Hirschsprung’s disease based on human and animal studies, focusing on the principal causative genes, their interactions, and the role of modifier genes.
Collapse
|
43
|
Wang C, Mayer JA, Mazumdar A, Brown PH. The rearranged during transfection/papillary thyroid carcinoma tyrosine kinase is an estrogen-dependent gene required for the growth of estrogen receptor positive breast cancer cells. Breast Cancer Res Treat 2011; 133:487-500. [PMID: 21947652 DOI: 10.1007/s10549-011-1775-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/08/2011] [Indexed: 12/22/2022]
Abstract
The rearranged during transfection/papillary thyroid carcinoma (RET/PTC) tyrosine kinase is an oncogene implicated in the tumorigenesis of thyroid cancer. Recent studies by us and others have shown that RET/PTC kinase expression is induced by estrogen in breast cancer cells. Due to the critical involvement of estrogen-regulated genes in the pathogenesis of breast cancer, we investigated the expression, regulation, and function of RET/PTC kinase in breast cancer cells. We found that RET/PTC kinase expression correlates with estrogen receptor (ER) expression in breast cancer cells and tumor specimens, and that RET/PTC kinase expression is associated with a poor prognosis in ER-positive breast cancer patients. We found that estrogen rapidly induces RET/PTC kinase expression in an ER-dependent manner in breast cancer cells and that this induction is through a transcriptional regulatory mechanism. Using reporter assays, small interfering RNA (siRNA) assays, and chromatin immunoprecipitation (ChIP) assays, we demonstrated the necessity of crosstalk between ER and the forkhead box A1 (FOXA1) transcription factor in regulating RET/PTC kinase expression. In functional studies, increased expression of RET/PTC kinase induced by estrogen stimulation resulted in elevated phosphorylation of multiple downstream kinase signaling pathways. Conversely, knockdown of RET/PTC expression was associated with the inhibition of these same kinase signaling pathways, and, in fact, decreased the stimulatory effect of estrogen on the proliferation of ER-positive breast cancer cells. These results demonstrate a novel pathway of ER and FOXA1 transcription factor crosstalk in regulating RET/PTC kinase expression, and demonstrate that RET/PTC kinase is a critical regulator for the proliferation of ER-positive breast cancer cells. Taken together, our study suggests that RET/PTC kinase may serve as a novel prognostic biomarker and therapeutic target for prevention and treatment of ER-positive breast cancer.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Clinical Cancer Prevention, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Zhu J, Garcia-Barcelo MM, Tam PKH, Lui VCH. HOXB5 cooperates with NKX2-1 in the transcription of human RET. PLoS One 2011; 6:e20815. [PMID: 21677782 PMCID: PMC3108997 DOI: 10.1371/journal.pone.0020815] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/11/2011] [Indexed: 11/18/2022] Open
Abstract
The enteric nervous system (ENS) regulates peristaltic movement of the gut, and abnormal ENS causes Hirschsprung's disease (HSCR) in newborns. HSCR is a congenital complex genetic disorder characterised by a lack of enteric ganglia along a variable length of the intestine. The receptor tyrosine kinase gene (RET) is the major HSCR gene and its expression is crucial for ENS development. We have previously reported that (i) HOXB5 transcription factor mediates RET expression, and (ii) mouse with defective HOXB5 activity develop HSCR phenotype. In this study, we (i) elucidate the underlying mechanisms that HOXB5 mediate RET expression, and (ii) examine the interactions between HOXB5 and other transcription factors implicated in RET expression. We show that human HOXB5 binds to the promoter region 5′ upstream of the binding site of NKX2-1 and regulates RET expression. HOXB5 and NKX2-1 form a protein complex and mediate RET expression in a synergistic manner. HSCR associated SNPs at the NKX2-1 binding site (-5G>A rs10900296; -1A>C rs10900297), which reduce NKX2-1 binding, abolish the synergistic trans-activation of RET by HOXB5 and NKX2-1. In contrast to the synergistic activation of RET with NKX2-1, HOXB5 cooperates in an additive manner with SOX10, PAX3 and PHOX2B in trans-activation of RET promoter. Taken together, our data suggests that HOXB5 in coordination with other transcription factors mediates RET expression. Therefore, defects in cis- or trans-regulation of RET by HOXB5 could lead to reduction of RET expression and contribute to the manifestation of the HSCR phenotype.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Surgery, Development & Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Maria-Mercedes Garcia-Barcelo
- Department of Surgery, Development & Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development & Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong Hang Tam
- Department of Surgery, Development & Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development & Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent Chi Hang Lui
- Department of Surgery, Development & Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development & Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
45
|
Abel F, Dalevi D, Nethander M, Jörnsten R, De Preter K, Vermeulen J, Stallings R, Kogner P, Maris J, Nilsson S. A 6-gene signature identifies four molecular subgroups of neuroblastoma. Cancer Cell Int 2011; 11:9. [PMID: 21492432 PMCID: PMC3095533 DOI: 10.1186/1475-2867-11-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/14/2011] [Indexed: 12/03/2022] Open
Abstract
Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.
Collapse
Affiliation(s)
- Frida Abel
- Department of Clinical Genetics, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kojima N, Saito H, Nishikawa M, Yuri S, Jo OD, Pham PC, Yanagawa N, Yanagawa N. Lithium induces c-Ret expression in mouse inner medullary collecting duct cells. Cell Signal 2010; 23:371-9. [PMID: 20940044 DOI: 10.1016/j.cellsig.2010.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
We found in our present study that lithium (Li(+)) induced the expression of endogenous c-Ret, a tyrosine kinase receptor, in murine inner medullary collecting duct (mIMCD-3) cells. Delineation of the promoter region required for the effect of Li(+) identified a positive regulatory element within 180bp upstream of the transcription initiation site. This region contained three putative GC-rich Sp1 binding sites found to be essential for c-Ret induction by Li(+). The effect of Li(+) was mediated through glycogen synthase kinase 3β (GSK-3β) inhibition, although there was no biding site for T cell factor/lymphoid enhancer factor (TCF/LEF) in the 180bp. We found that Li(+) activated the mammalian target of rapamycin (mTOR) pathway via GSK-3β in these cells, and the effect of Li(+) to induce c-Ret was amenable to the inhibitory effect of the mTOR inhibitor, rapamycin. We also found that alterations in both cellular β-catenin levels and mTOR activities affected the effect of Li(+) on c-Ret transcription in a cooperative manner. In summary, our results show that Li(+) can induce c-Ret expression in mIMCD-3 cells through both β-catenin- and mTOR-dependent pathways downstream of GSK-3β inhibition, which act synergistically on the GC-rich Sp1 binding elements in the promoter region.
Collapse
Affiliation(s)
- Nobuhiko Kojima
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|