1
|
Zhang X, Wang L, Zong R, Zhang Z, Cheng F, Song C, Sun G, Gao H. A rapid protocol for distinguishing the quality of Sanshengyin and identifying potential markers by the "three-in-one" fingerprint profiles with antioxidant activity. J Chromatogr A 2025; 1740:465553. [PMID: 39615417 DOI: 10.1016/j.chroma.2024.465553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025]
Abstract
It is imperative to establish a standardized model for the quality control of traditional prescriptions, exemplified by Sanshengyin (SSY). This study introduces a multi-component and multi-level "three-in-one" fingerprint quality evaluation system designed to predict the comprehensive quality of traditional Chinese medicine (TCM). Initially, a five-wavelength high-performance liquid chromatography (HPLC) fusion spectrum was developed to enhance the stability of SSY within the chromatographic system. Additionally, a quantification method was employed to streamline the calculation and visualization processes of ultraviolet (UV) and infrared (IR) spectral systems. Through this approach, chromatographic and spectral fingerprints were amalgamated into a holistic analytical strategy. The average linear quantitative fingerprint method (ALQFM) was employed to swiftly differentiate the grades of 17 sample batches. Additionally, six quality markers were identified for content determination. Correlation analysis between the total content of these quality markers and macroscopic quantitative similarity was conducted to assess the accuracy of ALQFM in evaluating the quality of TCM represented by SSY. Finally, the binary correlation analysis model was employed to investigate the correlation between antioxidant activity and fingerprint profiles, facilitating the prediction of potential bioactive compounds in SSY. This research offers a straightforward, cost-effective, and holistic approach for assessing the quality consistency of TCM. The method is recommended for adoption by medical institutions and enterprises to enhance the standardization of TCM quality control.
Collapse
Affiliation(s)
- Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050011, China
| | - Lingjiao Wang
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050011, China; Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhang Jiakou 075000, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050011, China
| | - Fangfang Cheng
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Chaohui Song
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
2
|
Wang C, Liu Y, Wang X, Chen Z, Zhao Z, Sun H, Su J, Zhao D. Influence of Sulfur Fumigation on Angelicae Dahuricae Radix: Insights from Chemical Profiles, MALDI-MSI and Anti-Inflammatory Activities. Molecules 2024; 30:22. [PMID: 39795081 PMCID: PMC11720985 DOI: 10.3390/molecules30010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Angelicae Dahuricae Radix (ADR) is used as both a traditional Chinese medicine and a food ingredient in China and East Asian countries. ADR is generally sun-dried post-harvest but is sometimes sulfur-fumigated to prevent decay and rot. Although there are some studies on the effect of sulfur fumigation on ADR, they are not comprehensive. METHODS This study used HPLC fingerprinting, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), in vitro anti-inflammatory assays, and metabolite analysis in blood based on UPLC-MS/MS to assess the impact of sulfur fumigation on the active ingredients of ADR. RESULTS There were significant decreases in specific coumarins and amino acids, particularly byakangelicol, oxypeucedanin, L-proline, and L-arginine, following sulfur fumigation. Among the 185 metabolites in blood, there were 30 different compounds, and oxypeucedanin was the most obvious component to decrease after sulfur fumigation. ADR showed anti-inflammatory activity regardless of sulfur fumigation. However, the effects on the production of cytokines in LPS-induced RAW264.7 cells were different. CONCLUSIONS Chemometric analysis and in vitro anti-inflammatory studies suggested that byakangelicol and oxypeucedanin could serve as potential quality markers for identifying sulfur-fumigated ADR. These findings provide a chemical basis for comprehensive safety and functional evaluations of sulfur-fumigated ADR, supporting further research in this field.
Collapse
Affiliation(s)
- Changshun Wang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050227, China; (Y.L.); (X.W.); (Z.Z.); (H.S.); (J.S.)
| | - Yongli Liu
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050227, China; (Y.L.); (X.W.); (Z.Z.); (H.S.); (J.S.)
| | - Xiaolei Wang
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050227, China; (Y.L.); (X.W.); (Z.Z.); (H.S.); (J.S.)
| | - Zhenhe Chen
- Shimadzu China Innovation Center, Shimadzu China, Beijing 100020, China;
| | - Zhenxia Zhao
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050227, China; (Y.L.); (X.W.); (Z.Z.); (H.S.); (J.S.)
| | - Huizhu Sun
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050227, China; (Y.L.); (X.W.); (Z.Z.); (H.S.); (J.S.)
| | - Jian Su
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050227, China; (Y.L.); (X.W.); (Z.Z.); (H.S.); (J.S.)
| | - Ding Zhao
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
| |
Collapse
|
3
|
Ji Z, Sun B, Yang T, Li X, Zhang Z, Bao M, Zhao L, Lou H, Li Y, Sun G, Huang J. Holistic quality assessment and monitoring of YiXinShu capsule based on three-dimensional fingerprints combined with quantitative analysis, antioxidant activity and chemometrics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118630. [PMID: 39053720 DOI: 10.1016/j.jep.2024.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE YiXinShu capsule (YXSC), originally from the classical TCM formula named "Sheng-Mai-San", has been extensively utilized in clinic for the treatment of cardiovascular diseases. However, there were few reports about the quality assessment of YXSCs both internationally and domestically. AIM OF THE STUDY The objective was to develop a multi-strategy platform incorporating systematic quantitative fingerprint analysis and antioxidant activity determination, with chemometric analysis and bivariate correlation analysis as the auxiliary approaches, to assess and monitor the quality of YXSCs. MATERIALS AND METHODS Firstly, according to the Chinese Pharmacopoeia (2020 edition), 12 key indicator components from seven herb medicines were quantified by HPLC method. Then, three-dimensional fingerprints comprising five-wavelength fusion fingerprint (FWF-FP), electrochemical fingerprint (EC-FP) and Differential Scanning Calorimetry fingerprint (DSC-FP) were established to assess and monitor YXSCs using systematically quantified fingerprint method (SQFM) and principal component analysis (PCA). Moreover, by integrating the analysis of the three-dimensional fingerprints, the quality of YXSCs from different batches was effectively screened. Finally, the antioxidant activity of this TCM was assessed through DPPH and ABTS methods, and the L-ascorbic acid equivalent antioxidant capacity (AEAC) values were compared to evaluate the antioxidant activities of the two methods. A Partial Least Squares (PLS) model was used to develop the spectrum-activity relationship between FWF-FP and AEAC, and a bivariate correlation analysis (BCA) was used to assess the correlation between FWF-FP and EC-FP. RESULTS The key indexes including tanshinone I, tol, toe, Atp, first exothermic peak, and second exothermic peak can differentiate between various batches of YXSCs based on their three-dimensional fingerprint profiles. The integration evaluation results from 42 batches of YXSCs were categorized into 2-5 grades, indicating good quality consistency across different batches. In vitro studies have indicated a significant antioxidant activity capacity of YXSCs. The PLS model revealed that 37 out of the 41 fingerprint peaks exhibited antioxidant activity. The overall trend of BCA was consistent with PLS model results. CONCLUSION This research presents a scientific and holistic strategy for the quality consistency evaluation of YXSCs, thereby offering an effective approach for the thorough evaluation of TCMs.
Collapse
Affiliation(s)
- Zhengchao Ji
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China
| | - Beihan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Ting Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xuan Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Zhenwei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Mengfan Bao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Liping Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Hongyin Lou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China.
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin Province, 130021, PR China.
| |
Collapse
|
4
|
Wang R, Yu C, Shang Y, Wen J, Wei W, Du K, Li J, Fang S, Chang Y. Quantification and discovery of quality markers from Toddalia asiatica by UHPLC-MS/MS coupled with chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:634-646. [PMID: 38191127 DOI: 10.1002/pca.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Toddalia asiatica (TA) is a classical traditional Chinese medicine used to treat rheumatoid arthritis and contusions. However, research regarding TA quality control is currently limited. OBJECTIVE We aimed to establish a strategy for identifying quality markers that can be used for the evaluation of the quality of TA. METHOD A rapid and efficient ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantitative determination of 19 compounds in TA from different regions. Then, the extraction process of TA was successively optimized by single-factor optimization and response surface methodology. Moreover, chemometrics was employed to confirm the correlation between quality and target compounds. RESULTS Utilizing the UHPLC-MS/MS method, separation of the 19 bioactive compounds was achieved within 14 min. The method was validated in terms of linearity (r2 > 0.9982), precision (0.08%-3.70%), repeatability (0.50%-2.54%), stability (2.26%-5.46%), and recovery (95.8%-113%). The optimal extraction process (extraction solvent, 65% ethanol aqueous solution; solid-liquid ratio, 1:20; extraction time, 25 min) was determined with the total content of 19 bioactive compounds as indicator. Significant disparities were observed in the contents of target compounds across different batches of TA. Besides, all samples could be categorized into two distinct groups, and magnoflorine, (-)-lyoniresinol, nitidine chloride, norbraylin, skimmianine, and decarine were identified as quality markers. CONCLUSION In the present study, we developed a strategy to improve the quality control of TA. In consideration of the pharmacodynamic activity and statistical differences, six compounds are proposed as quality markers for TA.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiake Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Wang H, Jin H, Chai R, Li H, Fan J, Wang Y, Wei F, Ma S. An Analysis of Polysaccharides from Eight Plants by a Novel Heart-Cutting Two-Dimensional Liquid Chromatography Method. Foods 2024; 13:1173. [PMID: 38672845 PMCID: PMC11049114 DOI: 10.3390/foods13081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Natural polysaccharides are important active biomolecules. However, the analysis and structural characterization of polysaccharides are challenging tasks that often require multiple techniques and maps to reflect their structural features. This study aimed to propose a new heart-cutting two-dimensional liquid chromatography (2D-LC) method for separating and analyzing polysaccharides to explore the multidimensional information of polysaccharide structure in a single map. That is, the first-dimension liquid chromatography (1D-LC) presents molecular-weight information, and the second-dimension liquid chromatography (2D-LC) shows the fingerprints of polysaccharides. In this 2D-LC system, the size-exclusion chromatography-hydrophilic interaction chromatography (SEC-HILIC) model was established. Coupling with a charged aerosol detector (CAD) eliminated the need for the derivatization of the polysaccharide sample, allowing the whole process to be completed within 80 min. The methods were all validated in terms of precision, linearity, stability, and repeatability. The capability of the new 2D-LC method was demonstrated in determining various species of natural polysaccharides. Our experimental data demonstrated the feasibility of the whole systematic approach, opening the door for further applications in the field of natural polysaccharide analysis.
Collapse
Affiliation(s)
- Haonan Wang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Ruiping Chai
- Thermo Fisher Scientific (China) Co., Ltd., Shanghai 201206, China
| | - Hailiang Li
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Jing Fan
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Ying Wang
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, National Medical Products Administration, Beijing 102629, China
| | | |
Collapse
|
6
|
Yang X, Sima Y, Luo X, Li Y, He M. Analysis of GC × GC fingerprints from medicinal materials using a novel contour detection algorithm: A case of Curcuma wenyujin. J Pharm Anal 2024; 14:100936. [PMID: 38655399 PMCID: PMC11036100 DOI: 10.1016/j.jpha.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 04/26/2024] Open
Abstract
This study introduces an innovative contour detection algorithm, PeakCET, designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram (GC × GC). This method innovatively combines contour edge tracking with affinity propagation (AP) clustering for peak detection in GC × GC fingerprints, the first in this field. Contour edge tracking significantly reduces false positives caused by "burr" signals, while AP clustering enhances detection accuracy in the face of false negatives. The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin. PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples. Furthermore, this algorithm compares the GC × GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins. The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues. Each sample exhibits unique characteristic components alongside common ones, and variations in content may influence their therapeutic effectiveness. This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional (2D) fingerprint analysis of GC × GC data.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xuhuai Luo
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yaping Li
- Department of Quality Control, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, China
| | - Min He
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
7
|
Zhang Y, Qu Q, Lei X, Zhao X, Zhang X, Wei X, Tang Y, Duan X, Song X. Quality markers of Guchang Zhixie pills based on multicomponent qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. J Pharm Biomed Anal 2024; 240:115934. [PMID: 38157739 DOI: 10.1016/j.jpba.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Traditional Chinese medicine Guchang Zhixie pills(GCZX) is one of the famous varieties of "Qin medicine" that has been extensively applied to treating irritable bowel syndrome(IBS). However, despite the acknowledged clinical advantages of GCZX there are significant constraints on its quality control and evaluation. The present study utilized UHPLC-Q-Exactive-Orbitrap-MS to analyze the chemical composition of GCZX. Additionally, network pharmacology approaches were utilized to explore the underlying mechanism by which blood components exert therapeutic effects in the treatment of IBS. Furthermore, the GCZX samples were evaluated for their quality on the basis of the qualitative results obtained from 25 batches of GCZX samples using fingerprinting; subsequently, multivariate statistical analysis methods were employed for further analysis. The results indicated the presence of 198 individual components. Among them, 17 prototype compounds were detected in the serum of rats that were administered with GCZX. The potential therapeutic mechanism of GCZX in the treatment of IBS may be associated with the modulation of the neurological system, the immunological system, and the inflammatory response. Moreover, a total of seven prominent peaks were identified after fingerprint analysis. The range of fingerprint similarity among the 25 batches of samples varied from 0.843 to 1.000. The application of chemometrics analysis successfully facilitated the categorical classification of 25 batches of GCZX into three distinct groups. Seven components hold significant importance and should be duly considered during the quality control process of GCZX. The present study can establish the Q-Markers of GCZX for IBS, thereby providing a foundation for investigating the theoretical underpinnings and elucidating the mechanisms underlying the therapeutic effects of GCZX in the treatment of IBS.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qiong Qu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xuan Lei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinbo Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xuan Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yingying Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xi Duan
- Department of Laboratory Medicine, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
8
|
Wang R, Du K, Meng X, Zhang Q, Wei W, Li J, Fang S, Chang Y. A strategy of accuracy quantification by extending the concentration monitoring coverage based on online double collision energy of ultra-high performance liquid chromatography tandem mass spectrometry: The pharmacokinetics of Toddalia asiatica as a case study. J Chromatogr A 2024; 1716:464634. [PMID: 38217962 DOI: 10.1016/j.chroma.2024.464634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
To facilitate the safety, efficacy and rationality of clinical application of traditional Chinese medicines (TCMs), pharmacokinetic research played an indispensable role. The key challenge during pharmacokinetic investigation lied at the substantial fluctuation of compound concentrations in the plasma over the course of absorption. Taking the pharmacokinetics of six compounds after administration of Toddalia asiatica (TA) as an example, an efficient strategy was established by introducing the online double collision energy (ODCE) into the quantification process applying ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). During the analytical program, double collision energy (DCE) was optimized to establish the dual calibration curve (DCC) with large concentration monitoring coverage (CMC) for meeting the wide content range of certain target compounds. Method validation test was performed in terms of linearity, precision, sensitivity, matrix effect, recovery, etc. The results displayed that the CMC of todarolactone with high exposure in plasma was extended from 1.25-2,500 ng/mL to 1.25-125,000 ng/mL. Furthermore, a rapid UHPLC-MS/MS method integrated with ODCE was successfully applied to the determination of six compounds in rat plasma, revealing an extremely high plasma concentration of todarolactone (16,662 ng/mL). This strategy could expand the range of quantification while retaining extraordinary sensitivity. Consequently, it could be a fit-for-purpose strategy to quantify compounds over a wide concentration range for in vivo process monitoring.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qianqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Sun Y, Zhao Q, Fang H, Sun H, Yang L, Sun Y, Yan G, Han Y, Wang X. Evaluation of the key ingredient from the main production areas of Phellodendri Amurensis Cortex using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry and ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry. J Sep Sci 2024; 47:e2300836. [PMID: 38403444 DOI: 10.1002/jssc.202300836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Phellodendri Amurensis Cortex (PAC) is a medicinal herb that has been generally used to treat diarrhea and jaundice. In order to comprehensively evaluate the PAC in the main production areas quality, a qualitative and quantitative method with highly effective, sensitive, and reliable was developed. The chemical compositions of PAC were analyzed, and fingerprints were established by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS). Then, the determination of berberine, canthin-6-one, dictamnine, γ-fagarine, and magnoflorine from PAC samples was simultaneously performed using UPLC-QQQ-MS. Furthermore, the chemical components of PAC from different regions were compared and analyzed by combining hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. A total of 58 compounds were identified, including 36 alkaloids, four phenylpropanoids, seven terpenoids, four flavonoids and their glycosides, an organic acid compound, and six other components. The fingerprint results show that samples have good similarity. Meanwhile, the content of the five ingredients in different habitats is quite different. By multivariate statistical analysis, 18 batches of PAC could be divided into three categories, and 20 components were identified as differential markers of various origins. A comprehensive method of PAC quality evaluation and chemical composition difference analysis was established, which provided the scientific basis for quality evaluation and further pharmacological mechanism research.
Collapse
Affiliation(s)
- Yuran Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiqi Zhao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Heng Fang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Li S, Sun Y, Gao Y, Yu X, Zhao C, Song X, Han F, Yu J. Spectrum-effect relationship analysis based on HPLC-FT-ICR-MS and multivariate statistical analysis to reveal the pharmacodynamic substances of Ling-Gui-Zhu-Gan decoction on Alzheimer's disease. J Pharm Biomed Anal 2024; 237:115765. [PMID: 37844366 DOI: 10.1016/j.jpba.2023.115765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Alzheimer's disease (AD) threatens elderly human health and still lacks effective treatment. Our previous work showed that LGZGD possessed a neuroprotective effect on the Aβ25-35-induced neurotoxicity in differentiated PC12 cells, indicating that LGZGD may be a potential drug for treatment of AD. However, its pharmacodynamic substances which show anti-inflammatory and anti-oxidant stress activities are still unrevealed. This research aims to reveal the pharmacodynamic substances of LGZGD on Aβ25-35-induced PC12 cell model of AD based on a spectrum-effect relationship study by using HPLC-FT-ICR-MS method and multivariate statistical analysis. Firstly, the chemical composition spectra of different combinations of LGZGD were recorded by HPLC-FT-ICR MS. Subsequently, Aβ25-35-induced PC12 cell model of AD was established and pharmacodynamic experiments were conducted to evaluate their anti-inflammatory and anti-oxidant activities, respectively. Finally, the potential pharmacodynamic substances were screened out through spectrum-effect relationship study accompanied by multivariate statistical analysis including bivariate correlation analysis (BCA), grey relational analysis (GRA), principal component analysis (PCA), partial least squares regression analysis (PLSR). As a result, a total of 96 chemical consistents in different combinations of LGZGD were discovered. Among them, 7 components such as isoglabrolide, licorice saponin E2, licorice saponin N2 and licoisoflavanone were directly linked with the anti-inflammatory effects, and 14 constituents such as tumulosic acid, polyporenic acid C, dehydrotumulosic acid, dehydropachymic acid, and pachymic acid were directly correlated with the anti-oxidative stress activities. In conclusion, we combined the HPLC-FT-ICR-MS spectra with pharmacodynamic indicators to develop the spectrum-effect relationships of LGZGD for the first time, and successfully revealed its potential pharmacodynamic substances in the treatment of AD from the anti-inflammatory and antioxidant pathways in the cell model.
Collapse
Affiliation(s)
- Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yutong Gao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinying Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
11
|
Huang R, Ma S, Dai S, Zheng J. Application of Data Fusion in Traditional Chinese Medicine: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 24:106. [PMID: 38202967 PMCID: PMC10781265 DOI: 10.3390/s24010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Traditional Chinese medicine is characterized by numerous chemical constituents, complex components, and unpredictable interactions among constituents. Therefore, a single analytical technique is usually unable to obtain comprehensive chemical information. Data fusion is an information processing technology that can improve the accuracy of test results by fusing data from multiple devices, which has a broad application prospect by utilizing chemometrics methods, adopting low-level, mid-level, and high-level data fusion techniques, and establishing final classification or prediction models. This paper summarizes the current status of the application of data fusion strategies based on spectroscopy, mass spectrometry, chromatography, and sensor technologies in traditional Chinese medicine (TCM) in light of the latest research progress of data fusion technology at home and abroad. It also gives an outlook on the development of data fusion technology in TCM analysis to provide references for the research and development of TCM.
Collapse
Affiliation(s)
- Rui Huang
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
| | - Shengyun Dai
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
| | - Jian Zheng
- National Institutes for Food and Drug Control, Beijing 102629, China; (R.H.); (S.M.)
| |
Collapse
|
12
|
Shan L, Huang Y, Zhang J, Su Y, Guo Y. Inhibiting Protein Aggregation Using Cellulose Nanocrystal in MALDI-TOF MS Analysis: Improving the Sensitivity and Repeatability of Intact Protein in Pueraria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20146-20154. [PMID: 38060840 DOI: 10.1021/acs.jafc.3c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Protein aggregation can induce low sensitivity and poor repeatability of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-TOF MS) analysis for intact protein. Herein, we introduced a strategy to decrease protein aggregation in the sample solution by using cellulose nanocrystal (CNC). The results indicated that protein granule size was effectively reduced by adding CNC to the sample solution. Through MALDI-TOF MS analysis, the signal-to-noise ratio of [M + H]+ peak increased 2-fold, and the detection of limit was <10 μg/mL for intact protein. The CNC also contributed to excellent point-to-point repeatability for MALDI-TOF MS analysis with the coefficient of variation (CV) of 10.0% with CNC vs 48.9% without CNC in Hb solution. Also, the repeatability of Pueraria protein ion signals was improved by using CNC, and the CV with and without CNC was 16.1% and 39.6%, respectively. Moreover, protein ion intensity exhibited great linear relationship (y = 53.04x - 3.474, R2 = 0.9936) with the concentrations (ranging from 0.1 to 10 mg/mL) when using CNC. Further investigation revealed that m/z 19,000 and m/z 21,000 peaks of Pueraria could be used for the adulteration analysis and post-translational modification research, demonstrating our method has the potential for broad applications.
Collapse
Affiliation(s)
- Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yiman Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
13
|
Tang Z, Zhou K, Wang P, Lan L, Sun W, Sun G, Guo P. Quality control and evaluation of Xiaozhong Zhitong tincture by multi-wavelength fingerprint combined with electrochemical fingerprint. J Pharm Biomed Anal 2023; 236:115712. [PMID: 37708763 DOI: 10.1016/j.jpba.2023.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Xiaozhong Zhitong tincture (XZZTT), a prominent Traditional Chinese Medicine (TCM) formulation comprising 21 intricate herbal components, poses a challenge in terms of quality control due to its complex composition and the interplay of diverse chemical constituents. To address this issue, a comprehensive assessment strategy was devised by integrating chromatographic and electrochemical techniques to construct a multidimensional fingerprint for XZZTT samples. This study encompassed the evaluation of 42 XZZTT samples through a systematic quantitative fingerprinting method (SQFM), while also quantifying the concentrations of four specific compounds-Geniposide, Palmatine hydrochloride, Paeonol, and Chlorogenic acid. The experimental approach encompassed the establishment of fingerprints using High-Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), and GC-HPLC tandem fingerprints methods. Furthermore, electrochemical fingerprints (ECFP) were established using the B-Z oscillation system, and eight characteristic parameters in the oscillation system were recorded and compared among samples. Hierarchical Clustering Analysis (HCA) was subsequently employed to classify the distinct fingerprints and compare outcomes from one-dimensional spectroscopy, GC-HPLC tandem chromatography, and the fusion fingerprints. Finally, Grey Relation Analysis (GRA) was harnessed to unravel the relationship between ECFP outcomes and peak areas in fusion fingerprints, facilitating predictions regarding the substances' reducing potency. In conclusion, the rational combination of multidimensional fingerprinting and multidimensional analysis provides a reliable and comprehensive method for the evaluation of XZZTT and its related products.
Collapse
Affiliation(s)
- Zini Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Kaining Zhou
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Pengyue Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Lili Lan
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Wanyang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | - Guoxiang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Ping Guo
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| |
Collapse
|
14
|
Pei W, Huang Y, Qu Y, Cui X, Zhou L, Yang H, Zhao M, Zhang Z, He F, Zhou H. A strategy for quality evaluation of complex herbal preparations based on multi-color scale and efficacy-oriented high-performance thin-layer chromatography characteristic fingerprint combined with chemometric method: Sanwujiao Pills as an example. Heliyon 2023; 9:e22098. [PMID: 38053910 PMCID: PMC10694152 DOI: 10.1016/j.heliyon.2023.e22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
To rapidly evaluate the quality of complex herbal preparations, a new strategy was proposed based on multi-color scale and efficacy-oriented high-performance thin-layer chromatography (HPTLC) characteristic fingerprint combined with chemometric method. Firstly, effective components were screened through high-performance liquid chromatography with ultraviolet detection and evaporative light-scattering (HPLC-UV-ELSD), using multi-wavelength fusion combined with network pharmacology and molecular docking techniques. Subsequently, guided by the effective components, the targeted HPTLC characteristic fingerprint was established by multi-color scale scanning. Finally, combined with the chemometric method, the consistency of the preparation quality was evaluated, the marker components leading to quality differences were screened, and the quality control limit was established. Sanwujiao Pills (SWJPs) is a herbal preparation composed of six herbs for treating rheumatoid arthritis (RA). Through this strategy, four HPTLC characteristic fingerprints were established, they were derived from five herbs and guided by eight effective components in SWJPs. Through similarity, clustering heatmap, principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA), the quality distinctions among the 12 batches of SWJPs were determined. These batches were categorized into two groups based on their production time, and eight components affecting the quality of the preparation were identified. Meanwhile, the quality control threshold for SWJPs was determined based on Hotelling's T2 and DModX methods. This strategy aims to rapidly evaluate the quality of complex herbal preparations by HPTLC and extends the application of HPTLC fingerprint chromatography for identifying herbal medicine species and activity-related quality detection. The proposed strategy is also helpful for the quality control of other complex herbal preparations.
Collapse
Affiliation(s)
- Wenhan Pei
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, PR China
| | - Yufeng Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuan Qu
- School of Life Sciences, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Xiuming Cui
- School of Life Sciences, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Liqin Zhou
- Yunnan Jinwu Black Medicine Pharmaceutical Co. Ltd., Huize, Yunnan, 654200, PR China
| | - Hongfang Yang
- Yunnan Jinwu Black Medicine Pharmaceutical Co. Ltd., Huize, Yunnan, 654200, PR China
| | - Mingshun Zhao
- Yunnan Jinwu Black Medicine Pharmaceutical Co. Ltd., Huize, Yunnan, 654200, PR China
| | - Zhifeng Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, PR China
| | - Fan He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
15
|
Tan Y, Xu S, Zhang H, Tang H, Wang Z, Li J, Tan N. A comprehensive quality evaluation strategy of Mailuoning oral liquid based on fingerprint, qualitative and quantitative analyses. J Pharm Biomed Anal 2023; 234:115497. [PMID: 37573813 DOI: 10.1016/j.jpba.2023.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 08/15/2023]
Abstract
In order to obtain comprehensive quality evaluation of one traditional Chinese patent medicine of Mailuoning oral liquid (MLN), one smart strategy combined by fingerprint, qualitative and quantitative analyses were carried out in this study. Firstly, the fingerprints of MLN were established by HPLC-UV and HPLC-ELSD, and explained the similarity of twenty-seven batches of MLN by similarity analysis (SA). Secondly, qualitative analysis was performed by high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (HPLC-QTOF-MS/MS). A total of 60 compounds were identified or tentatively identified based on chemical standards and fragmentation information. Finally, the quantitative method based on UPLC combined with triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS) was developed for the simultaneous determination of 40 target compounds. The results showed that MLN samples of different productive year were clearly discriminated and eight compounds (5-hydroxymethyl-2-furaldehyde, neochlorogenic acid, loganic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, isoacteoside, angoroside C) were selected as differential markers for MLN. In a word, this strategy including fingerprint, identification of chemical composition and multiple-component quantification could be well applied to modern quality evaluation of MLN, which could be valuable for the further quality control of more other traditional Chinese patent medicines.
Collapse
Affiliation(s)
- Yajie Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Siyi Xu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hui Zhang
- Jinling Pharmaceutical Co., Ltd., Nanjing 210009, PR China
| | - Haojun Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jian Li
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jinling Pharmaceutical Co., Ltd., Nanjing 210009, PR China.
| | - Ninghua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
16
|
Zou JJ, Xu XL, Yang L, Wang YW, Li Y, Dai L, He D. Comprehensive Quality Evaluation of Qizhi Xiangfu Pills Based on Quantitative Analysis of Multi-Components by a Single Marker Combined with GC Fingerprints and Chemometrics. J AOAC Int 2023; 106:1414-1423. [PMID: 37027226 DOI: 10.1093/jaoacint/qsad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Qizhi Xiangfu Pills (QXPs) are a traditional Chinese medicine (TCM) used clinically for qi stagnation and blood stasis. The current quality control of QXPs in the ministry standards and the reported literature is minimal, and requires improvement. OBJECTIVE This study aimed to analyze and determine the active ingredients in QXPs for its overall evaluation. METHODS In this study, a quantitative analysis of multi-components by a single marker (QAMS) method was established to simultaneously determine caryophyllene oxide, cyperotundone, ligustilide, and α-cyperone in QXPs by GC. Moreover, the GC fingerprints of 22 batches of samples were also established, and the common peaks were initially identified by GC-MS, then classified in various dimensions using chemometric methods, and the main markers causing the discrepancies between groups were analyzed by orthogonal partial least-squares discrimination analysis (OPLS-DA). RESULTS Compared with an internal standard method (ISM), the determination results obtained by QAMS had no significant difference. Twenty-two common peaks were distinguished in the fingerprint of 22 batches of QXPs, 17 of which were identified, and the similarity of the fingerprints was greater than 0.898. The 22 batches of QXPs were roughly divided into 3 categories, and 12 main markers causing the discrepancies were discovered. CONCLUSION The established QAMS method combined with the GC fingerprint and chemometrics is convenient and feasible, which helps to improve the quality evaluation of QXPs and provides a demonstration for the related study of compound preparations and single herbs. HIGHLIGHTS QAMS combined with a GC fingerprint and chemometrics method was established to evaluate the quality of QXPs for the first time.
Collapse
Affiliation(s)
- Jia-Jia Zou
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiao-Li Xu
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Lin Yang
- Chongqing Medical and Pharmaceutical College, Department of Pharmacology, Daxuecheng Middle Road, Shapingba District, Chongqing 401331, China
| | - Yi-Wu Wang
- Chongqing Medical University, Experimental Teaching Center, Daxuecheng Middle Road, Shapingba District, Chongqing 400016, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Department of Pharmacology, Daxuecheng Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Dai
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Dan He
- Chongqing Medical University, College of Pharmacy, Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
17
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zhang J, Wang J, Yang L, Wang Y, Jin W, Li J, Zhang Z. Comprehensive Quality Evaluation of Polygonatum cyrtonema and Its Processed Product: Chemical Fingerprinting, Determination and Bioactivity. Molecules 2023; 28:molecules28114341. [PMID: 37298820 DOI: 10.3390/molecules28114341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Processing of Chinese herbal medicines (CHMs) is a traditional pharmaceutical technology in Chinese medicine. Traditionally, proper processing of CHMs is necessary to meet the specific clinical requirements of different syndromes. Processing with black bean juice is considered one of the most important techniques in traditional Chinese pharmaceutical technology. Despite the long-standing practice of processing Polygonatum cyrtonema Hua (PCH), there is little research on the changes in chemical constituents and bioactivity before and after processing. This study investigated the influence of black bean juice processing on the chemical composition and bioactivity of PCH. The results revealed significant changes in both composition and contents during processing. Saccharide and saponin content significantly increased after processing. Moreover, the processed samples exhibited considerably stronger DPPH and ABTS radical scavenging capacity, as well as FRAP-reducing capacity, compared to the raw samples. The IC50 values for DPPH were 1.0 ± 0.12 mg/mL and 0.65 ± 0.10 mg/mL for the raw and processed samples, respectively. For ABTS, the IC50 values were 0.65 ± 0.07 mg/mL and 0.25 ± 0.04 mg/mL, respectively. Additionally, the processed sample demonstrated significantly higher inhibitory activity against α-glucosidase and α-amylase (IC50 = 1.29 ± 0.12 mg/mL and 0.48 ± 0.04 mg/mL) compared to the raw sample (IC50 = 5.58 ± 0.22 mg/mL and 0.80 ± 0.09 mg/mL). These findings underscore the significance of black bean processing in enhancing the properties of PCH and lay the foundation for its further development as a functional food. The study elucidates the role of black bean processing in PCH and offers valuable insights for its application.
Collapse
Affiliation(s)
- Jianguang Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
- Qin Zhou Provincial Health School, Qinzhou 535009, China
| | - Junjun Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Li Yang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Yue Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Wenfang Jin
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Jing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Zhifeng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
19
|
Zhang H, Wei Z, Tong Y, Song X, Li S, Sun Y, Liu C, Han F, Yu J. Spectrum-effect relationship study to reveal the pharmacodynamic substances in Flos Puerariae-Semen Hoveniae medicine pair for the treatment of alcohol-induced liver damage. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116628. [PMID: 37196817 DOI: 10.1016/j.jep.2023.116628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcoholic liver disease (ALD) is the most serious and irreversible liver damage associated with alcohol consumption. Flos Puerariae and Semen Hoveniae are traditional Chinese medicines (TCM) for dispelling the effects of alcohol. Many studies have shown that the combination of two medicinal materials has the enhanced effect of treating ALD. AIM OF THE STUDY The aim of this study is to assess the pharmacological effects of Flos Puerariae-Semen Hoveniae medicine pair, to elucidate its action mechanism in the treatment of alcohol-induced BRL-3A cells, and to reveal the active ingredients in the medicine pair that exerted pharmacological effects by spectrum-effect relationship study. MATERIALS AND METHODS Firstly, MTT assays, ELISA, fluorescence probe analysis, and Western blot were employed to study the underlying mechanisms of the medicine pair in alcohol-induced BRL-3A cells by examining pharmacodynamic indexes and related protein expression. Secondly, HPLC method was established for chemical chromatograms of the medicine pair with different ratios and the sample extracted by different solvents. Then, principal component analysis, pearson bivariate correlation analysis and grey relational analysis were applied for development of the spectrum-effect correlation between pharmacodynamic indexes and HPLC chromatograms. Moreover, prototype components and their metabolites in vivo were identified by the HPLC-MS method. RESULTS Flos Puerariae-Semen Hoveniae medicine pair remarkably increased cell viability, decreased the activity of ALT, AST, TC and TG, reduced the generation of TNF-α, IL-1β, IL-6, MDA and ROS, increased the activity of SOD and GSH-Px, reduced protein expression of CYP2E1, compared with alcohol-induced BRL-3A cells. The medicine pair modulated the PI3K/AKT/mTOR signaling pathways by up-regulating the levels of phospho-PI3K, phospho-AKT and phospho-mTOR. Also, the results of the spectrum-effect relationship study showed that P1 (chlorogenic acid), P3 (daidzin), P4 (6″-O-xylosyl-glycitin), P5 (glycitin), P6 (unknown), P7 (unknown), P9 (unknown), P10 (6″-O-xylosyl-tectoridin), P12 (tectoridin) and P23 (unknown) can be considered as the main components of the medicine pair in the treatment of ALD. Furthermore, 6″-O-xylosyl-tectoridin, tectoridin, daidzin, 6″-O-xylosyl-glycitin and glycitin can be absorbed into the blood and showed clear metabolic and excretion behaviors in rats. CONCLUSION In this study, the hepatoprotective effects and the pharmacology mechanism of Flos Puerariae-Semen Hoveniae medicine pair in alcohol-induced BRL-3A cells were initially investigated and revealed. Through the spectrum-effect relationship study, the potential pharmacodynamic constituents such as daidzin, 6″-O-xylosyl-glycitin, 6″-O-xylosyl-tectoridin, glycitin, and tectoridin exert pharmacological effects on alcohol-induced oxidative stress and inflammation by modulating the PI3K/AKT/mTOR signaling pathways. This study provided experimental basis and data support for revealing the pharmacodynamic substance basis and pharmacology mechanism in the treatment of ALD. Moreover, it provides a robust mean of exploring the primary effective components responsible for the bioactivity of complicated TCM.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ziyun Wei
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yichen Tong
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, 570311, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
20
|
Chen C, Li X, Kano Y, Yuan D, Qu J. Oriental traditional herbal Medicine--Puerariae Flos: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116089. [PMID: 36621660 DOI: 10.1016/j.jep.2022.116089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria Flos (PF), a traditional herbal medicine, is botanically from the dried flowers of Pueraria lobate (Willd.) Ohwi. (Chinese: ) or Pueraria thomsonii Benth. (Chinese: ). It has a long history of thousands of years in China for awakening the spleen, clearing the lungs, relieving alcohol. AIM OF THE REVIEW This review aims to report the up-to-date research progress in ethnopharmacology, phytochemistry, pharmacology and toxicology, metabolism and therapeutic application of PF, so as to provide a strong basis for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on PF was collected from scientific literature databases including PubMed, CNKI and other literature sources (Ph.D. and M.Sc. dissertations and Chinese herbal classic books) by using the keyword "Puerariae". RESULTS Briefly, phytochemical research report has isolated 39 flavonoids, 19 saponins and 25 volatile oils from PF. Flavonoids and saponins are the most important bioactive compounds, and most of the quality control studies focus on these two types of compounds. Modern pharmacological studies have revealed their significant biological activities in relieving alcoholism, hepatoprotective, anti-tumor, anti-inflammatory, and anti-oxidation, which provides theoretical support for the traditional use. CONCLUSIONS Comprehensive analysis showed that pharmacological activity of most purified compounds from PF had not been reported. Kakkalide, tectoridin and their deglycosylated metabolites (irisolidone and tectorigenin) has been focused on excessively due to their higher content and better activities. This leads to low development and resources waste. Interestingly, PF made a breakthrough in the field of food. Many kinds of fat-lowering foods such as PILLBOX Onaka have been popular in Japan market, which received extensive attention. Therefore, we suggest that future research can be paid attention on the development of the plant's function in the field of food and medicine, as well as the transformation from experimental to clinical.
Collapse
Affiliation(s)
- Cai Chen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Xiaojie Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yoshihiro Kano
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
21
|
Ranjan S, Adams E, Deconinck E. Multidimensional Chromatographic Fingerprinting Combined with Chemometrics for the Identification of Regulated Plants in Suspicious Plant Food Supplements. Molecules 2023; 28:molecules28083632. [PMID: 37110870 PMCID: PMC10146433 DOI: 10.3390/molecules28083632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The popularity of plant food supplements has seen explosive growth all over the world, making them susceptible to adulteration and fraud. This necessitates a screening approach for the detection of regulated plants in plant food supplements, which are usually composed of complex plant mixtures, thus making the approach not so straightforward. This paper aims to tackle this problem by developing a multidimensional chromatographic fingerprinting method aided by chemometrics. To render more specificity to the chromatogram, a multidimensional fingerprint (absorbance × wavelength × retention time) was considered. This was achieved by selecting several wavelengths through a correlation analysis. The data were recorded using ultra-high-performance liquid chromatography (UHPLC) coupled with diode array detection (DAD). Chemometric modelling was performed by partial least squares-discriminant analysis (PLS-DA) through (a) binary modelling and (b) multiclass modelling. The correct classification rates (ccr%) by cross-validation, modelling, and external test set validation were satisfactory for both approaches, but upon further comparison, binary models were preferred. As a proof of concept, the models were applied to twelve samples for the detection of four regulated plants. Overall, it was revealed that the combination of multidimensional fingerprinting data with chemometrics was feasible for the identification of regulated plants in complex botanical matrices.
Collapse
Affiliation(s)
- Surbhi Ranjan
- Section of Medicines and Health Products, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
- Department of Pharmaceutical & Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Erwin Adams
- Department of Pharmaceutical & Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Eric Deconinck
- Section of Medicines and Health Products, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium
| |
Collapse
|
22
|
Zhang J, Li L, Wang J, Jin W, Wang Y, Zhang Z. A strategy for antioxidant quality evaluation of Aster yunnanensis based on fingerprint-activity relationship modeling and chemometric analysis. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
23
|
Chen X, Zhang J, Li R, Zhang H, Sun Y, Jiang L, Wang X, Xiong Y. Flos Puerariae- Semen Hoveniae medicinal pair extract ameliorates DSS-induced inflammatory bowel disease through regulating MAPK signaling and modulating gut microbiota composition. Front Pharmacol 2022; 13:1034031. [PMID: 36569313 PMCID: PMC9768334 DOI: 10.3389/fphar.2022.1034031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a global gastrointestinal disease characterized by relapsing and remitting inflammatory conditions. Flos Puerariae (the flower of Pueraria lobata [Willd.] Ohwi and P. thomsonii Benth.) and Hovenia dulcis Thunb. (Rhamnaceae) are traditional Chinese medicines. This medicinal pair has been used to treat various diseases due to its excellent anti-oxidant and anti-inflammatory activity. However, the effects of extracts from these plants on dextran sulfate sodium (DSS)-induced colitis have not been investigated; further study is needed to improve the understanding of their mechanisms of action and potential applications. Methods: The chemical constitution of extracts from Flos Puerariae and Semen Hoveniae (PHE) was analyzed using UPLC-LTQ-Orbitrap-MS/MS. The protective effects of PHE on mice with DSS-induced colitis were evaluated through assessment of body weight loss, disease activity index (DAI) score, colon length shortening, and pathological changes. The levels of inflammatory cytokines were determined by ELISA and RT-qPCR. Biomarkers of oxidative stress (ROS, CAT, SOD, MDA, and T-AOC) were analyzed using biochemical kits. The expression of MAPK proteins was determined by Western blotting analysis. Gut microbiota were analyzed via 16S rRNA sequencing. Results: Chemical composition analysis indicated that PHE contains various bioactive compounds, including puerarin, kakkalide, tectoridin, and genistin. The findings from this study suggest that PHE could effectively modulate histopathological score, inflammatory cell infiltration, and inflammatory factor secretion. Notably, PHE ameliorated oxidative stress by inhibiting activation of the MAPK pathway, leading to decreased inflammatory mediators and restored antioxidant enzyme activity. Furthermore, PHE treatment regulated the composition of the gut microbiota by increasing the abundance of benign bacteria, such as Akkermansia, and reducing the abundance of harmful bacteria, such as Proteobacteria. Conclusion: The findings from this study demonstrate the mechanism underlying the amelioration of DSS-induced intestinal oxidative stress by PHE and its positive impact on the restoration of the composition of gut microbiota.
Collapse
Affiliation(s)
- Xiaofan Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jiahui Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Rui Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Li Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoya Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Xiaoya Wang, ; Yaokun Xiong,
| | - Yaokun Xiong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Xiaoya Wang, ; Yaokun Xiong,
| |
Collapse
|
24
|
Zhang F, Li X, Lan L, Wang J, Guo P, Sun G. Simultaneous determination of eight components in Amomum villosum and its overall qualityconsistency evaluation by four-dimensional fingerprints assisted with antioxidant activity. J Chromatogr A 2022; 1674:463135. [DOI: 10.1016/j.chroma.2022.463135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|