1
|
Yao K, Peng Y, Tang Q, Liu K, Peng C. Human Serum Albumin/Selenium Complex Nanoparticles Protect the Skin from Photoaging Injury. Int J Nanomedicine 2024; 19:9161-9174. [PMID: 39258006 PMCID: PMC11383846 DOI: 10.2147/ijn.s446090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/11/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Photoaging-induced skin damage leads to appearance issues and dermatoma. Selenium nanoparticles (SeNPs) possess high antioxidant properties but are prone to inactivation. In this study, human serum albumin/SeNPs (HSA-SeNPs) were synthesized for enhanced stability. Methods HSA-SeNPs were prepared by self-assembling denatured human serum albumin and inorganic selenite. The cytotoxicity of HSA-SeNPs was assessed using the MTT method. Cell survival and proliferation rates were tested to observe the protective effect of HSA-SeNPs on human skin keratinocytes against photoaging. Simultaneously, ICR mice were used for animal experiments. H&E and Masson trichromatic staining were employed to observe morphological changes in skin structure and collagen fiber disorders after UVB irradiation. Quantitative RT-PCR was utilized to measure changes in mRNA expression levels of factors related to collagen metabolism, inflammation, oxidative stress regulation, and senescence markers. Results The HSA-SeNPs group exhibited significantly higher survival and proliferation rates of UVB-irradiated keratinocytes than the control group. Following UVB irradiation, the back skin of ICR mice displayed severe sunburn with disrupted collagen fibers. However, HSA-SeNPs demonstrated superior efficacy in alleviating these symptoms compared to SeNPs alone. In a UVB-irradiated mice model, mRNA expression of collagen type I and III was dysregulated while MMP1, inflammatory factors, and p21 mRNA expression were upregulated; concurrently Nrf2 and Gpx1 mRNA expression were downregulated. In contrast, HSA-SeNPs maintained the mRNA expression of those factors to be stable In addition, the level of SOD decreased, and MDA elevated significantly in the skin after UVB irradiation, but no significant differences in SOD and MDA levels between the HSA-SeNPs group with UVB irradiation and the UVB-free untreated group. Discussion HSA-SeNPs have more anti-photoaging effects on the skin than SeNPs, including the protective effects on skin cell proliferation, cell survival, and structure under photoaging conditions. HSA-SeNPs can be used to protect skin from photoaging and repair skin injury caused by UVB exposure.
Collapse
Affiliation(s)
- Kai Yao
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yongbo Peng
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiyu Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Kaixuan Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Cheng Peng
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Yang Y, Liu X, Wan C, Liu S, Li X, Zhu Y, Yang Z, Li L, Zhang Z, Zhou Z, Xie Y, Zhao X, Chai H, Wu Y. Powering the Future Green Buildings: Multifunctional Ultraviolet-Shielding Transparent Wood. ACS NANO 2024. [PMID: 39038287 DOI: 10.1021/acsnano.4c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Indoor UV damage is a serious problem that is often ignored. Common glasses cannot filter UV rays well and have fragility and environmental issues. UV-shielding transparent wood (TW) holds promise, yet striking the right balance between blocking UV rays and allowing sufficient visible-light transmission poses a challenge. The pronounced capillary force, fueled by persistent moisture and extractives in wood, alongside the existence of multiphase interfaces, collectively hinder the uniform penetration of polymers and the effective dispersion of nanomaterials within the wood skeleton. Here, we incorporate high-pressure supercritical CO2 fluid-assisted impregnation (HSCFI) into fabricating UV-shielding TW. The supercritical CO2 pretreatment efficiently eliminates moisture and refines wood structure by extracting polar substances, resulting in a prominent 52.4% increase in average water permeability. Subsequently, this HSCFI method facilitates the infiltration of methyl methacrylate (MMA) monomer and Ce-ZnO nanorods (NRDs) into the refined anhydrous wood, leveraging the excellent solvency of supercritical CO2 for MMA. The impregnation rate of PMMA undergoes a substantial increase from 34.5 to 59.1%. With the robust UV-blocking capability of Ce-ZnO NRDs, thanks to dual-valence Ce doping widening the ZnO energy gap via the Burstein-Moss effect and their unique photoactive microstructure featuring a solid prism with a sharp hexahedral pyramidal tip, along with intrinsic physical scattering/reflection actions, Ce-ZnO NRDs@TW achieves an impressive 99.6% UVA radiation blockage (the highest for TW) and maintains high visible-light transmission (83.2%). Furthermore, Ce-ZnO NRDs@TW presents favorable energy-saving, sound absorption, and antifungal abilities, making it a promising candidate for future green buildings.
Collapse
Affiliation(s)
- Yadong Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinyi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Caichao Wan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha 410000, P. R. China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yuan Zhu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Liangli Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhe Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zaiyang Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yuzhong Xie
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinpeng Zhao
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Huayun Chai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
3
|
Todde S, Svolacchia F, Svolacchia L, Giuzio F, Panda SK, Ferraro GA. Performance and Safety of Amino-Acid- and Hydroxyapatite Enriched-Hyaluronic Acid Intradermal Gel in Facial Skin Defects. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1121. [PMID: 39064550 PMCID: PMC11279309 DOI: 10.3390/medicina60071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: The facial skin defects associated with aging are common concerns in the aging population. Hyaluronic-acid-based intradermal gels have established themselves as safe and effective treatments for addressing these concerns. Recently developed enriched products aim to enhance the efficacy of these gels, yet their effectiveness lacks thorough validation in the existing literature. Materials and Methods: In this retrospective analysis, we investigated the outcomes of intradermal gel treatments in 103 patients with soft tissue defects. This study included three groups: 35 patients received amino-acid-enriched hyaluronic acid gel, another 35 were treated with hydroxyapatite-enriched hyaluronic acid gel, and the remaining 33 underwent hyaluronic acid treatment only. The efficacy of the treatments was assessed using the Global Aesthetic Improvement Scale (GAIS) score, while patient satisfaction was gauged through a detailed questionnaire. Any adverse event was monitored. Results: The treatments demonstrated remarkable efficacy, as evidenced by mean GAIS scores of 1.714 points for those treated with amino acid-enriched hyaluronic acid gel, 1.886 points for individuals receiving hydroxyapatite-enriched hyaluronic acid gel, and 1.697 for those treated with hyaluronic acid alone, all showing statistical significance (p < 0.0001). Patient satisfaction was very high. Significantly, there were no recorded instances of major adverse events. Conclusions: Hyaluronic gels, particularly those enriched with amino acids and hydroxyapatite, are effective and safe interventions for addressing facial skin aging defects. They serve as valuable tools in mitigating age-related blemishes and contribute to the overall improvement of skin aesthetics.
Collapse
Affiliation(s)
- Salvatore Todde
- Plastic Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Fabiano Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy; (F.S.); (L.S.)
| | - Lorenzo Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy; (F.S.); (L.S.)
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy;
- U.O.S.D. of Plastic Surgery A.O.R “San Carlo”, 85100 Potenza, Italy
| | - Sameer Kumar Panda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via L. Armanni, 80138 Naples, Italy
| | - Giuseppe A. Ferraro
- Dipartimento di Medicina e di Scienze della Salute “Vincenzo Tiberio”, Cattedra di Chirurgia Plastica Ricostruttiva ed Estetica, Università Degli Studi del Molise, 86100 Campobasso, Italy;
| |
Collapse
|
4
|
Wu Y, Geng L, Zhang J, Wu N, Yang Y, Zhang Q, Duan D, Wang J. Preparation of Multifunctional Seaweed Polysaccharides Derivatives Composite Hydrogel to Protect Ultraviolet B-Induced Photoaging In Vitro and In Vivo. Macromol Biosci 2024; 24:e2300292. [PMID: 37985229 DOI: 10.1002/mabi.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Seaweed polysaccharides can be used for protective skin photoaging which is caused by long-term exposure to ultraviolet B (UVB). In this study, a multifunctional composite hydrogel (FACP5) is prepared using sulfated galactofucan polysaccharides, alginate oligosaccharides as active ingredients, and polyacrylonitrile modified κ-Carrageenan as substrate. The properties of FACP5 show that it has good water retention, spreadability, and adhesion. The antiphotoaging activity is evaluated in vitro and in vivo. In vitro experiments demonstrate that the components of FACP5 exhibit good biocompatibility, antioxidant, and anti-tyrosinase activities, and could reduce the cell death rate induced by UVB. In vivo experiments demonstrate that, compared with the mice skin in model group, the skin water content treated with FACP5 increases by 29.80%; the thicknesses of epidermis and dermis decrease by 53.56% and 43.98%, respectively; the activities of catalase and superoxide dismutase increase by 1.59 and 0.72 times, respectively; the contents of interleukin-6 and tumor necrosis factor-α decrease by 19.21% and 17.85%, respectively; hydroxyproline content increases by 32.42%; the expression level of matrix metalloproteinase-3 downregulates by 42.80%. These results indicate that FACP5 has skin barrier repairing, antioxidant, anti-inflammatory, and inhibiting collagen degradation activies, FACP5 can be used as a skin protection remedy for photoaging.
Collapse
Affiliation(s)
- Yumeng Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Jingjing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Department of Pharmacy, Qingdao Eighth People's Hospital, 84 Fengshan Road, Qingdao, 266121, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Yue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
5
|
Jarquín-Yáñez K, Herrera-Enríquez MÁ, Benítez-Barrera DI, Sánchez-Arévalo FM, Benítez-Martínez JA, Piñón-Zárate G, Hernández-Téllez B, Sandoval DMA, Castell-Rodríguez AE. Subcutaneous Application of a Gelatin/Hyaluronic Acid Hydrogel Induces the Production of Skin Extracellular Matrix. Polymers (Basel) 2024; 16:573. [PMID: 38475257 DOI: 10.3390/polym16050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 03/14/2024] Open
Abstract
The development of injectable hydrogels with natural biopolymers such as gelatin (Ge) and hyaluronic acid (Ha) is widely performed due to their biocompatibility and biodegradability. The combination of both polymers crosslinked with N-Ethyl-N'-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) can be used as an innovative dermal filler that stimulates fibroblast activity and increases skin elasticity and tightness. Thus, crosslinked Ge/Ha hydrogels with different concentrations of EDC were administered subcutaneously to test their efficacy in young and old rats. At higher EDC concentrations, the viscosity decreases while the particle size of the hydrogels increases. At all concentrations of EDC, amino and carboxyl groups are present. The histological analysis shows an acute inflammatory response, which disappears seven days after application. At one and three months post-treatment, no remains of the hydrogels are found, and the number of fibroblasts increases in all groups in comparison with the control. In addition, the elastic modulus of the skin increases after three months of treatment. Because EDC-crosslinked Ge/Ha hydrogels are biocompatible and induce increased skin tension, fibroblast proliferation, and de novo extracellular matrix production, we propose their use as a treatment to attenuate wrinkles and expression lines.
Collapse
Affiliation(s)
- Katia Jarquín-Yáñez
- Facultad de Medicina, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | | | | - Gabriela Piñón-Zárate
- Facultad de Medicina, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
6
|
Kerche LE, Carrara IM, Marinello PC, Cavalcante DGSM, Danna CS, Cecchini R, Cecchini AL, Job AE. Antioxidant and photoprotective role of latex C-serum from Hevea brasiliensis during 15-week UVB irradiation in male hairless SKH-1 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:846-858. [PMID: 37671816 DOI: 10.1080/15287394.2023.2255885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
It is known that UVB radiation induces several adverse skin alterations starting from simple photoaging to skin cancer. In addition, it was demonstrated that reactive oxygen species (ROS) were found to be related to cancer development and progression. The aim of study was to examine whether male hairless (SKH-1) mice (Mus musculus) that were subchronically exposed to UVB radiation presented with actinic keratosis (AK) and squamous cell carcinoma lesions, and that treatment with latex C-serum cream significantly prevented abnormal skin development. Data demonstrated for the first time the photoprotective activity of latex C-serum extracted from the rubber tree Hevea brasiliensis var. subconcolor Ducke. Latex C-serum prevented the progression of AK to squamous cell carcinoma in SKH-1 mice, indicating that mice topically treated with latex C-serum presented only AK lesions and treatment with the highest concentration (10%) significantly reduced epidermal thickness, suggesting diminished cell proliferation. Latex C-serum protected the skin of mice against oxidative stress damage, increasing catalase (CAT) activity, regenerating glutathione (GSH) levels, lowering thiobarbituric acid-reactive species (TBARS) production and regenerating the total antioxidant capacity (TAC) of the skin. Evidence that UV radiation in skin induced systemic alterations and erythrocytic analysis indicated that latex C-serum increased CAT activity and GSH levels. Taken together these data indicate that latex C-serum plays an important antioxidant and photoprotective role, preventing serious damage to the skin following exposure to UVB radiation.
Collapse
Affiliation(s)
- Leandra E Kerche
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
- Department of Physiological Sciences, Western São Paulo University, Presidente Prudente, SP, Brazil
| | - Iriana M Carrara
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | - Poliana C Marinello
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | - Dalita G S M Cavalcante
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| | - Caroline S Danna
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| | - Rubens Cecchini
- Department of General Pathology, Londrina State University, Londrina, PR, Brazil
| | | | - Aldo E Job
- Department of Physics, Chemistry and Biology, São Paulo State University, Presidente Prudente, SP, Brazil
| |
Collapse
|
7
|
Sundar M, Lingakumar K. Investigating the efficacy of topical application of Ipomoea carnea herbal cream in preventing skin damage induced by UVB radiation in a rat model. Heliyon 2023; 9:e19161. [PMID: 37662739 PMCID: PMC10472012 DOI: 10.1016/j.heliyon.2023.e19161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Ultraviolet-B irradiation is a common environmental stressor that has detrimental effects on human skin. Natural sunscreens are well-known for their ability to benefit inflamed sunburn and dry skin. This study examined the effect of formulated Ipomoea carnea herbal cream on UVB-induced skin damage. We screened the bioactive compounds of I. carnea crude extract, showing significant antioxidant activity. Additionally, we evaluated the cytotoxicity, revealing that I. carnea extract has less toxicity to vero cells (IC50 98.45 μg/mL) than to A375 cells (IC50 48.95 μg/mL). Based on this, we formulated the I. carnea herbal cream (FIHC) at 50, 100 and 200 mg concentrations and evaluated its organoleptic characteristics. Then, the rats were exposed to UVB radiation (32,800 J/m2) four times/week (on alternate days) before the cream was applied topically to the dorsal skin surface. Under UVB stress without treatment, rats showed deep dermal damage. In contrast, rats treated with the FIHC exhibited significantly reduced sunburn. Moreover, the histopathological and biochemical assays were confirmed by the topical application of FIHC, which had potentially reduced the skin elasticity and maintained the imbalanced enzyme and non-enzymatic antioxidant activity. Our findings amply demonstrate that the FIHC significantly accelerated the recovery of UVB-induced lesions through antioxidant and down-regulation of skin photodamage.
Collapse
Affiliation(s)
- Madasamy Sundar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Affiliated to Madurai Kamaraj University, Madurai, Sivakasi, Tamil Nadu, 626124, India
| | - Krishnasamy Lingakumar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Affiliated to Madurai Kamaraj University, Madurai, Sivakasi, Tamil Nadu, 626124, India
| |
Collapse
|
8
|
Tavares RSN, Adamoski D, Girasole A, Lima EN, da Silva Justo-Junior A, Domingues R, Silveira ACC, Marques RE, de Carvalho M, Ambrosio ALB, Leme AFP, Dias SMG. Different biological effects of exposure to far-UVC (222 nm) and near-UVC (254 nm) irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 243:112713. [PMID: 37086566 DOI: 10.1016/j.jphotobiol.2023.112713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Ultraviolet C (UVC) light has long been used as a sterilizing agent, primarily through devices that emit at 254 nm. Depending on the dose and duration of exposure, UV 254 nm can cause erythema and photokeratitis and potentially cause skin cancer since it directly modifies nitrogenated nucleic acid bases. Filtered KrCl excimer lamps (emitting mainly at 222 nm) have emerged as safer germicidal tools and have even been proposed as devices to sterilize surgical wounds. All the studies that showed the safety of 222 nm analyzed cell number and viability, erythema generation, epidermal thickening, the formation of genetic lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs) and cancer-inducing potential. Although nucleic acids can absorb and be modified by both UV 254 nm and UV 222 nm equally, compared to UV 254 nm, UV 222 nm is more intensely absorbed by proteins (especially aromatic side chains), causing photooxidation and cross-linking. Here, in addition to analyzing DNA lesion formation, for the first time, we evaluated changes in the proteome and cellular pathways, reactive oxygen species formation, and metalloproteinase (MMP) levels and activity in full-thickness in vitro reconstructed human skin (RHS) exposed to UV 222 nm. We also performed the longest (40 days) in vivo study of UV 222 nm exposure in the HRS/J mouse model at the occupational threshold limit value (TLV) for indirect exposure (25 mJ/cm2) and evaluated overall skin morphology, cellular pathological alterations, CPD and 6-4PP formation and MMP-9 activity. Our study showed that processes related to reactive oxygen species and inflammatory responses were more altered by UV 254 nm than by UV 222 nm. Our chronic in vivo exposure assay using the TLV confirmed that UV 222 nm causes minor damage to the skin. However, alterations in pathways related to skin regeneration raise concerns about direct exposure to UV 222 nm.
Collapse
Affiliation(s)
- Renata Spagolla Napoleão Tavares
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Alessandra Girasole
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Ellen Nogueira Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Amauri da Silva Justo-Junior
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Romênia Domingues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Ana Clara Caznok Silveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Murilo de Carvalho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Andre Luis Berteli Ambrosio
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, Zip Code 13563-1203, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Peng Z, Gao J, Su W, Cao W, Zhu G, Qin X, Zhang C, Qi Y. Purification and Identification of Peptides from Oyster ( Crassostrea hongkongensis) Protein Enzymatic Hydrolysates and Their Anti-Skin Photoaging Effects on UVB-Irradiated HaCaT Cells. Mar Drugs 2022; 20:749. [PMID: 36547896 PMCID: PMC9784297 DOI: 10.3390/md20120749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to purify and identify antiphotoaging peptides from oyster (Crassostrea hongkongensis) protein enzymatic hydrolysates (OPEH) and to investigate the possible mechanism underlying its antiphotoaging effect. Multiple methods (Ultrafiltration, G25 Chromatography, RP-HPLC, and LC/MS/MS) had been used for this purpose, and eventually, two peptides, including WNLNP and RKNEVLGK, were identified. Particularly, WNLNP exerted remarkable antiphotoaging effect on the UVB-irradiated HaCaT photoaged cell model in a dose-dependent manner. WNLNP exerted its protective effect mainly through inhibiting ROS production, decreasing MMP-1 expression, but increasing extracellular pro-collagen I content. Furthermore, WNLNP downregulated p38, JNK, ERK, and p65 phosphorylation in the MAPK/NF-κB signaling pathway and attenuated bax over-expressions but reversed bcl-2 reduction in UVB- irradiated HaCaT cells. The molecular docking analysis showed that WNLNP forms five and seven hydrogen bonds with NF-κB (p65) and MMP-1, respectively. This study suggested that a pentapeptide WNLNP isolated from OPEH had great potential to prevent and regulate skin photoaging.
Collapse
Affiliation(s)
- Zhilan Peng
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Weimin Su
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Wenhong Cao
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Guoping Zhu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Chaohua Zhang
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Yi Qi
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
10
|
Lee JY, Park JY, Kim Y, Kang CH. Protective Effect of Bifidobacterium animalis subs. lactis MG741 as Probiotics against UVB-Exposed Fibroblasts and Hairless Mice. Microorganisms 2022; 10:microorganisms10122343. [PMID: 36557596 PMCID: PMC9782240 DOI: 10.3390/microorganisms10122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Skin photoaging, which causes wrinkles, increased epidermal thickness, and rough skin texture, is induced by ultraviolet B (UVB) exposure. These symptoms by skin photoaging have been reported to be involved in the reduction of collagen by the expression of matrix metalloproteinases (MMPs) and activator protein-1 (AP-1). This study investigated the protective effects of Bifidobacterium animalis subsp. lactis MG741 (Bi. lactis MG741) in Hs-68 fibroblasts and hairless mice (HR-1) following UVB exposure. We demonstrated that the Bi. lactis MG741 reduces wrinkles and skin thickness by downregulating MMP-1 and MMP-3, phosphorylation of extracellular signal-regulated kinase (ERK), and c-FOS in fibroblasts and HR-1. Additionally, in UVB-irradiated dorsal skin of HR-1, Bi. lactis MG741 inhibits the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), an inflammation-related factor. Thus, Bi. lactis MG741 has the potential to prevent wrinkles and skin inflammation by modulating skin photoaging markers.
Collapse
|
11
|
Moreira BR, Vega J, Sisa ADA, Bernal JSB, Abdala-Díaz RT, Maraschin M, Figueroa FL, Bonomi-Barufi J. Antioxidant and anti-photoaging properties of red marine macroalgae: Screening of bioactive molecules for cosmeceutical applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Ellistasari EY, Kariosentono H, Purwanto B, Wasita B, Riswiyant RCA, Pamungkasari EP, Soetrisno S. Role of Exosomes Derived from Secretome Human Umbilical Vein Endothelial Cells (Exo-HUVEC) as Anti-Apoptotic, Anti-Oxidant, and Increasing Fibroblast Migration in Photoaging Skin Models. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Prolonged skin exposure to ultraviolet light rays leads to photoaging, which is characterized molecularly by an increase in reactive oxygen species (ROS), cell apoptosis, and a decrease in collagen. Photoaging therapy has been a challenge until recently. Fibroblasts exposed to ultraviolet B (UVB) light proved to be a good model for photoaging skin. They are also the primary dermal cells that stimulate collagen production and extracellular matrix (ECM), which contribute to skin aging. Exo-HUVEC is rich in growth factors, cytokines, and miRNAs, and they all play a vital role in cell-to-cell communication. The migration of fibroblasts is crucial for the development, repair, and regeneration of skin tissue during the repair of skin aging.
Objective: An in vitro experimental study was conducted to analyze the effect of Exo-HUVEC on oxidative stress levels, cell apoptosis, and fibroblast migration rate after UVB ray exposure on fibroblasts.
Methods: The fibroblast cultures were divided into five groups, including one without UVB exposure, one with UVB exposure, and one with UVB+Exo-HUVEC exposure at 0.1%, 0.5%, and 1%, respectively. Oxidative stress levels were measured using the ELISA test for malondialdehyde (MDA). Furthermore, flow cytometry was used to measure apoptosis using PI/Annexin markers, while a scratch assay examination was used to measure fibroblast migration rate using imaging readings.
Results: There were significant differences in the levels of MDA, PI/Annexin, and the rate of fibroblast migration between the UVB-irradiated control group and the Exo-HUVEC treatment group (p<0.001).
Conclusion: Exo-HUVEC is a marker of photoaging improvement, which has anti-apoptotic effects and reduces oxidative stress, as well as increases fibroblast migration rate.
Collapse
|
13
|
Liu H, Wang J, Hu J, Wang L, Guo Z, Fan W, Xu Y, Liu D, Zhang Y, Xie M, Tang J, Huang W, Zhang Q, Zhou Z, Hou S. Genome-wide association analysis reveal the genetic reasons affect melanin spot accumulation in beak skin of ducks. BMC Genomics 2022; 23:236. [PMID: 35346029 PMCID: PMC8962612 DOI: 10.1186/s12864-022-08444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Skin pigmentation is a broadly appearing phenomenon of most animals and humans in nature. Here we used a bird model to investigate why melanin spot deposits on the skin.
Results
Our result showed that growth age and the sunlight might induce melanin deposition in bird beak skin which was determined by genetic factors. GWAS helped us to identify two major loci affecting melanin deposition, located on chromosomes 13 and 25, respectively. The fine mapping works narrowed the candidate regions to 0.98 Mb and 1.0 Mb on chromosomes 13 and 25. The MITF and POU2F3 may be the causative genes and synergistically affect melanin deposition during duck beak skin. Furthermore, our data strongly demonstrated that the pathway of melanin metabolism contributes to melanin deposition on the skin.
Conclusions
We demonstrated that age and sunlight induce melanin deposition in bird beak skin, while heredity is fundamental. The MITF and POU2F3 likely played a synergistic effect on the regulation of melanin synthesis, and their mutations contribute to phenotypic differences in beak melanin deposition among individuals. It is pointed out that melanin deposition in the skin is related to the pathway of melanin metabolism, which provided insights into the molecular regulatory mechanisms and the genetic improvement of the melanin deposition in duck beak.
Collapse
|
14
|
Cassuto D, Bellia G, Schiraldi C. An Overview of Soft Tissue Fillers for Cosmetic Dermatology: From Filling to Regenerative Medicine. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 14:1857-1866. [PMID: 34992400 PMCID: PMC8710524 DOI: 10.2147/ccid.s276676] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
Hyaluronic acid (HA)-based injectable filling agents are at the forefront of the current demand for noninvasive dermatological procedures for the correction of age-related soft tissue defects. The present review aims to summarize currently available HA-based products and critically appraise their differences in rheological nature and clinical application. Linear HA (LHA) gels may be supplemented with amino acids, lipoic acid, vitamins, nucleosides, or minerals for synergistic antiaging and antioxidant benefits (polycomponent LHA). HA hydrogels can be generated via chemical or physical crosslinking, which increases their elasticity and decreases viscosity. The performance of crosslinked fillers depends on HA concentration, degree of crosslinking, elastic modulus, cohesivity, and type of crosslinking agent employed. PEG-crosslinked LHA displays improved elasticity and resistance to degradation, and lower swelling rates as compared to BDDE-crosslinked LHA. Physical crosslinking stabilizes HA hydrogels without employing exogenous chemical compounds or altering hyaluronans’ natural molecular structure. Thermally stabilized hybrid cooperative HA complexes (HCC) are a formulation of high- and low-molecular-weight (H-HA and L-HA) hyaluronans, achieving high HA concentration, low viscosity with optimal tissue diffusion, and a duration comparable to weakly cross-linked gel. Our critical analysis evidences the importance of understanding different fillers’ properties to assist physicians in selecting the most appropriate filler for specific uses and for predictable and sustainable results.
Collapse
Affiliation(s)
- Daniel Cassuto
- Private Practice, Tel Aviv, Israel.,Private Practice, Milan, Italy
| | | | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
15
|
Radrezza S, Carini M, Baron G, Aldini G, Negre-Salvayre A, D'Amato A. Study of Carnosine's effect on nude mice skin to prevent UV-A damage. Free Radic Biol Med 2021; 173:97-103. [PMID: 34242794 DOI: 10.1016/j.freeradbiomed.2021.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023]
Abstract
The skin is an important barrier against external attacks from bacteria, radicals, or radiations. UV-A radiations cause significant impairment of this barrier, inducing inflammation, oxidative stress, and wrinkle formation, thereby promoting photoaging. Previous studies reported that carnosine, a potent antioxidant, and carbonyl scavenger agent, may prevent photoaging features in the skin of hairless mice exposed to UV-A radiations. In the present study, we used a quantitative proteomic approach to analyze the changes evoked by carnosine in the skin proteome of hairless mice exposed to UV-A. This approach allowed to quantify more than 2480 proteins, among them consistent differences were observed for 89 proteins in UV-A exposed vs control unexposed skins, and 252 proteins in UV-A-exposed skin preventively treated by carnosine (UVAC) vs UV-A. Several functional pathways were altered in the skins of UV-A exposed hairless mice, including the integrin-linked kinase, calcium signaling, fibrogenesis, cell migration and filament formation. An impairment of mitochondrial function and metabolism was observed, with an up-regulation of cytochrome C oxidase 6B1 and NADH: ubiquinone oxidoreductase S8. Skins pre-treated by carnosine were prevented from UV-A induced proteome alterations. In conclusion, our study emphasizes the potency of a proteomic approach to identify the consequences of UV radiations in the skins, and points out the capacity of carnosine to prevent the alterations of skin proteome evoked by UV-A.
Collapse
Affiliation(s)
- Silvia Radrezza
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| | - Anne Negre-Salvayre
- Inserm UMR-1048, Toulouse, France, University of Toulouse, Toulouse, France.
| | - Alfonsina D'Amato
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
16
|
Chu CC, Hasan ZABA, Tan CP, Nyam KL. In Vitro Antiaging Evaluation of Sunscreen Formulated from Nanostructured Lipid Carrier and Tocotrienol-Rich Fraction. J Pharm Sci 2021; 110:3929-3936. [PMID: 34425132 DOI: 10.1016/j.xphs.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Chronic exposure to ultraviolet (UV) radiation leads to photoaging. There is a tremendous rise in products having a dual activity of photoprotection and antiaging. In vitro analysis in dermal fibroblasts and their biological mechanisms involved are critical to determine antiaging potential. The study aimed to investigate the antiaging potential of sunscreen formulated from nanostructured lipid carrier and tocotrienol-rich fraction (NLC-TRF sunscreen). The antioxidant activity of the NLC-TRF sunscreen was evaluated by radical scavenging and hydrogen peroxide inhibition properties. Also, collagenase, elastase and matrix metalloproteinase-1 (MMP-1) inhibition activities, and type I collagen and elastin protein expression were studied. Quantitative real-time polymerase chain reaction (qPCR) was used to evaluate the mRNA expression of fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), type I collagen (COL1A1), elastin (ELN), MMP-1, MMP-2, and tissue inhibitor matrix metalloproteinase-1 (TIMP-1). The results suggested that NLC-TRF sunscreen is effective in radical, anti-hydrogen peroxide, and collagenase, elastase and MMP-1 inhibition activities. Besides, a significant increase for type I collagen (3.47-fold) and elastin (2.16-fold) protein and fibroblast regeneration genes (FGF (2.12-fold), VEGF (1.91-fold), TGF-β1 (2.84-fold), TIMP-1 (1.42-fold), ELN (2.13-fold)) were observed after sample treatment. These findings support the therapeutic potential of NLC-TRF sunscreen in antiaging.
Collapse
Affiliation(s)
- Chee Chin Chu
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| | | | - Chin Ping Tan
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kar Lin Nyam
- Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Yao W, Chen X, Li X, Chang S, Zhao M, You L. Current trends in the anti-photoaging activities and mechanisms of dietary non-starch polysaccharides from natural resources. Crit Rev Food Sci Nutr 2021; 62:9021-9035. [PMID: 34142906 DOI: 10.1080/10408398.2021.1939263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Photoaging is a complex and multistage process triggered mainly by ultraviolet (UV) radiation due to exposure to sunlight. Photoaging induces DNA damage and oxidative stress that initiate an inflammatory response and an increase of matrix metalloproteinases (MMPs) expression, which results in cumulative changes in skin appearance, structure, and functions, and eventually causes skin carcinogenesis. Dietary polysaccharides from bio-resources have been utilized as functional ingredients in healthy food, cosmetics, and drug due to their good bioactivities. However, a systematic introduction to their effects and underlying mechanisms in anti-photoaging is limited. This review discusses the damage and pathogenesis of UV-induced photoaging and summarizes the up-to-date advances in research on the anti-photoaging activity of non-starch polysaccharides from natural edible resources considering the influence of oxidative stress, DNA damage, MMPs regulation, inflammation, and melanogenesis, primarily focusing on the cellular and molecular mechanisms. This paper will help to understand the anti-photoaging functions of dietary non-starch polysaccharides from natural resources and further application in drug and functional food.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Xiaoyong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Xiong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.,Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Zhang C, Lu Y, Ai Y, Xu X, Zhu S, Zhang B, Tang M, Zhang L, He T. Glabridin Liposome Ameliorating UVB-Induced Erythema and Lethery Skin by Suppressing Inflammatory Cytokine Production. J Microbiol Biotechnol 2021; 31:630-636. [PMID: 33526759 PMCID: PMC9706034 DOI: 10.4014/jmb.2011.11006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Glabridin, a compound of the flavonoid, has shown outstanding skin-whitening and anti-aging properties, but its water insolubility limits its wide application. Therefore, glabridin liposome (GL) has been developed to improve its poor bioavailability, while there are few studies to evaluate its amelioration of UVB- induced photoaging. This study is performed to investigate the amelioration of GL against UVB- induced cutaneous photoaging. The prepared GL has a spheroidal morphology with an average diameter of 200 nm. The GL shows lower cytotoxicity than glabridin, but it has a more effective role in inhibition of melanin. Moreover, the application of GL can effectively relieve UV radiation induced erythema and leathery skin, associated with the down-regulated expression of inflammatory cytokines (TNF-α, IL-6 and IL-10). Taken together, these results demonstrate that GL has potentials as topical therapeutic agents against UVB radiation induced skin damage through inhibiting inflammation.
Collapse
Affiliation(s)
- Chijian Zhang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Yong Ai
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Xian Xu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Siyang Zhu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Bing Zhang
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Minghui Tang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Tinggang He
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| |
Collapse
|
19
|
Mousavi SE, Delgado-Saborit JM, Godderis L. Exposure to per- and polyfluoroalkyl substances and premature skin aging. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124256. [PMID: 33129602 DOI: 10.1016/j.jhazmat.2020.124256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a ubiquitous group of persistent chemicals distributed globally in the environment. Skin aging is a notorious process that is prematurely induced by the interaction between endogenous and exogenous factors, including exposure to environmental chemicals. The existing evidence suggests that skin absorption of PFASs through dermal contact may be an important route of exposure to these chemicals in humans. On the other hand, PFASs intake by other routes may lead to PFASs bioaccumulation in the skin via tissue bio-distribution. Additionally, the presence of PFASs in consumer and cosmetic products combined with their daily close contact with the skin could render humans readily susceptible to dermal absorption. Therefore, chronic low-dose dermal exposure to PFASs can occur in the human population, representing another important route of exposure to these chemicals. Studies indicate that PFASs can threaten skin health and contribute to premature skin aging. Initiation of inflammatory-oxidative cascades, induction of DNA damage such as telomere shortening, dysregulation of genes engaged in dermal barrier integrity and its functions, signaling of the mitogen activated protein kinase (MAPK) pathway, and last but not least the down-regulation of extracellular matrix (ECM) components are among the most likely mechanisms by which PFASs can contribute to premature skin aging.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran.
| | - Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lode Godderis
- Laboratory for Occupational and Environmental Hygiene, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Interleuvenlaan 58, 3001 Heverlee, Belgium
| |
Collapse
|
20
|
Calimport SRG, Bentley BL, Stewart CE, Pawelec G, Scuteri A, Vinciguerra M, Slack C, Chen D, Harries LW, Marchant G, Fleming GA, Conboy M, Antebi A, Small GW, Gil J, Lakatta EG, Richardson A, Rosen C, Nikolich K, Wyss-Coray T, Steinman L, Montine T, de Magalhães JP, Campisi J, Church G. The inherent challenges of classifying senescence-Response. Science 2020; 368:595-596. [PMID: 32381713 PMCID: PMC10569072 DOI: 10.1126/science.abb4073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
D'Aloiso CM, Senzolo M. Efficacy of dermal redensification in chronoaged face: Quantitative volumetric assessment. J Cosmet Dermatol 2019; 19:199-204. [PMID: 31077547 DOI: 10.1111/jocd.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/15/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mesotherapy for chronoaged skin shows heterogeneous results. OBJECTIVES The aim of the study was to assess the efficacy of dermal redensification on the face and neck. METHODS Patients with mild-moderate-severe chronoaging of face and neck were included and, every 14 days, treated with four sessions of dermal redensification, consisting of 1 mL of hyaluronic acid (15 mg/mL) plus a dermo-restructuring complex. Skin improvements were analyzed at 8 weeks for amelioration by Wrinkle Severity Rating Scale and quantification of superficial wrinkles and texture by high-resolution 3D camera. All patients underwent a self-assessment questionnaire and Global Aesthetic Improvement Scale. RESULTS Thirty-six patients were enrolled (median age 55 [42-67] years). Eight weeks after treatment all patients reported a significant improvement, being Global Aesthetic Improvement Scale ≥2 in 69% of the subjects. Patients' perception of improvement of their skin quality was highly satisfactory in all items explored on the self-assessment questionnaire relating to radiance, elasticity, texture, and smoothness. Subjects with fine and moderate/deep wrinkles had an improvement >25% and 50%, respectively. Quantification of wrinkles with filters for superficial plane (1 mm) showed a statistically significant median decrease, both in width (1.53 [1.41-1.72] mm vs 1.27 [1.12-1.34] P < 0.001) and depth (0.46 [0.27-0.61] vs 0.12 [0.6-0.18] P < 0.001). Indentation decreased by a median of 20%. CONCLUSIONS The synergic effects of hyaluronic acid and dermo-restructuring complex show an objective amelioration of skin texture, wrinkles, and self-evaluation of skin appearance.
Collapse
Affiliation(s)
| | - Marco Senzolo
- Multivisceral Transplant Unit, Department of Surgical, Oncological and Gastroenterological Sciences, University Hospital of Padua, Padua, Italy
| |
Collapse
|
22
|
Carrara IM, Melo GP, Bernardes SS, Neto FS, Ramalho LNZ, Marinello PC, Luiz RC, Cecchini R, Cecchini AL. Looking beyond the skin: Cutaneous and systemic oxidative stress in UVB-induced squamous cell carcinoma in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:17-26. [PMID: 31035030 DOI: 10.1016/j.jphotobiol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
Cumulative ultraviolet (UV) exposure is associated with squamous skin cell carcinoma. UV radiation induces oxidative modifications in biomolecules of the skin leading to photocarcinogenesis. Indeed, the cyclobutene pyrimidine dimers and other dimers formed by photoaddition between carbon-carbon bonds also have an important role in the initiation process. However, information on the systemic redox status during these processes is scarce. Thus, we investigated the systemic redox profile in UVB-induced squamous cell carcinoma in mice. Female hairless mice were exposed to UVB radiation (cumulative dose = 17.1 J/cm2). The dorsal skin of these mice developed actinic keratosis (AK) and squamous cell carcinoma (SCC) and presented increased levels of oxidative and nitrosative stress biomarkers (4-hydroxy-2-nonenal and 3-nitrotyrosine), and decreased antioxidant defenses. Systemically, we observed the consumption of plasmatic antioxidant defenses and increased levels of advanced oxidized protein products (AOPP), an oxidative stress product derived from systemic inflammatory response. Taken together, our results indicate that UVB chronic irradiation leads not only to adjacent and tumoral oxidative stress in the skin, but it systemically is reflected through the blood. These new findings clarify some aspects of the pathogenesis of SCC and should assist in formulating better chemoprevention strategies, while avoiding additional primary SCC development and metastasis.
Collapse
Affiliation(s)
- Iriana Moratto Carrara
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Gabriella Pasqual Melo
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Sara Santos Bernardes
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Healthy Sciences Research, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil, UFGD, R. João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brazil.
| | - Fernando Souza Neto
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), FMRP, Av. Bandeirantes, 3900 - Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rodrigo Cabral Luiz
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil.
| |
Collapse
|
23
|
Jeon J, Sung J, Lee H, Kim Y, Jeong HS, Lee J. Protective activity of caffeic acid and sinapic acid against UVB-induced photoaging in human fibroblasts. J Food Biochem 2018; 43:e12701. [DOI: 10.1111/jfbc.12701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jiyoung Jeon
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Jeehye Sung
- Food Science and Human Nutrition, Citrus Research and Education Center; University of Florida; Lake Alfred Florida
| | - Hana Lee
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Younghwa Kim
- School of Food Biotechnology and Nutrition; Kyungsung University; Busan Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| |
Collapse
|
24
|
Brand RM, Wipf P, Durham A, Epperly MW, Greenberger JS, Falo LD. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front Pharmacol 2018; 9:920. [PMID: 30177881 PMCID: PMC6110189 DOI: 10.3389/fphar.2018.00920] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Unmitigated UV radiation (UVR) induces skin photoaging and multiple forms of cutaneous carcinoma by complex pathways that include those mediated by UV-induced reactive oxygen species (ROS). Upon UVR exposure, a cascade of events is induced that overwhelms the skin’s natural antioxidant defenses and results in DNA damage, intracellular lipid and protein peroxidation, and the dysregulation of pathways that modulate inflammatory and apoptotic responses. To this end, natural products with potent antioxidant properties have been developed to prevent, mitigate, or reverse this damage with varying degrees of success. Mitochondria are particularly susceptible to ROS and subsequent DNA damage as they are a major intracellular source of oxidants. Therefore, the development of mitochondrially targeted agents to mitigate mitochondrial oxidative stress and resulting DNA damage is a logical approach to prevent and treat UV-induced skin damage. We summarize evidence that some existing natural products may reduce mitochondrial oxidative stress and support for synthetically generated mitochondrial targeted cyclic nitroxides as potential alternatives for the prevention and mitigation of UVR-induced skin damage.
Collapse
Affiliation(s)
- Rhonda M Brand
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Austin Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Eren B, Tuncay Tanrıverdi S, Aydın Köse F, Özer Ö. Antioxidant properties evaluation of topical astaxanthin formulations as anti‐aging products. J Cosmet Dermatol 2018; 18:242-250. [DOI: 10.1111/jocd.12665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Bilge Eren
- Faculty of Pharmacy Department of Pharmaceutical Technology Ege University IzmirTurkey
| | | | - Fadime Aydın Köse
- Faculty of Pharmacy Department of Biochemistry Ege University Izmir Turkey
| | - Özgen Özer
- Faculty of Pharmacy Department of Pharmaceutical Technology Ege University IzmirTurkey
| |
Collapse
|
26
|
Qin H, Zhang G, Zhang L. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells. Exp Ther Med 2018; 15:3439-3448. [PMID: 29545866 DOI: 10.3892/etm.2018.5863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Polycomb group genes (PcG) encode chromatin modification proteins that are involved in the epigenetic regulation of cell differentiation, proliferation and the aging processes. The key subunit of the PcG complex, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), has a central role in a variety of mechanisms, such as the formation of chromatin structure, gene expression regulation and DNA damage. In the present study, ultraviolet A (UVA) was used to radiate human dermal fibroblasts in order to construct a photo-aged cell model. Subsequently, the cell viability assay, Hoechst staining, apoptosis detection using flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining and erythrocyte exclusion experiments were performed. GSK126, a histone methylation enzyme inhibitor of EZH2, was used as an experimental factor. Results suggested that GSK126 downregulated the mRNA expression levels of EZH2 and upregulated the mRNA expression levels of BMI-1. Notably, GSK126 affected the transcription of various photoaging-related genes and thus protected against photoaging induced by UVA radiation.
Collapse
Affiliation(s)
- Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guang Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
27
|
Photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves against UVB-induced oxidative stress in fibroblasts and hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:53-60. [DOI: 10.1016/j.jphotobiol.2017.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
|
28
|
Cutaneous Permeation and Penetration of Sunscreens: Formulation Strategies and In Vitro Methods. COSMETICS 2017. [DOI: 10.3390/cosmetics5010001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Fluorescence spectroscopy in the visible range for the assessment of UVB radiation effects in hairless mice skin. Photodiagnosis Photodyn Ther 2017; 20:21-27. [DOI: 10.1016/j.pdpdt.2017.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/02/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023]
|
30
|
Kesente M, Kavetsou E, Roussaki M, Blidi S, Loupassaki S, Chanioti S, Siamandoura P, Stamatogianni C, Philippou E, Papaspyrides C, Vouyiouka S, Detsi A. Encapsulation of Olive Leaves Extracts in Biodegradable PLA Nanoparticles for Use in Cosmetic Formulation. Bioengineering (Basel) 2017; 4:bioengineering4030075. [PMID: 28952554 PMCID: PMC5615321 DOI: 10.3390/bioengineering4030075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/25/2022] Open
Abstract
The aim of the current work was to encapsulate olive leaves extract in biodegradable poly(lactic acid) nanoparticles, characterize the nanoparticles and define the experimental parameters that affect the encapsulation procedure. Moreover, the loaded nanoparticles were incorporated in a cosmetic formulation and the stability of the formulation was studied for a three-month period of study. Poly(lactic acid) nanoparticles were prepared by the nanoprecipitation method. Characterization of the nanoparticles was performed using a variety of techniques: size, polydispersity index and ζ-potential were measured by Dynamic Light Scattering; morphology was studied using Scanning Electron Microscopy; thermal properties were investigated using Differential Scanning Calorimetry; whereas FT-IR spectroscopy provided a better insight on the encapsulation of the extract. Encapsulation Efficiency was determined indirectly, using UV-Vis spectroscopy. The loaded nanoparticles exhibited anionic ζ-potential, a mean particle size of 246.3 ± 5.3 nm (Pdi: 0.21 ± 0.01) and equal to 49.2%, while olive leaves extract release from the nanoparticles was found to present a burst effect at the first 2 hours. Furthermore, the stability studies of the loaded nanoparticles’ cosmetic formulation showed increased stability compared to the pure extract, in respect to viscosity, pH, organoleptic characteristics, emulsions phases and grid.
Collapse
Affiliation(s)
- Maritina Kesente
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Eleni Kavetsou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Marina Roussaki
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Slim Blidi
- Department of Food Quality and Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (Centre International de Hautes Etudes Agronomiques Mediterraneennes), 73100 Chania, Crete, Greece.
| | - Sofia Loupassaki
- Department of Food Quality and Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (Centre International de Hautes Etudes Agronomiques Mediterraneennes), 73100 Chania, Crete, Greece.
| | - Sofia Chanioti
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Paraskevi Siamandoura
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | | | | | - Constantine Papaspyrides
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
31
|
Skin changes in streptozotocin-induced diabetic rats. Biochem Biophys Res Commun 2017; 490:1154-1161. [DOI: 10.1016/j.bbrc.2017.06.166] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
|
32
|
Oh Y, Lim HW, Park KH, Huang YH, Yoon JY, Kim K, Lim CJ. Ginsenoside Rc protects against UVB‑induced photooxidative damage in epidermal keratinocytes. Mol Med Rep 2017; 16:2907-2914. [PMID: 28713942 DOI: 10.3892/mmr.2017.6943] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/03/2017] [Indexed: 11/05/2022] Open
Abstract
Ginsenoside Rc (Rc) is a major ginsenoside isolated from Panax ginseng, and has exhibited pharmacological effects on skin cells. The present study aimed to investigate the putative skin‑protective properties of Rc, including its anti‑photoaging and barrier function‑protective effects, in human HaCaT keratinocytes exposed to UVB radiation. The protective properties of Rc were evaluated through the assessment of keratinocyte viability, reactive oxygen species (ROS) production, total glutathione (GSH) and superoxide dismutase (SOD) activity, caspase‑14, matrix metalloproteinase (MMP)‑2 and ‑9 activity, and MMP‑2, MMP‑9 and filament aggregating protein (filaggrin) expression following UVB irradiation. Treatment with Rc was revealed to prevent the UVB‑induced increase in ROS production and pro‑MMP‑2 and ‑9 levels in HaCaT keratinocytes. In addition, treatment with Rc resulted in enriched GSH contents and enhanced SOD activity following exposure to UVB radiation. Furthermore, Rc treatment enhanced caspase‑14 activity and counteracted the UVB‑induced downregulation in filaggrin expression. However, no significant difference was identified between Rc‑treated and normal groups in terms of keratinocyte viability, regardless of exposure to radiation. The present findings suggested that Rc may exert anti‑photoaging and barrier function‑protective effects in keratinocytes, and thus protect the skin against photooxidative stress induced by exposure to UV radiation.
Collapse
Affiliation(s)
- Yuri Oh
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hye-Won Lim
- Shebah Biotech Inc., G‑Tech Village, Chuncheon, Gangwon 24398, Republic of Korea
| | - Kwang Hark Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yu-Hua Huang
- Shebah Biotech Inc., G‑Tech Village, Chuncheon, Gangwon 24398, Republic of Korea
| | - Ji-Young Yoon
- Jeonju AgroBio‑Materials Institute, Jeonju, Jeollabuk 54810, Republic of Korea
| | - Kyunghoon Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Chang-Jin Lim
- Shebah Biotech Inc., G‑Tech Village, Chuncheon, Gangwon 24398, Republic of Korea
| |
Collapse
|
33
|
Zegarska B, Pietkun K, Zegarski W, Bolibok P, Wiśniewski M, Roszek K, Czarnecka J, Nowacki M. Air pollution, UV irradiation and skin carcinogenesis: what we know, where we stand and what is likely to happen in the future? Postepy Dermatol Alergol 2017; 34:6-14. [PMID: 28261026 PMCID: PMC5329103 DOI: 10.5114/ada.2017.65616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
The link between air pollution, UV irradiation and skin carcinogenesis has been demonstrated within a large number of epidemiological studies. Many have shown the detrimental effect that UV irradiation can have on human health as well as the long-term damage which can result from air pollution, the European ESCAPE project being a notable example. In total, at present around 2800 different chemical substances are systematically released into the air. This paper looks at the hazardous impact of air pollution and UV and discusses: 1) what we know; 2) where we stand; and 3) what is likely to happen in the future. Thereafter, we will argue that there is still insufficient evidence of how great direct air pollution and UV irradiation are as factors in the development of skin carcinogenesis. However, future prospects of progress are bright due to a number of encouraging diagnostic and preventive projects in progress at the moment.
Collapse
Affiliation(s)
- Barbara Zegarska
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Katarzyna Pietkun
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
- Chair and Department of Rehabilitation, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Wojciech Zegarski
- Chair and Department of Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre – Professor Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Paulina Bolibok
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Maciej Nowacki
- Chair and Department of Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre – Professor Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| |
Collapse
|
34
|
Portantiolo Lettnin A, Teixeira Santos Figueiredo Salgado M, Gonsalez Cruz C, Manoel Rodrigues da Silva-Júnior F, Cunha Gonzalez V, de Souza Votto AP, Santos Trindade G, de Moraes Vaz Batista Filgueira D. Protective effect of infrared-A radiation against damage induced by UVB radiation in the melan-a cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:125-32. [DOI: 10.1016/j.jphotobiol.2016.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
35
|
Fang JY, Wang PW, Huang CH, Chen MH, Wu YR, Pan TL. Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics. Proteomics 2016; 16:2718-2731. [PMID: 27459910 DOI: 10.1002/pmic.201600141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
The skin provides protection against environmental stress. However, intrinsic and extrinsic aging causes significant alteration to skin structure and components, which subsequently impairs molecular characteristics and biochemical processes. Here, we have conducted an immunohistological investigation and established the proteome profiles on nude mice skin to verify the specific responses during aging caused by different factors. Our results showed that UVB-elicited aging results in upregulation of proliferating cell nuclear antigen and strong oxidative damage in DNA, whereas chronological aging abolished epidermal cell growth and increased the expression of caspase-14, as well as protein carbonylation. Network analysis indicated that the programmed skin aging activated the ubiquitin system and triggered obvious downregulation of 14-3-3 sigma, which might accelerate the loss of cell growth capacity. On the other hand, UVB stimulation enhanced inflammation and the risk of skin carcinogenesis. Collectively, functional proteomics could provide large-scale investigation of the potent proteins and molecules that play important roles in skin subjected to both intrinsic and extrinsic aging.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hsun Huang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Ru Wu
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
36
|
Baek B, Lee SH, Kim K, Lim HW, Lim CJ. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:269-77. [PMID: 27162481 PMCID: PMC4860369 DOI: 10.4196/kjpp.2016.20.3.269] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 11/15/2022]
Abstract
Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties.
Collapse
Affiliation(s)
- Beomyeol Baek
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Su Hee Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Kyunghoon Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| | | | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
37
|
|
38
|
Oh SJ, Oh Y, Ryu IW, Kim K, Lim CJ. Protective properties of ginsenoside Rb3 against UV-B radiation-induced oxidative stress in HaCaT keratinocytes. Biosci Biotechnol Biochem 2016; 80:95-103. [DOI: 10.1080/09168451.2015.1075862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
This work aimed to evaluate the skin anti-photoaging properties of ginsenoside Rb3 (Rb3), one of the main protopanaxdiol-type ginsenosides from ginseng, in HaCaT keratinocytes. The skin anti-photoaging activity was assessed by analyzing the levels of reactive oxygen species (ROS), pro-matrix metalloproteinase-2 (proMMP-2), pro-matrix metalloproteinase-9 (proMMP-9), total glutathione (GSH), and superoxide dismutase (SOD) activity as well as cell viability in HaCaT keratinocytes under UV-B irradiation. When HaCaT keratinocytes were exposed to Rb3 prior to UV-B irradiation, Rb3 exhibited suppressive activities on UV-B-induced ROS, proMMP-2, and proMMP-9 enhancements. On the contrary, Rb3 displayed enhancing activities on UV-B-reduced total GSH and SOD activity levels. Rb3 could not interfere with cell viabilities in UV-B-irradiated HaCaT keratinocytes. Rb3 plays a protective role against UV-B-induced oxidative stress in human HaCaT keratinocytes, proposing its potential skin anti-photoaging properties.
Collapse
Affiliation(s)
- Sun-Joo Oh
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Yuri Oh
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - In Wang Ryu
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyunghoon Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
39
|
|
40
|
Cutaneous penetration of soft nanoparticles via photodamaged skin: Lipid-based and polymer-based nanocarriers for drug delivery. Eur J Pharm Biopharm 2015; 94:94-105. [DOI: 10.1016/j.ejpb.2015.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 01/13/2023]
|
41
|
Oh SJ, Kim K, Lim CJ. Suppressive properties of ginsenoside Rb2, a protopanaxadiol-type ginseng saponin, on reactive oxygen species and matrix metalloproteinase-2 in UV-B-irradiated human dermal keratinocytes. Biosci Biotechnol Biochem 2015; 79:1075-81. [PMID: 25774540 DOI: 10.1080/09168451.2015.1020752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ginsenosides, also known as ginseng saponins, are the principal bioactive ingredients of ginseng, which are responsible for its diverse pharmacological activities. The present work aimed to assess skin anti-photoaging properties of ginsenoside Rb2 (Rb2), one of the predominant protopanaxadiol-type ginsenosides, in human epidermal keratinocyte HaCaT cells under UV-B irradiation. When the cultured keratinocytes were subjected to Rb2 prior to UV-B irradiation, Rb2 displayed suppressive activities on UV-B-induced reactive oxygen species elevation and matrix metalloproteinase-2 expression and secretion. However, Rb2 at the used concentrations was unable to modulate cellular survivals in the UV-B-irradiated keratinocytes. In brief, Rb2 possesses a protective role against the photoaging of human keratinocyte cells under UV-B irradiation.
Collapse
Affiliation(s)
- Sun-Joo Oh
- a Department of Biological Sciences , Kangwon National University , Chuncheon , Republic of Korea
| | | | | |
Collapse
|
42
|
Sparavigna A, Tenconi B, De Ponti I. Antiaging, photoprotective, and brightening activity in biorevitalization: a new solution for aging skin. Clin Cosmet Investig Dermatol 2015; 8:57-65. [PMID: 25709488 PMCID: PMC4330006 DOI: 10.2147/ccid.s77742] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Age-related changes in the dermis can be considered the result of intrinsic factors and the consequence of environmental damage, mainly due to ultraviolet (UV) radiation from the sun (responsible for skin photoaging). The great versatility of the mesotherapy "biorevitalization" lies in the synergy between different biological effects of the active injected substances, which treats the skin in a more complete way. Several studies about biorevitalization efficacy showed good results. To date, however, objective results supported by instrumental evaluation are very sparse. PURPOSE This study evaluated the efficacy of an injectable solution (32 mg of hyaluronic acid plus an antiaging antioxidant complex consisting of vitamins, minerals, and amino acids) in the treatment of skin aging and photoaging. METHODS A total of 64 female volunteers (37-60 years) underwent four sessions of biorevitalization at 3-week intervals, involving multiple injections in the face (external corner of the eye and cheek), neck, décolletage, and back of the hands. The esthetic result was assessed at baseline and after 6, 9, and 12 weeks, and was established through the use of clinical and instrumental evaluations, supported by photographic documentation. Additionally, a phototest was performed to assess the effect of biorevitalization treatment on UVB-induced erythema. RESULTS Instrumental assessment showed, as early as after the second biorevitalizing treatment, the antiaging efficacy of the tested product; there was a clinical and statistically significant improvement of profilometric parameters, skin brightness, pigmentation, and deep skin hydration. The study product induced a statistically significant decrease of the visual score of the UVB-induced erythema compared with baseline, which was statistically different from placebo. CONCLUSION The study confirmed the well-known efficacy of biorevitalization in skin rejuvenation. The positive difference between deep and superficial skin hydration registered at the end of the trial suggested improved skin moisture retention of the stratum corneum. Furthermore, the obtained results suggest that the injected product could intervene at different moments of the skin pigmentation process by activating an intrinsic photoprotective mechanism and improving skin pigmentation quality. It may be that these processes employ common mechanisms in which antioxidants could play a pivotal role. This last hypothesis deserves further investigation.
Collapse
Affiliation(s)
- Adele Sparavigna
- Derming, Clinical Research and Bioengineering Institute, Monza, Italy
| | - Beatrice Tenconi
- Derming, Clinical Research and Bioengineering Institute, Monza, Italy
| | - Ileana De Ponti
- Derming, Clinical Research and Bioengineering Institute, Monza, Italy
| |
Collapse
|
43
|
Terra VA, Souza-Neto FP, Frade MAC, Ramalho LNZ, Andrade TAM, Pasta AAC, Conchon AC, Guedes FA, Luiz RC, Cecchini R, Cecchini AL. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 144:20-7. [PMID: 25668145 DOI: 10.1016/j.jphotobiol.2015.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) levels increase considerably after 24h of exposure of skin to ultraviolet B (UVB) radiation, which leads to nitrosative skin injury. In addition, increased NO levels after exposure to UVB radiation are associated with inhibition of cell proliferation. Compared to the UV-control group, UV-genistein at 10 mg/kg (UV-GEN10) group showed tissue protection, decreased lipid peroxide and nitrotyrosine formation, and low CAT activity. Furthermore, NO levels and iNOS labeling remained high. In this group, the reduction in lipid peroxides and nitrotyrosine was accompanied by upregulation of cell proliferation factors (Ki67 and PCNA), which indicated that prevention of nitrosative skin injury promoted cell proliferation and DNA repair. Genistein also prevented nitrosative events, inhibited ONOO(-) formation, which leads to tissue protection and cell proliferation. The UV-GEN15 group did not result in a greater protective effect compared to that with UV-GEN10 group. In the UV-GEN15 group, histological examination of the epidermis showed morphological alterations without efficient protection against lipid peroxide formation, as well as inhibition of Ki67 and PCNA, and VEGF labeling, which suggested inhibition of cell proliferation. These results help to elucidate the mechanisms underlying the photoprotective effect of genistein and reveal the importance of UVB radiation-induced nitrosative damage.
Collapse
Affiliation(s)
- V A Terra
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - F P Souza-Neto
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil; Laboratorio de Patofisiologia e Radicais Livres, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - M A C Frade
- Departamento de Clínica Medica, Divisão de Dermatologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L N Z Ramalho
- Departamento de Patologia e Medicina Legal, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - T A M Andrade
- Departamento de Clínica Medica, Divisão de Dermatologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - A A C Pasta
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - A C Conchon
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - F A Guedes
- Departamento de Patologia e Medicina Legal, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - R C Luiz
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - R Cecchini
- Laboratorio de Patofisiologia e Radicais Livres, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil
| | - A L Cecchini
- Laboratorio de Patologia Molecular, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil; Laboratorio de Patofisiologia e Radicais Livres, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, PR, Brazil.
| |
Collapse
|
44
|
Kim MJ, Woo SW, Kim MS, Park JE, Hwang JK. Anti-photoaging effect of aaptamine in UVB-irradiated human dermal fibroblasts and epidermal keratinocytes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:1139-1147. [PMID: 25465718 DOI: 10.1080/10286020.2014.983092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Chronic exposure to ultraviolet (UV) irradiation causes sunburn, inflammatory responses, skin cancer, and photoaging. Photoaging, in particular, generates reactive oxygen species (ROS) that stimulate mitogen-activated protein kinase (MAPK) signaling and transcription factors. UV irradiation also activates matrix metalloproteinases (MMPs) expression and inactivates collagen synthesis. Aaptamine, a marine alkaloid isolated from the marine sponge, has been reported to have antitumor, antimicrobial, antiviral, and antioxidant activities. However, the photo-protective effects of aaptamine have not been elucidated. In this study, our data demonstrated that aaptamine deactivated UVB-induced MAPK and activator protein-1 signaling by suppressing ROS, resulting in attenuating the expression of MMPs in UVB-irradiated human dermal fibroblasts. Aaptamine also decreased proinflammatory cytokines such as cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and nuclear factor-kappa B subunits in UVB-irradiated human keratinocytes. In conclusion, we suggest that aaptamine represents a novel and effective strategy for treatment and prevention of photoaging.
Collapse
Affiliation(s)
- Min-Ji Kim
- a Department of Biomaterials Science and Engineering , Yonsei University , Seoul 120-749 , South Korea
| | | | | | | | | |
Collapse
|
45
|
Ramalho LNZ, Pasta ÂAC, Terra VA, Augusto MJ, Sanches SC, Souza-Neto FP, Cecchini R, Gulin F, Ramalho FS. Rosmarinic acid attenuates hepatic ischemia and reperfusion injury in rats. Food Chem Toxicol 2014; 74:270-8. [PMID: 25455894 DOI: 10.1016/j.fct.2014.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 02/08/2023]
Abstract
Rosmarinic acid (RosmA) demonstrates antioxidant and anti-inflammatory properties. We investigated the effect of RosmA on liver ischemia/reperfusion injury. Rats were submitted to 60 min of ischemia plus saline or RosmA treatment (150 mg/kg BW intraperitoneally) followed by 6 h of reperfusion. Hepatocellular injury was evaluated according to aminotransferase activity and histological damage. Hepatic neutrophil accumulation was also evaluated. Oxidative/nitrosative stress was estimated by measuring the reduced glutathione, lipid hydroperoxide and nitrotyrosine levels. Endothelial and inducible nitric oxide synthase (eNOS/iNOS) and nitric oxide (NO) were assessed with immunoblotting and chemiluminescence assays. Hepatic tumor necrosis factor-alpha (TNF-α) and interleukin-1beta mRNA were assessed using real-time PCR, and nuclear factor-kappaB (NF-κB) activation was estimated by immunostaining. RosmA treatment reduced hepatocellular damage, neutrophil infiltration and all oxidative/nitrosative stress parameters. RosmA decreased the liver content of eNOS/iNOS and NO, attenuated NF-κB activation, and down-regulated TNF-α and interleukin-1beta gene expression. These data indicate that RosmA exerts anti-inflammatory and antioxidant effects in the ischemic liver, thereby protecting hepatocytes against ischemia/reperfusion injury. The mechanisms underlying these effects may be related to the inhibitory potential of RosmA on the NF-κB signaling pathway and the reduction of iNOS and eNOS expressions and NO levels, in addition to its natural antioxidant capability.
Collapse
Affiliation(s)
- Leandra Naira Z Ramalho
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
UVA-UVB photoprotective activity of topical formulations containing Morinda citrifolia extract. BIOMED RESEARCH INTERNATIONAL 2014; 2014:587819. [PMID: 25133171 PMCID: PMC4123522 DOI: 10.1155/2014/587819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
Abstract
Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage.
Collapse
|
47
|
Hung CF, Chen WY, Aljuffali IA, Shih HC, Fang JY. The risk of hydroquinone and sunscreen over-absorption via photodamaged skin is not greater in senescent skin as compared to young skin: nude mouse as an animal model. Int J Pharm 2014; 471:135-45. [PMID: 24858384 DOI: 10.1016/j.ijpharm.2014.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/14/2014] [Accepted: 05/18/2014] [Indexed: 01/13/2023]
Abstract
Intrinsic aging and photoaging modify skin structure and components, which subsequently change percutaneous absorption of topically applied permeants. The purpose of this study was to systematically evaluate drug/sunscreen permeation via young and senescent skin irradiated by ultraviolet (UV) light. Both young and senescent nude mice were subjected to UVA (10 J/cm(2)) and/or UVB radiation (175 mJ/cm(2)). Physiological parameters, immunohistology, and immunoblotting were employed to examine the aged skin. Hydroquinone and sunscreen permeation was determined by in vitro Franz cell. In vivo skin absorption was documented using a hydrophilic dye, rhodamine 123 (log P=-0.4), as a permeant. UVA exposure induced cyclooxygenase (COX)-2 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) upregulation. Epidermal tight junction (TJ) were degraded by UVA. UVB increased transepidermal water loss (TEWL) from 13 to 24 g/m(2)/h. Hyperplasia and inflammation, but not loss of TJ, were also observed in UVB-treated skin. UVA+UVB- and UVA-irradiated skin demonstrated similar changes in histology and biomarkers. UVA+UVB or UVA exposure increased hydroquinone flux five-fold. A negligible alteration of hydroquinone permeation was shown with UVB exposure. Hydroquinone exhibited a lower penetration through senescent skin than young skin. Both UVA and UVB produced enhancement of oxybenzone flux and skin uptake. However, the amount of increase was less than that of hydroquinone delivery. Photoaging did not augment skin absorption of sunscreens with higher lipophilicity, including avobenzone and ZnO. Exposure to UVA generally increased follicular entrance of these permeants, which showed two- to three-fold greater follicular uptake compared to the untreated group. Photoaging had less impact on drug/sunscreen absorption with more lipophilic permeants. Percutaneous absorption did not increase in skin subjected to both intrinsic and extrinsic aging.
Collapse
Affiliation(s)
- Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hui-Chi Shih
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
48
|
Williams JD, Bermudez Y, Park SL, Stratton SP, Uchida K, Hurst CA, Wondrak GT. Malondialdehyde-derived epitopes in human skin result from acute exposure to solar UV and occur in nonmelanoma skin cancer tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 132:56-65. [PMID: 24584085 PMCID: PMC3973651 DOI: 10.1016/j.jphotobiol.2014.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/14/2014] [Accepted: 01/28/2014] [Indexed: 01/08/2023]
Abstract
Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored.
Collapse
Affiliation(s)
- Joshua D Williams
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Yira Bermudez
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Steven P Stratton
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Craig A Hurst
- Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Georg T Wondrak
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
49
|
Chen AC, Damian DL, Halliday GM. Oral and systemic photoprotection. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2014; 30:102-11. [PMID: 24313740 DOI: 10.1111/phpp.12100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 01/01/2023]
Abstract
Photoprotection can be provided not only by ultraviolet (UV) blockers but also by oral substances. Epidemiologically identified associations between foods and skin cancer and interventional experiments have discovered mechanisms of UV skin damage. These approaches have identified oral substances that are photoprotective in humans. UV inhibits adenosine triphosphate (ATP) production causing an energy crisis, which prevents optimal skin immunity and DNA repair. Enhancing ATP production with oral nicotinamide protects from UV immunosuppression, enhances DNA repair and reduces skin cancer in humans. Reactive oxygen species also contribute to photodamage. Nontoxic substances consumed in the diet, or available as oral supplements, can protect the skin by multiple potential mechanisms. These substances include polyphenols in fruit, vegetables, wine, tea and caffeine-containing foods. UV-induced prostaglandin E2 (PGE2 ) contributes to photodamage. Nonsteroidal anti-inflammatory drugs and food substances reduce production of this lipid mediator. Fish oils are photoprotective, at least partially by reducing PGE2 . Orally consumed substances, either in the diet or as supplements, can influence cutaneous responses to UV. A current research goal is to develop an oral supplement that could be used in conjunction with other sun protective strategies in order to provide improved protection from sunlight.
Collapse
Affiliation(s)
- Andrew C Chen
- Discipline of Dermatology, Bosch Institute, Central Clinical School, University of Sydney, Sydney, Australia; Dermatology, Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | | | | |
Collapse
|
50
|
Sakura M, Chiba Y, Kamiya E, Furukawa A, Kawamura N, Niwa M, Takeuchi M, Enokido Y, Hosokawa M. Differences in the Histopathology and Cytokine Expression Pattern between Chronological Aging and Photoaging of Hairless Mice Skin. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/mri.2014.33010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|