1
|
Zare M, Kazempour M, Hosseini Choupani SM, Akhavan SR, Salini M, Rombenso A, Esmaeili N. The crosstalk between photoperiod and early mild stress on juvenile oscar (Astronotus ocellatus) after acute stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1025-1046. [PMID: 38407735 DOI: 10.1007/s10695-024-01316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Early mild stress (EMS) is like preparedness and might help fish deal with stress appropriately. This study investigated how EMS and photoperiod changes can impact growth, haematology, blood biochemistry, immunological response, antioxidant system, liver enzymes, and stress response of oscar (Astronotus ocellatus; 7.29 ± 0.96 g) before and after acute confinement stress (AC stress). Ten experimental treatments included five different photoperiods 8L16D (08:16 light to dark), 12L12D (12:12 light to dark), 16L8D (16:08 light to dark), 20L4D (20:04 light to dark), and 24L0D (24:00 light to dark), and these five photoperiod schedules were conducted in an EMS condition. After 9 weeks, no significant differences were found in growth parameters, survival rate, and body composition. At the end of the experiment and after AC stress, fish farmed in 24 light hours had the lowest haematocrit, white blood cells, total protein, blood performance, lysozyme, immunoglobulin M, complement C3, superoxide dismutase, and catalase. Fish that experienced EMS had significantly higher survival rates than those farmed in normal conditions (80.67% vs 61.33%). In conclusion, considering all measured parameters, 8-h light can be suggested as an optimum photoperiod for this fish species. Under 24L0D (no EMS) conditions, there were many negative effects apparent. In addition, a positive effect of EMS was evident in terms of survival after AC stress. AC stress decreased some health parameters under 24-h light treatment, while these results were not observed in EMS-exposed fish. Therefore, the EMS schedule can be a useful tool in preventing the negative effects of stress.
Collapse
Affiliation(s)
- Mahyar Zare
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách, České Budějovice, Czech Republic
| | - Mohammad Kazempour
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | | | - Sobhan R Akhavan
- Nelson Marlborough Institute of Technology, 322 Hardy Street, Private Bag 19, Nelson, New Zealand
| | - Michael Salini
- Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3225, Australia
| | - Artur Rombenso
- CSIRO, Agriculture and Food, Livestock & Aquaculture Program, Bribie Island Research Centre, Bribie Island, QLD, Australia
| | - Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Cres, Hobart, Taroona, TAS, 7053, Australia.
| |
Collapse
|
2
|
Rastogi S, Haldar C. Seasonal plasticity in immunocompetent cytokines (IL-2, IL-6, and TNF-α), myeloid progenitor cell (CFU-GM) proliferation, and LPS-induced oxido-inflammatory aberrations in a tropical rodent Funambulus pennanti: role of melatonin. Cell Stress Chaperones 2023; 28:567-582. [PMID: 36542205 PMCID: PMC10469145 DOI: 10.1007/s12192-022-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
In seasonal breeders, photoperiods regulate the levels of circulatory melatonin, a well-known immunomodulator and an antioxidant. Melatonin is known to play a complex physiological role in maintaining the immune homeostasis by affecting cytokine production in immunocompetent cells. In this study, we have quantified seasonal and temporal variations in immunocompetent cytokines-IL-2, IL-6, and TNF-α-and circulatory corticosterone along with in- vitro proliferation of bone marrow-derived granulocyte macrophage-colony forming unit (CFU-GM) progenitor cells of a tropical seasonal breeder Funambulus pennanti (northern palm squirrel). Transient variations in antioxidant status of seasonal breeders might be due to the fluctuations associated with immunity and inflammation. Further, to establish a direct immunomodulatory effect of photoperiod, we recorded the LPS-induced oxidative and inflammatory responses of squirrels by housing them in artificial photoperiodic chambers mimicking summer and winter seasons respectively. We observed a marked variation in cytokines level, melatonin, and corticosterone , and CFU-GM cell proliferation during summer and winter seasons. High Peripheral melatonin levels directly correlated with cytokine IL-2 levels, and inversely correlated with TNF-α, and circulatory corticosterone level. LPS-challenged squirrels housed in short photoperiod (10L:14D; equivalent to winter days) showed a marked reduction in the components of the inflammatory cascade, CRP, TNF-α, IL-6, NOx, NF-κB, Cox-2, and PGES, with an overall improvement in antioxidant status when compared to squirrels maintained under a long photoperiod (16L:8D; equivalent to summer days). Our results underline the impact of seasonality, photoperiod, and melatonin in maintaining an intrinsic redox-immune homeostasis which helps the animal to withstand environmental stresses.
Collapse
Affiliation(s)
- Shraddha Rastogi
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Present address: NCI-NIH, Bethesda, MD, USA
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Kumar J, Verma R, Haldar C. Melatonin ameliorates Bisphenol S induced testicular damages by modulating Nrf-2/HO-1 and SIRT-1/FOXO-1 expressions. ENVIRONMENTAL TOXICOLOGY 2021; 36:396-407. [PMID: 33098627 DOI: 10.1002/tox.23045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
BPS has detrimental effects on human reproductive health and emerged as an environmental contaminant for global health concern. This study deals with the adverse impact of BPS exposure on testicular oxidative stress, inflammation and apoptosis in adult male golden hamster, Mesocricetus auratus and its amelioration by melatonin. BPS (75 mg/kg BW/day) exposure caused testicular impairment as evident by histological degenerative changes, declined sperm quality (viability and motility), serum levels of testosterone and melatonin with a concomitant decrease in testicular androgen receptor (AR) and melatonin receptor (MT1) expression. The BPS exposure caused marked increase in testicular oxidative load, inflammation (NF-kB/COX-2) and apoptosis (caspase-3). Melatonin (10 mg/kg BW/alternate day) pretreatment to BPS exposed hamsters resumed normal testicular histoarchitecture, sperm quality and decreased testicular oxidative load as evident by enhanced antioxidant enzymes (SOD and catalase) activities and decreased lipid peroxidation (LPO) level. Further, melatonin also stimulated the testicular antioxidant proteins Nrf-2/HO-1, SIRT-1/FOXO-1 and reduced inflammatory proteins NF-kB/COX-2 expression to counteract BPS induced testicular damages. Melatonin administration to the BPS treated hamsters resulted in increased testicular cell proliferation (PCNA), survival (Bcl-2), gap junction (connexin-43) and decreased apoptosis (caspase-3). In conclusion, our study documented the detrimental effects of BPS on testes that compromises male fertility. Further, melatonin was found as a potent molecule that rescued the BPS induced testicular damages in male golden hamster Mesocricetus auratus.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Chandana Haldar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Shukla D, Das M, Kasade D, Pandey M, Dubey AK, Yadav SK, Parmar AS. Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. CHEMOSPHERE 2020; 248:125998. [PMID: 32006833 DOI: 10.1016/j.chemosphere.2020.125998] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Malachite green is an N-methylated diaminophenylmethane dye that has generated much concern over its suggestive carcinogenic nature. After its excessive use in aquaculture industry as an effective ectoparasitide, much debate was raised over its toxicological effects leading to scientific studies conducted on animal models. Even after several bans, malachite green is still easily available in many parts of the world and unscrupulously even used to give green vegetables a fresher look. This study aims to address this concern by systematically studying the toxicological effects of malachite green through bioimaging in plant and animal cell and tissue. Sandalwood-derived carbon quantum dots have been used as a bioimaging tool since they are non-cytotoxic and show excellent fluorescence properties. Onion tissues demonstrate the translocation of the dye inside cells having high affinity for the nuclei and cell walls. Toxicological effects on the growth of Vigna radiata (mung beans) have been studied methodically. Bioimaging of the transverse cross-section of the dye-treated plant root shows a significant difference from the control. In animal cells, dose-dependent decrease in cell viability of MG-63 cells was observed with MG. CQD showed good fluorescence in both cytoplasm and nucleus of MG63 cells. In addition, CQDs were employed as a great tool for bioimaging of the histopathologically adverse effects of MG in Golden hamster animal model. This study showed CQDs could be used as an alternative non-site specific fluorescent probe for cell and tissue imaging for better visualization of cell and tissue architectural changes.
Collapse
Affiliation(s)
- Devyani Shukla
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh 221005, India
| | - Dipanshu Kasade
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Maneesha Pandey
- Department of Ceramic Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
5
|
Wei H, Cai WJ, Liu HK, Han D, Zhu XM, Yang YX, Jin JY, Xie SQ. Effects of photoperiod on growth, lipid metabolism and oxidative stress of juvenile gibel carp (Carassius auratus). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111552. [PMID: 31382089 DOI: 10.1016/j.jphotobiol.2019.111552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022]
Abstract
A 58-day cultivation experiment was carried out to investigate the effects of photoperiods on growth, lipid metabolism and oxidative stress of juvenile gibel carp. Juveniles (5.41 ± 0.01 g) were cultured under seven light photoperiods (0 h of light (L):24 h of darkness (D), 4L:20D (12:00-16:00 light), 8L:16D (10:00-18:00 light), 12L:12D (8:00-20:00 light), 16L:8D (6:00-22:00 light), 20L:4D (4:00-24:00 light) and 24L:0D) in an indoor recirculating aquaculture system. The light intensity was 1.02 μmol·m-2·s-1 (at the tank bottom in a 0.5-m water depth). The fish were fed to satiety three times daily (8:30, 14:30 and 18:30). At the end of the experiment, final body weight, specific growth rate, feed efficiency and feed intake were significantly higher in 16L:8D, 20L:4D and 24L:0D groups than those in other groups (P < 0.05). Long-day photoperiods (16L:8D, 20L:4D and 24L:0D) simultaneously promoted lipogenesis, lipolysis and fatty acid oxidation. The increases in lipid retention efficiency, whole body lipid concentration and liver lipid content (P < 0.05) indicated that lipogenesis exceeded fatty acid oxidation. Liver oxidative stress was induced in juvenile gibel carp by short day lengths. The hepatic total antioxidant capacity, superoxide dismutase, glutathione peroxidase and the contents of metabolite glutathione were the highest in the short-day-length groups (0L:24D, 4L:20D and 8L:16D) (P < 0.05). Based on the growth performance and health status in the long-term cultivation experiment, the optimal photoperiods were 16L:8D, 20L:4D and 24L:0D in juvenile gibel carp.
Collapse
Affiliation(s)
- Hui Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Jie Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao-Kun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| | - Yun-Xia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun-Yan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shou-Qi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, China
| |
Collapse
|