1
|
Alsheleh T, Zraikat M, Daoud F, Alqudah DA, Abdelghany S, Abu Siniyeh A, Alshaer W. In vitro cellular interaction of drug-loaded liposomes with 2D and 3D cell culture of U87-MG cell line. PLoS One 2025; 20:e0320374. [PMID: 40131912 PMCID: PMC11936199 DOI: 10.1371/journal.pone.0320374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
The distinctive physiological and physical properties of 3D cultures that mimic tumor microenvironments in vivo make them more suitable for assessing the efficacy of drugs and nanoparticles compared to 2D culture models. Therefore, this study aims to examine and contrast how liposomes interact with cell cultures in both 2D and 3D models. Hanging drop technique was used to generate 3D spheroids. Cellular toxicity of Doxorubicin and Doxil®-liposomes was tested using an MTT assay. Cellular uptake of Doxil®-liposomes was investigated in 3D and 2D cell culture models using flow cytometry and confocal microscopy. Finally, migration and invasion assays were used to investigate the Doxil®-liposomes interaction with the two models 2D model and 3D model, respectively. Our findings show that cells were able to form spheroid structures when a specific cell ratio was maintained. Flow cytometry analysis revealed that 2D cells exhibited higher Doxil®-liposome uptake than 3D cells. The data obtained from confocal and fluorescent microscopy supported the findings of the flow cytometry analysis. Furthermore, the MTT assay showed that Doxil®-liposomes induced less metabolic-disruption compared to free Doxorubicin. Our results also demonstrated that Doxil®-liposomes interacted more loosely with the 3D model than 2D cells, which was further confirmed by measurements of the total migration and invasion areas. Therefore, a 3D model replicating the in vivo conditions of tumor structure and extracellular matrix to assess the delivery of liposomal-nanoparticles to spheroids through a collagen matrix can be more informative and recapitulate the in vivo microenvironment than the 2D model.
Collapse
Affiliation(s)
- Tasneem Alsheleh
- Department of Biology, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Manar Zraikat
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Sharif Abdelghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ahmed Abu Siniyeh
- Department of Clinical Laboratory Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Li Y, Zhao J, Tang K, Yin J, Song Y, Pan W, Li N, Tang B. Doxorubicin prodrug for γ-glutamyl transpeptidase imaging and on-demand cancer therapy. Biosens Bioelectron 2025; 272:117127. [PMID: 39778243 DOI: 10.1016/j.bios.2025.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
The γ-glutamyl transpeptidase (γ-GGT) is an important tumor marker, which has been reported to be firmly associated with the developmental stage of liver cancer. Therefore, it makes sense to image and monitor γ-GGT level and design γ-GGT-responsive prodrug for integrated diagnosis and treatment of liver cancer. Herein, we prepare a doxorubicin (Dox) prodrug for imaging γ-GGT and on-demand treating liver cancer. When γ-GGT exists, the γ-glutamyl group will be cut off to liberate free Dox for monitoring cancer progression and killing tumor cells. Fortunately, little Dox is released due to the low level of γ-GGT in normal cells, which improves the safety and efficiency of chemotherapy. To further improve the tumor targeted ability, Dox prodrug is loaded in hyaluronic acid modified liposome nanoparticles to form the nano-prodrug. Then nano-prodrug is enriched in the tumor by binding to the high expressed CD44 on cancer cells. With the assistance of anti-PD-L1, nano-prodrug effectively inhibits the growth of proximal and distal tumors.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jiexiang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yingying Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Lu Y, Jabbari P, Mukhamedshin A, Zvyagin AV. Fluorescence lifetime imaging in drug delivery research. Adv Drug Deliv Rev 2025; 218:115521. [PMID: 39848547 DOI: 10.1016/j.addr.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Once an exotic add-on to fluorescence microscopy for life science research, fluorescence lifetime imaging (FLIm) has become a powerful and increasingly utilised technique owing to its self-calibration nature, which affords superior quantification over conventional steady-state fluorescence imaging. This review focuses on the state-of-the-art implementation of FLIm related to the formulation, release, dosage, and mechanism of action of drugs aimed for innovative diagnostics and therapy. Quantitative measurements using FLIm have appeared instrumental for encapsulated drug delivery design, pharmacokinetics and pharmacodynamics, pathological investigations, early disease diagnosis, and evaluation of therapeutic efficacy. Attention is paid to the latest advances in lifetime-engineered nanomaterials and practical instrumentation, which begin to show preclinical and clinical translation potential beyond in vitro samples of cells and tissues. Finally, major challenges that need to be overcome in order to facilitate future perspectives are discussed.
Collapse
Affiliation(s)
- Yiqing Lu
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Parinaz Jabbari
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Anton Mukhamedshin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| | - Andrei V Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| |
Collapse
|
4
|
Savelyev AG, Sochilina AV, Babayeva G, Nikolaeva ME, Kuziaeva VI, Prostyakova AI, Sergeev IS, Gorin DA, Khaydukov EV, Generalova AN, Akasov RA. Photocrosslinking of hyaluronic acid-based hydrogels through biotissue barriers. Biomater Sci 2025; 13:980-992. [PMID: 39801275 DOI: 10.1039/d4bm01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin p6, chlorin e6 and phthalocyanine, as those for radical polymerization in the transparency window of biotissues. Taking into account the efficiency of radical generation and dark and light cell toxicity, we evaluated water miscible pyridine phthalocyanine as a promising initiator for the intravital hydrogel photoprinting of hyaluronic acid glycidyl methacrylate (HAGM) under irradiation near 670 nm. Coinitiators (dithiothreitol or 2-mercaptoethanol) reduce the irradiation dose required for HAGM crosslinking from ∼405 J cm-2 to 80 J cm-2. Patterning by direct laser writing using a scanning 675 nm laser beam was performed to demonstrate the formation of complex shape structures. Young's moduli typical of soft tissue (∼270-460 kPa) were achieved for crosslinked hydrogels. The viability of human keratinocytes HaCaT cells within the photocrosslinking process was shown. To demonstrate scaffolding across the biotissue barrier, the subcutaneously injected photocomposition was crosslinked in BALB/c mice. The safety of the irradiation dose of 660-675 nm light (100 mW cm-2, 15 min) and the non-toxicity of the hydrogel components were confirmed by histomorphologic analysis. The intravitally photocrosslinked scaffolds maintained their shape and size for at least one month, accompanied by slow biodegradation. We conclude that the proposed technology provides a lucrative opportunity for minimally invasive scaffold formation through biotissue barriers.
Collapse
Affiliation(s)
- Alexander G Savelyev
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
| | - Anastasia V Sochilina
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Kashirskoe Shosse 24, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 117198, Miklukho-Maklaya str. 8, Moscow, Russia
| | - Mariya E Nikolaeva
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| | - Valeriia I Kuziaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Anna I Prostyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Igor S Sergeev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Bol'shoy Bul'var 30 build. 1, Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Bol'shoy Bul'var 30 build. 1, Moscow, Russia
| | - Evgeny V Khaydukov
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047, Miusskaya Sq. 9, Moscow, Russia
| | - Alla N Generalova
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Roman A Akasov
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| |
Collapse
|
5
|
Rodriguez-Iglesias N, Paris I, Valero J, Cañas-Zabala L, Carretero A, Hatje K, Zhang JD, Patsch C, Britschgi M, Gutbier S, Sierra A. A bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitors. Glia 2025; 73:330-351. [PMID: 39495090 DOI: 10.1002/glia.24637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Phagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.
Collapse
Affiliation(s)
- Noelia Rodriguez-Iglesias
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Iñaki Paris
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jorge Valero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Lorena Cañas-Zabala
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Alejandro Carretero
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jitao David Zhang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Patsch
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon Gutbier
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Sierra
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Leioa, Spain
| |
Collapse
|
6
|
Pal J, Samanta P, Khan A, Maity R, Mallick AI, Dhara D. Bicontinuous Nanoparticles from Spontaneous Self-Assembly of Block Copolymer Prodrug in Aqueous Medium for Potential Cancer Therapy. ACS Macro Lett 2025; 14:26-34. [PMID: 39693052 DOI: 10.1021/acsmacrolett.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments. To the best of our knowledge, the formation of BSPNPs through direct self-assembly in aqueous media has not yet been reported. In vitro cellular studies asserted the higher safety profile of the nanoparticles against noncancerous cells (HEK293T) than free DOX, whereas they displayed higher drug-induced cytotoxicity against cancer cells (MCF-7) in comparison to free DOX, establishing them as promising cancer drug delivery systems.
Collapse
Affiliation(s)
- Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pousali Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Rishabh Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
7
|
Boase NRB, Bell CA, Fletcher NL, Thurecht KJ. Multifunctional Biocompatible Hyperbranched Polymers as Molecular Imaging Agents and Theranostics. Methods Mol Biol 2025; 2902:69-106. [PMID: 40029597 DOI: 10.1007/978-1-0716-4402-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Theranostics aims to create a single entity that can detect and treat disease, as well as measure disease and therapeutic progression. This is commonly achieved by the incorporation of molecular imaging reporters, therapeutic agents, and targeting moieties into a single nanomaterial. Hyperbranched polymers have been successfully developed into theranostics owing to the high diversity of functionality that can be introduced through the distinct chemistries of their chain ends, branch points, and sidechains. In this protocol, we introduce the straightforward synthesis and characterization of biocompatible hyperbranched polymers for use as molecular imaging agents and theranostics. We detail a broad range of orthogonal chemistries that have been proven for introducing fluorophores, positron emission tomography (PET) radioisotope chelators, targeting agents, and therapeutics, at precise locations within the polymer structure. We also outline methods for using fluorescence and PET imaging for the preclinical evaluation of new hyperbranched polymer theranostics. These protocols will enable the application of these well-understood polymer materials in new disease applications and models.
Collapse
Affiliation(s)
- Nathan R B Boase
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Nakamura Y, Yamamoto T, Kobayashi S, Suetomi T, Uchinoumi H, Oda T, Sano M, Yano M. Concomitant Administration of Dantrolene is Sufficient to Protect Against Doxorubicin-Induced Cardiomyopathy. JACC CardioOncol 2025; 7:38-52. [PMID: 39896128 PMCID: PMC11782101 DOI: 10.1016/j.jaccao.2024.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 02/04/2025] Open
Abstract
Background Doxorubicin (DOX), a commonly used anticancer agent, can result in cardiac dysfunction, presenting a significant clinical challenge. DOX has been shown to induces Ca2+ leakage via the ryanodine receptor 2 (RYR2) of the sarcoplasmic reticulum, increasing Ca2+ levels in the cytoplasm. Objectives This study investigated whether stabilizing RYR2 could suppress DOX-induced cardiomyopathy (DIC) and identified the optimal duration of dantrolene treatment as a pharmacological method. Methods We investigated the effects of RYR2 stabilization on DOX cardiotoxicity using in vivo and in vitro experiments. Results DOX administration caused calmodulin dissociation, marked Ca2+ leakage from RYR2, and increased oxidative stress in isolated cardiomyocytes. Stabilizing the RYR2 tetramer-either pharmacologically with dantrolene or genetically via RYR2 V3599K mutation, which enhances calmodulin binding affinity-suppressed these effects. In DIC mice models, DOX impaired cardiac function, increased fibrosis and TUNEL-positive cells, reduced GRP78, and elevated lipid peroxide levels, leading to endoplasmic reticulum stress and ferroptosis. Both continuous dantrolene treatment and RYR2 V3599K mutation improved cardiac function. Interestingly, dantrolene administration provided myocardial protection even when terminated 7 days after DOX. Conclusions Short-term concomitant use of dantrolene offers a promising and clinically feasible strategy to prevent DIC. Given dantrolene's established clinical safety as a treatment for malignant hyperthermia, these findings suggest potential for repositioning dantrolene in DIC prevention.
Collapse
Affiliation(s)
- Yoshihide Nakamura
- Department of Therapeutic Science for Heart Failure in the Elderly, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigeki Kobayashi
- Department of Therapeutic Science for Heart Failure in the Elderly, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takeshi Suetomi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Motoaki Sano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
9
|
Levin-Ferreyra F, Kodali S, Cui Y, Pashos ARS, Pessina P, Brumbaugh J, Di Stefano B. Transposable element activity captures human pluripotent cell states. EMBO Rep 2025; 26:329-352. [PMID: 39668246 PMCID: PMC11772670 DOI: 10.1038/s44319-024-00343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) exist in multiple, transcriptionally distinct states and serve as powerful models for studying human development. Despite their significance, the molecular determinants and pathways governing these pluripotent states remain incompletely understood. Here, we demonstrate that transposable elements act as sensitive indicators of distinct pluripotent cell states. We engineered hPSCs with fluorescent reporters to capture the temporal expression dynamics of two state-specific transposable elements, LTR5_Hs, and MER51B. This dual reporter system enables real-time monitoring and isolation of stem cells transitioning from naïve to primed pluripotency and further towards differentiation, serving as a more accurate readout of pluripotency states compared to conventional systems. Unexpectedly, we identified a rare, metastable cell population within primed hPSCs, marked by transcripts related to preimplantation embryo development and which is associated with a DNA damage response. Moreover, our system establishes the chromatin factor NSD1 and the RNA-binding protein FUS as potent molecular safeguards of primed pluripotency. Our study introduces a novel system for investigating cellular potency and provides key insights into the regulation of embryonic development.
Collapse
Affiliation(s)
- Florencia Levin-Ferreyra
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yingzhi Cui
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Alison R S Pashos
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Patrizia Pessina
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Dong S, Yu H, Poupart P, Ho EA. Gaussian processes modeling for the prediction of polymeric nanoparticle formulation design to enhance encapsulation efficiency and therapeutic efficacy. Drug Deliv Transl Res 2025; 15:372-388. [PMID: 38767799 DOI: 10.1007/s13346-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Conventional drugs have been facing various drug delivery obstacles, including first-pass metabolism for oral medications, drug degradation by cellular enzymes, off-target effects, and cytotoxicity of healthy cells. Nanoparticles (NP) application in drug delivery can compensate for these drawbacks to a great extent. NPs can be fabricated using different materials and structures to achieve desired therapeutic effects. For each type of NP material, its physicochemical properties determine compatibility with specific drugs and other supplemental compositions. The optimized material selection becomes prominent in NP development to improve NP performances. Due to the nature of NP fabrication, the process is long and expensive. To accelerate NP composition optimization, machine learning (ML) techniques are among the most promising methods for efficient data predictions and optimizations.As a proof-of concept, we created Gaussian Process (GP) models to make predictions for drug encapsulation efficiency (EE%) and therapeutic efficacy of 32 poly (lactic-co-glycolic acid) (PLGA) NPs that are formed with materials with different physicochemical properties. Two model drugs, doxorubicin (DOX) and docetaxel (DTX) were loaded separately. The IC50 values for the various NPs formulations were evaluated using the OVCAR3 epithelial ovarian cancer cell line. EE% GP model has the highest prediction accuracy with the lowest normalized root-mean-squared-error (RMSE) of 0.187. The DOX and DTX IC50 GP models have normalized RMSEs of 0.296 and 0.206, respectively, which are higher than that of the EE% GP model.
Collapse
Affiliation(s)
- Sihan Dong
- School of Pharmacy, University of Waterloo, Ontario, N2G 1C5, Canada
| | - Haolin Yu
- David R. Cheriton School of Computer Science, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Pascal Poupart
- David R. Cheriton School of Computer Science, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Ontario, N2G 1C5, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
11
|
Wang W, Liu Y, Cheng X, Yu Q, Hou S, Zhao J, Luo J. Fluorescence Enhancement of Nonemissive Monodeprotonated Luteolin in a Poly(vinyl alcohol) Film. J Phys Chem B 2024; 128:11328-11334. [PMID: 39484864 DOI: 10.1021/acs.jpcb.4c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Solid polymer matrixes can modulate the electronic states of embedded chromophores and have been widely used in flexible optoelectronic and optical materials. Luteolin is one of the most common natural flavonoids, and its neutral and monodeprotonated forms are nonemissive in aqueous solution induced by ultrafast excited-state proton transfer (ESPT) followed by nonradiative relaxation. In this study, we have incorporated luteolin into poly(vinyl alcohol) (PVA) films and studied their fluorescence behaviors. Neutral and one monodeprotonated luteolin coexist in the PVA film. Weak steady-state fluorescence of neutral luteolin peaking at about 440 nm is observed for the first time. In addition, the monodeprotonated luteolin in PVA film exhibits obvious fluorescence peaking at 500 nm, with a fluorescence quantum yield of as high as 0.4 and a fluorescence lifetime of as long as 2.4 ns. Time-dependent density functional theory calculations have determined that the ESPT of neutral luteolin is barrierless but that of monodeprotonated luteolin needs to surmount a barrier, explaining their distinct emission properties. These results indicate the modulation ability of the PVA film in both ground-state deprotonation and ESPT, broadening the application areas of the solid polymer matrix.
Collapse
Affiliation(s)
- Weili Wang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Yan Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaolan Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Qin Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Siyu Hou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jie Zhao
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jian Luo
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
12
|
Kruse B, Dash BS, Kostka K, Wolff N, Prymak O, Loza K, Gumbiowski N, Heggen M, Oliveira CLP, Chen JP, Epple M. Doxorubicin-Loaded Ultrasmall Gold Nanoparticles (1.5 nm) for Brain Tumor Therapy and Assessment of Their Biodistribution. ACS APPLIED BIO MATERIALS 2024; 7:6890-6907. [PMID: 39240877 DOI: 10.1021/acsabm.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Ultrasmall gold nanoparticles (1.5 nm) were covalently conjugated with doxorubicin (AuDox) and AlexaFluor647 (AuAF647) to assess their biodistribution and their efficiency toward brain tumors (glioblastoma). A thorough characterization by transmission electron microscopy, small-angle X-ray scattering, and differential centrifugal sedimentation confirmed their uniform ultrasmall nature which makes them very mobile in the body. Each nanoparticle carried either 13 doxorubicin molecules (AuDox) or 2.7 AlexaFluor-647 molecules (AuAF647). The firm attachment of the ligands to the nanoparticles was demonstrated by their resilience to extensive washing, followed by centrifugation. The particles easily entered mammalian cells (HeLa, T98-G, brain endothelial cells, and human astrocytes) due to their small size. The intravenously delivered fluorescing AuAF647 nanoparticles crossed the blood-brain barrier with ∼23% accumulation in the brain tumor in an orthotopic U87 brain tumor model in nude mice. This was confirmed by elemental analysis (gold; inductively coupled plasma optical emission spectroscopy) in various organs. The doxorubicin-loaded AuDox nanoparticles inhibited brain tumor growth and prolonged animal survival without adverse side effects. Most of the nanoparticles (84%) had been excreted from the animal after 24 h, indicating a high mobility in the body.
Collapse
Affiliation(s)
- Benedikt Kruse
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Kathrin Kostka
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Natalie Wolff
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
| | - Matthias Epple
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
13
|
Carretta A, Moscardini A, Signore G, Debellis D, Catalano F, Marotta R, Palmieri V, Tedeschi G, Scipioni L, Pozzi D, Caracciolo G, Beltram F, Cardarelli F. The supramolecular processing of liposomal doxorubicin hinders its therapeutic efficacy in cells. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200836. [PMID: 39050990 PMCID: PMC11268116 DOI: 10.1016/j.omton.2024.200836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
The successful trajectory of liposome-encapsulated doxorubicin (e.g., Doxil, which has been approved by the U.S. Food and Drug Administration) as an anticancer nanodrug in clinical applications is contradicted by in vitro cell viability data that highlight its reduced efficacy in promoting cell death compared with non-encapsulated doxorubicin. No reports to date have provided a mechanistic explanation for this apparently discordant evidence. Taking advantage of doxorubicin intrinsic fluorescence and time-resolved optical microscopy, we analyze the uptake and intracellular processing of liposome-encapsulated doxorubicin (L-DOX) in several in vitro cellular models. Cell entry of L-DOX was found to lead to a rapid (seconds to minutes), energy- and temperature-independent release of crystallized doxorubicin nanorods into the cell cytoplasm, which then disassemble into a pool of fibril-shaped derivatives capable of crossing the cellular membrane while simultaneously releasing active drug monomers. Thus, a steady state is rapidly established in which the continuous supply of crystal nanorods from incoming liposomes is counteracted by a concentration-guided efflux in the extracellular medium of fibril-shaped derivatives and active drug monomers. These results demonstrate that liposome-mediated delivery is constitutively less efficient than isolated drug in establishing favorable conditions for drug retention in the cell. In addition to explaining previous contradictory evidence, present results impose careful rethinking of the synthetic identity of encapsulated anticancer drugs.
Collapse
Affiliation(s)
- Annalisa Carretta
- Scuola Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Aldo Moscardini
- Scuola Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, via San Zeno 51, 56123 Pisa, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi ISC CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Giulia Tedeschi
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA, USA
| | - Lorenzo Scipioni
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA, USA
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Beltram
- Scuola Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Cardarelli
- Scuola Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
14
|
Żmuda A, Kamińska W, Bartel M, Głowacka K, Chotkowski M, Medyńska K, Wiktorska K, Mazur M. Physicochemical characterization and potential cancer therapy applications of hydrogel beads loaded with doxorubicin and GaOOH nanoparticles. Sci Rep 2024; 14:20822. [PMID: 39242631 PMCID: PMC11379898 DOI: 10.1038/s41598-024-67709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 09/09/2024] Open
Abstract
A new type of hybrid polymer particles capable of carrying the cytostatic drug doxorubicin and labeled with a gallium compound was prepared. These microparticles consist of a core and a hydrogel shell, which serves as the structural matrix. The shell can be employed to immobilize gallium oxide hydroxide (GaOOH) nanoparticles and the drug, resulting in hybrid beads with sizes of approximately 3.81 ± 0.09 μm. The microparticles exhibit the ability to incorporate a remarkably large amount of doxorubicin, approximately 0.96 mg per 1 mg of the polymeric carrier. Additionally, GaOOH nanoparticles can be deposited within the hydrogel layer at an amount of 0.64 mg per 1 mg of the carrier. These nanoparticles, resembling rice grains with an average size of 593 nm by 155 nm, are located on the surface of the polymer carrier. In vitro studies on breast and colon cancer cell lines revealed a pronounced cytotoxic effect of the hybrid polymer particles loaded with doxorubicin, indicating their potential for cancer therapies. Furthermore, investigations on doping the hybrid particles with the Ga-68 radioisotope demonstrated their potential application in positron emission tomography (PET) imaging. The proposed structures present a promising theranostic platform, where particles could be employed in anticancer therapies while monitoring their accumulation in the body using PET.
Collapse
Affiliation(s)
- Aleksandra Żmuda
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Weronika Kamińska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Marta Bartel
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Karolina Głowacka
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maciej Chotkowski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Katarzyna Medyńska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Katarzyna Wiktorska
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
15
|
Garg M, Gandhi K, Gera P, Jadhav SM, Mohanty B, Gurjar M, Sandupatla B, Gala R, Chaudhari P, Prasad M, Chinnaswamy G, Gota V. Implications of chronic moderate protein-deficiency malnutrition on doxorubicin pharmacokinetics and cardiotoxicity in early post-weaning stage. Life Sci 2024; 350:122765. [PMID: 38830506 DOI: 10.1016/j.lfs.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Malnutrition is a common problem in developing countries, and the impact of severe malnutrition on optimal treatment outcomes of chemotherapy in pediatric cancer patients is well documented. However, despite being a more prevalent and distinct entity, moderate malnutrition is until now unexplored for its effects on treatment outcomes. AIMS In this study we aimed to investigate the molecular basis of altered pharmacokinetics and cardiotoxicity of doxorubicin observed in early-life chronic moderate protein deficiency malnutrition. MATERIALS AND METHODS We developed an animal model of early-life moderate protein-deficiency malnutrition and validated it using clinical samples. This model was used to study pharmacokinetic and toxicity changes and was further utilized to study the molecular changes in liver and heart to get mechanistic insights. KEY FINDINGS Here we show that moderate protein-deficiency malnutrition in weanling rats causes changes in drug disposition in the liver by modification of hepatic ABCC3 and MRP2 transporters through the TNFα signalling axis. Furthermore, malnourished rats in repeat-dose doxorubicin toxicity study showed higher toxicity and mortality. A higher accumulation of doxorubicin in the heart was observed which was associated with alterations in cardiac metabolic pathways and increased cardiotoxicity. SIGNIFICANCE Our findings indicate that moderate malnutrition causes increased susceptibility towards toxic side effects of chemotherapy. These results may necessitate further investigations and new guidelines on the dosing of chemotherapy in moderately malnourished pediatric cancer patients.
Collapse
Affiliation(s)
- Megha Garg
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Khushboo Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Poonam Gera
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Biorepository, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shraddha Mahesh Jadhav
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Bhabani Mohanty
- Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar, Navi-Mumbai, Maharashtra 410210, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Department of Clinical Pharmacology, Mahamana Pandit Madan Mohan Malviya Cancer Centre, Banaras Hindu University Campus, Varanasi, Uttar Pradesh 221005, India
| | | | - Rajul Gala
- Paediatric Oncology, Tata Memorial Hospital, Mumbai, India
| | - Pradip Chaudhari
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar, Navi-Mumbai, Maharashtra 410210, India
| | - Maya Prasad
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Paediatric Oncology, Tata Memorial Hospital, Mumbai, India
| | - Girish Chinnaswamy
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Paediatric Oncology, Tata Memorial Hospital, Mumbai, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|
16
|
Gallegos-Martínez S, Choy-Buentello D, Pérez-Álvarez KA, Lara-Mayorga IM, Aceves-Colin AE, Zhang YS, Trujillo-de Santiago G, Álvarez MM. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Biofabrication 2024; 16:045010. [PMID: 38866003 DOI: 10.1088/1758-5090/ad5765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.
Collapse
Affiliation(s)
- Salvador Gallegos-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - David Choy-Buentello
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | - Kristen Aideé Pérez-Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| |
Collapse
|
17
|
Stavilă C, Minuti AE, Herea DD, Lăbuşcă L, Gherca D, Lupu N, Chiriac H. Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer Cells. ACS OMEGA 2024; 9:30518-30533. [PMID: 39035922 PMCID: PMC11256100 DOI: 10.1021/acsomega.4c02189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
The present study is aimed at developing an innovative method for efficient cancer cell destruction by exploiting the magnetomechanical actuation (MMA) of Fe-Cr-Nb-B magnetic particles (MPs), which are loaded with clinically approved chemotherapeutic drugs. To achieve this objective, Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles were produced by mechanically grinding amorphous ribbon precursors with the same composition. These nanoparticles display high anisotropy, a parallelepipedic shape with an amorphous structure, and a ferromagnetic behavior. MPs were loaded with the antitumoral drugs mitoxantrone (MTX) or doxorubicin (DOX). In our study, we used adipose-derived mesenchymal stem cells and human osteosarcoma cells to test drug-loaded MPs for their biocompatibility, cytotoxicity, and cellular internalization. Further tests involved exposing cells to magnetomechanical actuation and simultaneous MPs-targeted chemotherapy followed by cell viability/death assays, such as MTT and LDH, and live/dead cell staining. Results demonstrate that cancer cell death was induced by the synergistic action of chemotherapeutic drugs and magnetomechanical actuation. The nanoparticle vehicles helped overcome drug resistance, decreasing the high dose of drugs used in conventional therapies as well as the time intervals needed for MMA to affect cancer cell viability. The proposed approach highlights the possibility of using a new, targeted, and effective cancer treatment with very few side effects.
Collapse
Affiliation(s)
- Cristina Stavilă
- National
Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Faculty
of Physics, “Alexandru Ioan Cuza”
University, Iasi 700506, Romania
| | - Anca Emanuela Minuti
- National
Institute of Research and Development for Technical Physics, Iasi 700050, Romania
| | - Dumitru Daniel Herea
- National
Institute of Research and Development for Technical Physics, Iasi 700050, Romania
| | - Luminiţa Lăbuşcă
- National
Institute of Research and Development for Technical Physics, Iasi 700050, Romania
| | - Daniel Gherca
- National
Institute of Research and Development for Technical Physics, Iasi 700050, Romania
| | - Nicoleta Lupu
- National
Institute of Research and Development for Technical Physics, Iasi 700050, Romania
| | - Horia Chiriac
- National
Institute of Research and Development for Technical Physics, Iasi 700050, Romania
| |
Collapse
|
18
|
Kapic A, Sabnis N, Dossou AS, Chavez J, Ceresa L, Gryczynski Z, Fudala R, Dickerman R, Bunnell BA, Lacko AG. Photophysical Characterization and In Vitro Evaluation of α-Mangostin-Loaded HDL Mimetic Nano-Complex in LN-229 Glioblastoma Spheroid Model. Int J Mol Sci 2024; 25:7378. [PMID: 39000485 PMCID: PMC11242846 DOI: 10.3390/ijms25137378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cytotoxic activity has been reported for the xanthone α-mangostin (AMN) against Glioblastoma multiforme (GBM), an aggressive malignant brain cancer with a poor prognosis. Recognizing that AMN's high degree of hydrophobicity is likely to limit its systemic administration, we formulated AMN using reconstituted high-density lipoprotein (rHDL) nanoparticles. The photophysical characteristics of the formulation, including fluorescence lifetime and steady-state anisotropy, indicated that AMN was successfully incorporated into the rHDL nanoparticles. To our knowledge, this is the first report on the fluorescent characteristics of AMN with an HDL-based drug carrier. Cytotoxicity studies in a 2D culture and 3D spheroid model of LN-229 GBM cells and normal human astrocytes showed an enhanced therapeutic index with the rHDL-AMN formulation compared to the unincorporated AMN and Temozolomide, a standard GBM chemotherapy agent. Furthermore, treatment with the rHDL-AMN facilitated a dose-dependent upregulation of autophagy and reactive oxygen species generation to a greater extent in LN-229 cells compared to astrocytes, indicating the reduced off-target toxicity of this novel formulation. These studies indicate the potential therapeutic benefits to GBM patients via selective targeting using the rHDL-AMN formulation.
Collapse
Affiliation(s)
- Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Akpedje S Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jose Chavez
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Luca Ceresa
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Zygmunt Gryczynski
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rob Dickerman
- Department of Spine Surgery, Neurological and Spine Surgeon, 5575 Frisco Square Blvd, Frisco, TX 75093, USA
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
19
|
Lončarević A, Clara-Trujillo S, Martínez-Férriz A, Blanco-Gómez M, Gallego-Ferrer G, Rogina A. Chitosan-copper microparticles as doxorubicin microcarriers for bone tumor therapy. Int J Pharm 2024; 659:124245. [PMID: 38772497 DOI: 10.1016/j.ijpharm.2024.124245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug used in osteosarcoma treatments, usually administrated in very high dosages. This study proposes novel DOX microcarriers based on chitosan (CHT) physically crosslinked with copper(II) ions that will act synergically to inhibit tumor growth at lower drug dosage without affecting the healthy cells. Spherical CHT-Cu microparticles with a smooth surface and an average size of 30.1 ± 9.1 µm were obtained by emulsion. The release of Cu2+ ions from the CHT-Cu microparticles showed that 99.4 % of added cupric ions were released in 72 h of incubation in a complete cell culture medium (CCM). DOX entrapment in microparticles was conducted in a phosphate buffer solution (pH 6), utilizing the pH sensitivity of the polymer. The successful drug-loading process was confirmed by DOX emitting red fluorescence from drug-loaded microcarriers (DOX@CHT-Cu). The drug release in CCM showed an initial burst release, followed by sustained release. Biological assays indicated mild toxicity of CHT-Cu microparticles on the MG-63 osteosarcoma cell line, without affecting the viability of human mesenchymal stem cells (hMSCs). The DOX@CHT-Cu microparticles at concentration of 0.5 mg mL‒1 showed selective toxicity toward MG-63 cells.
Collapse
Affiliation(s)
- Andrea Lončarević
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| | - Sandra Clara-Trujillo
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Arantxa Martínez-Férriz
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.
| | - Mireia Blanco-Gómez
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Anamarija Rogina
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| |
Collapse
|
20
|
Liu G, Ahn SW, Kang JW, Bhagavatula S, Matthew D, Martin S, Marlin C, So PTC, Tearney GJ, Jonas O. Two-site microendoscopic imaging probe for simultaneous three-dimensional imaging at two anatomic locations in tissues. OPTICS LETTERS 2024; 49:3312-3315. [PMID: 38875608 PMCID: PMC11298057 DOI: 10.1364/ol.525945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
Systems that can image in three dimensions at cellular resolution and across different locations within an organism may enable insights into complex biological processes, such as immune responses, for which a single location measurement may be insufficient. In this Letter, we describe an in vivo two-site imaging probe (TIP) that can simultaneously image two anatomic sites with a maximum separation of a few centimeters. The TIP consists of two identical bendable graded index (GRIN) lenses and is demonstrated by a two-photon two-color fluorescence imaging system. Each GRIN lens has a field of view of 162 × 162 × 170 µm3, a nominal numerical aperture of 0.5, a magnification of 0.7, and working distances of 0.2 mm in air for both ends. A blind linear unmixing algorithm is applied to suppress bleedthrough between channels. We use this system to successfully demonstrate two-site two-photon two-color imaging of two biomedically relevant samples, i.e., (1) a mixture of two autofluorescent anti-cancer drugs and (2) a live hybrid tumor consisting of two spectrally distinct fluorescent cell lines.
Collapse
Affiliation(s)
- Guigen Liu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sharath Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Destiny Matthew
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Samantha Martin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Courtney Marlin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter T. C. So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Dehghankhold M, Ahmadi F, Nezafat N, Abedi M, Iranpour P, Dehghanian A, Koohi-Hosseinabadi O, Akbarizadeh AR, Sobhani Z. A versatile theranostic magnetic polydopamine iron oxide NIR laser-responsive nanosystem containing doxorubicin for chemo-photothermal therapy of melanoma. BIOMATERIALS ADVANCES 2024; 159:213797. [PMID: 38368693 DOI: 10.1016/j.bioadv.2024.213797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Theranostics nanoparticles (NPs) have recently received much attention in cancer imaging and treatment. This study aimed to develop a multifunctional nanosystem for the targeted delivery of photothermal and chemotherapy agents. Fe3O4 NPs were modified with polydopamine, bovine serum albumin, and loaded with DOX via a thermal-cleavable Azo linker (Fe3O4@PDA@BSA-DOX). The size of Fe3O4@PDA@BSA NPs was approximately 98 nm under the desired conditions. Because of the ability of Fe3O4 and PDA to convert light into heat, the temperature of Fe3O4@PDA@BSA NPs increased to approximately 47 °C within 10 min when exposed to an 808 nm NIR laser with a power density of 1.5 W/cm2. The heat generated by the NIR laser leads to the breaking of AZO linker and drug release. In vivo and in vitro results demonstrated that prepared NPs under laser irradiation successfully eradicated tumor cells without any significant toxicity effect. Moreover, the Fe3O4@PDA@BSA NPs exhibited the potential to function as a contrasting agent. These NPs could accumulate in tumors with the help of an external magnet, resulting in a significant enhancement in the quality of magnetic resonance imaging (MRI). The prepared novel multifunctional NPs seem to be an efficient system for imaging and combination therapy in melanoma.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Molecular Pathology and Cytogenetics Division, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Reza Akbarizadeh
- Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sobhani
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Murphy C, Jennings P, Wilmes A. Transcriptomic profile of human iPSC-derived podocyte-like cells exposed to a panel of xenobiotics. Toxicol In Vitro 2024; 97:105804. [PMID: 38447685 DOI: 10.1016/j.tiv.2024.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Podocytes play a critical role in the formation and maintenance of the glomerular filtration barrier and injury to these cells can lead to a breakdown of the glomerular barrier causing permanent damage leading to progressive chronic kidney disease. Matured podocytes have little proliferative potential, which makes them critical cells from a health perspective, but also challenging cells to maintain in vitro. Differentiating podocyte-like cells from induced pluripotent stem cells (iPSC) provides a novel and continuous source of cells. Here, we investigated the effect of a 24-h exposure to eight compounds, including the known glomerular toxins doxorubicin and pamidronate, on transcriptomic alterations in iPSC derived podocytes. Doxorubicin (50 nM), pamidronate (50 μM), sodium arsenite (10 μM), and cyclosporine A (15 μM) had a strong impact on the transcriptome, gentamicin (450 μg/ml), lead chloride (15 μM) and valproic acid (500 μM) had a mild impact and busulfan (50 μM) exhibited no impact. Gene alterations and pathways analysis provided mechanistic insight for example, doxorubicin exposure affected the p53 pathway and dedifferentiation, pamidronate activated several pathways including HIF1alpha and sodium arsenite up-regulated oxidative stress and metal responses. The results demonstrate the applicability of iPSC derived podocytes for toxicological and mechanistic investigations.
Collapse
Affiliation(s)
- Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Bhuniya S, Vrettos EI. Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives. Pharmaceutics 2024; 16:557. [PMID: 38675218 PMCID: PMC11054426 DOI: 10.3390/pharmaceutics16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the toxic warhead and thus, eliminate malignant tumor cells. However, their applicability can be further elevated by installing fluorescent modalities to yield hypoxia-activated theragnostic prodrugs (HATPs), which can be utilized for the simultaneous visualization and treatment of hypoxic tumor cells. The scope of this review is to summarize noteworthy advances in recent HATPs, highlight the challenges and opportunities for their further development, and discuss their potency to serve as personalized medicines in the future.
Collapse
Affiliation(s)
- Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India;
| | - Eirinaios I. Vrettos
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
24
|
He X, Li J, Liang X, Mao W, Deng X, Qin M, Su H, Wu H. An all-in-one tetrazine reagent for cysteine-selective labeling and bioorthogonal activable prodrug construction. Nat Commun 2024; 15:2831. [PMID: 38565562 PMCID: PMC10987521 DOI: 10.1038/s41467-024-47188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.
Collapse
Affiliation(s)
- Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xinxin Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wuyu Mao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xinglong Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China
| | - Meng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Castañeda-Sánchez CY, Chimal-Vega B, León-Gutiérrez R, Araiza-Robles AE, Serafín-Higuera N, Pulido-Capiz A, Rivero IA, Díaz-Molina R, Alatorre-Meda M, Rodríguez-Velázquez E, García-González V. Low-Density Lipoproteins Increase Proliferation, Invasion, and Chemoresistance via an Exosome Autocrine Mechanism in MDA-MB-231 Chemoresistant Cells. Biomedicines 2024; 12:742. [PMID: 38672098 PMCID: PMC11048396 DOI: 10.3390/biomedicines12040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Dyslipidemias involving high concentrations of low-density lipoproteins (LDLs) increase the risk of developing triple-negative breast cancer (TNBC), wherein cholesterol metabolism and protein translation initiation mechanisms have been linked with chemoresistance. Doxorubicin (Dox) treatment, a member of the anthracycline family, represents a typical therapeutic strategy; however, chemoresistance remains a significant challenge. Exosomes (Exs) secreted by tumoral cells have been implicated in cell communication pathways and chemoresistance mechanisms; the content of exosomes is an outcome of cellular cholesterol metabolism. We previously induced Dox resistance in TNBC cell models, characterizing a variant denominated as variant B cells. Our results suggest that LDL internalization in parental and chemoresistant variant B cells is associated with increased cell proliferation, migration, invasion, and spheroid growth. We identified the role of eIF4F translation initiation factor and the down-regulation of tumor suppressor gene PDCD4, an inhibitor of eIF4A, in chemoresistant variant B cells. In addition, the exomes secreted by variant B cells were characterized by the protein content, electronic microscopy, and cell internalization assays. Critically, exosomes purified from LDL-treated variant B cell promoted cell proliferation, migration, and an increment in lactate concentration. Our results suggest that an autocrine phenomenon induced by exosomes in chemoresistant cells may induce modifications on signaling mechanisms of the p53/Mdm2 axis and activation of p70 ribosomal protein kinase S6. Moreover, the specific down-regulated profile of chaperones Hsp90 and Hsp70 secretion inside the exosomes of the chemoresistant variant could be associated with this phenomenon. Therefore, autocrine activation mediated by exosomes and the effect of LDL internalization may influence changes in exosome chaperone content and modulate proliferative signaling pathways, increasing the aggressiveness of MDA-MB-231 chemoresistant cells.
Collapse
Affiliation(s)
- César Y. Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Roberto León-Gutiérrez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Adrián Ernesto Araiza-Robles
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico;
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Ignacio A. Rivero
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico;
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Manuel Alatorre-Meda
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, CONAHCYT-Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico;
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico;
- Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico; (C.Y.C.-S.); (B.C.-V.); (R.L.-G.); (A.E.A.-R.); (A.P.-C.); (R.D.-M.)
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| |
Collapse
|
26
|
Kim SY, Guk D, Jeong Y, Kim E, Kim H, Kim ST. Engineered Hybrid Vesicles and Cellular Internalization in Mammary Cancer Cells. Pharmaceutics 2024; 16:440. [PMID: 38675102 PMCID: PMC11054022 DOI: 10.3390/pharmaceutics16040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles play an important role in intercellular communication, with the potential to serve as biomaterials for nanocarriers. Combining such extracellular vesicles and liposomes results in advanced drug delivery carriers. In this study, we attempted to fabricate hybrid vesicles using a membrane fusion method and incorporated an anticancer drug. As a result, we successfully prepared nanosized uniform hybrid vesicles and evaluated their physicochemical characteristics and intracellular uptake mechanisms via endocytosis in various cell lines. Compared to liposomes, the hybrid vesicles showed better physical properties and a relatively higher reduction in cell viability, which was presumably dependent on the specific cell type. These findings suggest that fusion-based hybrid vesicles offer a novel strategy for delivering therapeutic agents and provide insights into the types of extracellular vesicles that are useful in fabricating hybrid vesicles to develop an advanced drug delivery system.
Collapse
Affiliation(s)
- So Yun Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea; (S.Y.K.); (E.K.); (H.K.)
| | - Dagyeong Guk
- Center for Advanced Biomolecular Recognition, KIST Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (D.G.); (Y.J.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, KIST Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (D.G.); (Y.J.)
- HY-KIST Department of Bioconvergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea; (S.Y.K.); (E.K.); (H.K.)
| | - Hansol Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea; (S.Y.K.); (E.K.); (H.K.)
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Sung Tae Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea; (S.Y.K.); (E.K.); (H.K.)
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
27
|
Yang Q, Yang Z, Lu F, Ge H, Du Y, Cao D, Yuan Z, Lu C. Probing the Alcoholysis Degree of Polyvinyl Alcohol by Synergistic Coordination-Regulated Fluorescence. Anal Chem 2024; 96:4657-4664. [PMID: 38456390 DOI: 10.1021/acs.analchem.3c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polyvinyl alcohol (PVA) with abundant hydroxyl groups (-OH) has been widely used for membranes, hydrogels, and films, and its function is largely affected by the alcoholysis degree. Therefore, the development of rapid and accurate methods for alcoholysis degree determination in PVAs is important. In this contribution, we have proposed a novel fluorescence-based platform for probing the alcoholysis degree of PVA by using the (E)-N-(4-methoxyphenyl)-1-(quinolin-2-yl)methanimine (QPM)-Zn2+ complex as the reporter. The mechanism study disclosed that the strong coordination between -OH and Zn2+ induced the capture of the QPM-Zn2+ complex and promoted its subsequent immobilization into the noncrystalline area. The immobilization of the QPM-Zn2+ complex restricted its molecular rotation and reduced the nonirradiative transition, thus yielding bright emissions. In addition, the practical applications of this proposed method were further validated by the accurate alcoholysis degree determination of blind PVA samples with the confirmation of the National Standard protocol. It is expected that the developed fluorescence approach in this work might become an admissive strategy for screening the alcoholysis degree of PVA.
Collapse
Affiliation(s)
- Qingxin Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiming Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengniu Lu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hanbing Ge
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Du
- Analysis Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ding Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Tabandeh S, Ateeq T, Leon L. Drug Encapsulation via Peptide-Based Polyelectrolyte Complexes. Chembiochem 2024; 25:e202300440. [PMID: 37875787 DOI: 10.1002/cbic.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Peptide-based polyelectrolyte complexes are biocompatible materials that can encapsulate molecules with different polarities due to their ability to be precisely designed. Here we use UV-Vis spectroscopy, fluorescence microscopy, and infrared spectroscopy to investigate the encapsulation of model drugs, doxorubicin (DOX) and methylene blue (MB) using a series of rationally designed polypeptides. For both drugs, we find an overall higher encapsulation efficiency with sequences that have higher charge density, highlighting the importance of ionic interactions between the small molecules and the peptides. However, comparing molecules with the same charge density, illustrated that the most hydrophobic sequence pairs had the highest encapsulation of both DOX and MB molecules. The phase behavior and stability of DOX-containing complexes did not change compared to the complexes without drugs. However, MB encapsulation caused changes in the stabilities of the complexes. The sequence pair with the highest charge density and hydrophobicity had the most dramatic increase in stability, which coincided with a phase change from liquid to solid. This study illustrates how multiple types of molecular interactions are required for efficient encapsulation of poorly soluble drugs and provides insights into the molecular design of delivery carriers.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Tahoora Ateeq
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
| | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Dr, Orlando, FL-32816, USA
- NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy #400, Orlando, FL-32826, USA
| |
Collapse
|
29
|
Valente R, Cordeiro S, Luz A, Melo MC, Rodrigues CR, Baptista PV, Fernandes AR. Doxorubicin-sensitive and -resistant colorectal cancer spheroid models: assessing tumor microenvironment features for therapeutic modulation. Front Cell Dev Biol 2023; 11:1310397. [PMID: 38188017 PMCID: PMC10771845 DOI: 10.3389/fcell.2023.1310397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The research on tumor microenvironment (TME) has recently been gaining attention due to its important role in tumor growth, progression, and response to therapy. Because of this, the development of three-dimensional cancer models that mimic the interactions in the TME and the tumor structure and complexity is of great relevance to cancer research and drug development. Methods: This study aimed to characterize colorectal cancer spheroids overtime and assess how the susceptibility or resistance to doxorubicin (Dox) or the inclusion of fibroblasts in heterotypic spheroids influence and modulate their secretory activity, namely the release of extracellular vesicles (EVs), and the response to Dox-mediated chemotherapy. Different characteristics were assessed over time, namely spheroid growth, viability, presence of hypoxia, expression of hypoxia and inflammation-associated genes and proteins. Due to the importance of EVs in biomarker discovery with impact on early diagnostics, prognostics and response to treatment, proteomic profiling of the EVs released by the different 3D spheroid models was also assessed. Response to treatment was also monitored by assessing Dox internalization and its effects on the different 3D spheroid structures and on the cell viability. Results and Discussion: The results show that distinct features are affected by both Dox resistance and the presence of fibroblasts. Fibroblasts can stabilize spheroid models, through the modulation of their growth, viability, hypoxia and inflammation levels, as well as the expressions of its associated transcripts/proteins, and promotes alterations in the protein profile exhibit by EVs. Summarily, fibroblasts can increase cell-cell and cell-extracellular matrix interactions, making the heterotypic spheroids a great model to study TME and understand TME role in chemotherapies resistance. Dox resistance induction is shown to influence the internalization of Dox, especially in homotypic spheroids, and it is also shown to influence cell viability and consequently the chemoresistance of those spheroids when exposed to Dox. Taken together these results highlight the importance of finding and characterizing different 3D models resembling more closely the in vivo interactions of tumors with their microenvironment as well as modulating drug resistance.
Collapse
Affiliation(s)
- Ruben Valente
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sandra Cordeiro
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria C. Melo
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Catarina Roma Rodrigues
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
30
|
Diril M, Özdokur KV, Yıldırım Y, Karasulu HY. In vitro evaluation and in vivo efficacy studies of a liposomal doxorubicin-loaded glycyrretinic acid formulation for the treatment of hepatocellular carcinoma. Pharm Dev Technol 2023; 28:915-927. [PMID: 37921920 DOI: 10.1080/10837450.2023.2274394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
Hepatocellular carcinoma (HCC), more than 800 000 cases reported annually, is the most common primary liver cancer globally. Doxorubicin hydrochloride (Dox-HCl) is a widely used chemotherapy drug for HCC, but efficacy and tolerability are limited, thus critical to develop delivery systems that can target Dox-HCl to the tumour site. In this study, liver-targeting ligand glycyrrhetinic acid (Gly) was conjugated to polyethylene glycol (PEG) via Steglich reaction and incorporated in liposomes, which were then loaded with Dox-HCl by pH gradient method. The optimal formulation Gly-Peg-Dox-ProLP-F6 showed high Dox-HCl encapsulation capacity (90.0%±1.85%), low particle size (120 ± 3.2 nm). Gly-Peg-Dox-ProLP-F6 formulation demonstrated substantially greater toxicity against HCC cells than commercial Dox-HCl formulation (greater against 1.14, 1.5, 1.24 fold against Hep G2, Mahlavu and Huh-7 cells, respectively), but was 1.86-fold less cytotoxic against non-cancerous cell line AML-12. It increased permeability from apical to basolateral (A-B) approximately 2-fold. Gly-Peg-Dox-ProLP-F6 demonstrated superior antitumor efficacy in mouse liver cancer model as evaluated by IVIS. Isolated mouse liver tissue contained 2.48-fold Dox more than Dox-HCl after administration of Gly-Peg-Dox-ProLP-F6, while accumulation in heart tissue was substantially lower. This Gly-Peg-Dox-ProLP-F6 formulation may improve HCC outcomes through superior liver targeting for enhanced tumour toxicity with lower systemic toxicity.
Collapse
Affiliation(s)
- Mine Diril
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Kemal Volkan Özdokur
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Yıldırım
- Department of Chemistry, Faculty of Sciences, Ege University, Izmir, Turkey
- Center for Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey
| | - H Yeşim Karasulu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
31
|
Shukla A, Kumari S, Sankar M, Nair MS. Insights into the mechanism of binding of doxorubicin and a chlorin compound with 22-mer c-Myc G quadruplex. Biochim Biophys Acta Gen Subj 2023; 1867:130482. [PMID: 37821013 DOI: 10.1016/j.bbagen.2023.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The interaction of small molecules with G quadruplexes is in focus due to its role in molecular recognition and therapeutic drug design. Stabilization of G-quadruplex structures in the promoter regions of oncogenes by small molecule binding has been demonstrated as a potential approach for cancer therapy. METHODS In this study, electronic spectroscopy (ultraviolet-visible, fluorescence, circular dichroism), differential scanning calorimetry, and molecular modeling were employed to explore the interactions between the chemotherapy drug doxorubicin and a chlorin compound 5,10,15,20-tetraphenyl-[2,3]-[bis(carboxy)-methano]chlorin (H2TPC(DAC)), and the c-Myc 22-mer G quadruplex DNA. RESULTS Spectroscopic studies indicated external binding of the compounds with partial stacking at the end quartets. Calorimetric studies and temperature dependent circular dichroism data displayed increased melting temperatures of G quadruplex structure on binding with the compounds. Circular dichroism spectra indicated that the G quadruplex structure is intact upon ligand binding. Both the compounds showed binding affinities of the order of 106 M-1. Fluorescence lifetime studies revealed static quenching as major mechanism for fluorescence quenching. Polymerase chain reaction stop assay hinted that binding of both ligands under study could inhibit the amplification of the DNA sequence. CONCLUSION Results show that doxorubicin and H2TPC(DAC) bind to the 22-mer c-Myc quadruplex structure with good affinity and induce stability. SIGNIFICANCE Doxorubicin and H2TPC(DAC) have demonstrated their affinity towards c-Myc G quadruplex DNA, stabilizing it and inhibiting expression and polymerization. The results can be of practical use in designing new analogs for the two compounds, which can become potent anti-cancer agents targeting the c-Myc GQ structure.
Collapse
Affiliation(s)
- Aishwarya Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Soni Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
32
|
Bernardi M, Signore G, Moscardini A, Pugliese LA, Pesce L, Beltram F, Cardarelli F. Fluorescence Lifetime Nanoscopy of Liposomal Irinotecan Onivyde: From Manufacturing to Intracellular Processing. ACS APPLIED BIO MATERIALS 2023; 6:4277-4289. [PMID: 37699572 PMCID: PMC10583229 DOI: 10.1021/acsabm.3c00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Onivyde was approved by the Food and Drug Administration (FDA) in 2015 for the treatment of solid tumors, including metastatic pancreatic cancer. It is designed to encapsulate irinotecan at high concentration, increase its blood-circulation lifetime, and deliver it to cells where it is enzymatically converted into SN-38, a metabolite with 100- to 1000-fold higher anticancer activity. Despite a rewarding clinical path, little is known about the physical state of encapsulated irinotecan within Onivyde and how this synthetic identity changes throughout the process from manufacturing to intracellular processing. Herein, we exploit irinotecan intrinsic fluorescence and fluorescence lifetime imaging microscopy (FLIM) to selectively probe the supramolecular organization of the drug. FLIM analysis on the manufacturer's formulation reveals the presence of two coexisting physical states within Onivyde liposomes: (i) gelated/precipitated irinotecan and (ii) liposome-membrane-associated irinotecan, the presence of which is not inferable from the manufacturer's indications. FLIM in combination with high-performance liquid chromatography (HPLC) and a membrane-impermeable dynamic quencher of irinotecan reveals rapid (within minutes) and complete chemical dissolution of the gelated/precipitated phase upon Onivyde dilution in standard cell-culturing medium with extensive leakage of the prodrug from liposomes. Indeed, confocal imaging and cell-proliferation assays show that encapsulated and nonencapsulated irinotecan formulations are similar in terms of cell-uptake mechanism and cell-division inhibition. Finally, 2-channel FLIM analysis discriminates the signature of irinotecan from that of its red-shifted SN-38 metabolite, demonstrating the appearance of the latter as a result of Onivyde intracellular processing. The findings presented in this study offer fresh insights into the synthetic identity of Onivyde and its transformation from production to in vitro administration. Moreover, these results serve as another validation of the effectiveness of FLIM analysis in elucidating the supramolecular organization of encapsulated fluorescent drugs. This research underscores the importance of leveraging advanced imaging techniques to deepen our understanding of drug formulations and optimize their performance in delivery applications.
Collapse
Affiliation(s)
- Mario Bernardi
- Scuola
Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giovanni Signore
- Biochemistry
Unit, Department of Biology, University
of Pisa, via San Zeno
51, 56123 Pisa, Italy
- Institute
of Clinical Physiology, National Research
Council, 56124 Pisa, Italy
| | - Aldo Moscardini
- Scuola
Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Licia Anna Pugliese
- Scuola
Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Luca Pesce
- Scuola
Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Fabio Beltram
- Scuola
Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST,
Istituto Nanoscienze-CNR, Piazza S. Silvestro, 12, I-56127 Pisa, Italy
| | - Francesco Cardarelli
- Scuola
Normale Superiore, Laboratorio NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST,
Istituto Nanoscienze-CNR, Piazza S. Silvestro, 12, I-56127 Pisa, Italy
| |
Collapse
|
33
|
Lee PC, Stewart S, Amelkina O, Sylvester H, He X, Comizzoli P. Trehalose delivered by cold-responsive nanoparticles improves tolerance of cumulus-oocyte complexes to microwave drying. J Assist Reprod Genet 2023; 40:1817-1828. [PMID: 37261586 PMCID: PMC10371938 DOI: 10.1007/s10815-023-02831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE Trehalose is a non-permeable protectant that is the key to preserve live cells in a dry state for potential storage at ambient temperatures. After intracellular trehalose delivery via cold-responsive nanoparticles (CRNPs), the objective was to characterize the tolerance of cat cumulus-oocyte complexes (COCs) to different levels of microwave-assisted dehydration. METHODS Trehalose was first encapsulated in CRNPs. After exposure to trehalose-laden CRNPs, different water amounts were removed from cat COCs by microwave drying. After each dehydration level, meiotic and developmental competences were evaluated via in vitro maturation, fertilization, and embryo culture. In addition, expressions of critical genes were assessed by quantitative RT-PCR. RESULTS CRNPs effectively transported trehalose into COCs within 4 h of co-incubation at 38.5 °C followed by a cold-triggered release at 4 °C for 15 min. Intracellular presence of trehalose enabled the maintenance of developmental competence (formation of blastocysts) as well as normal gene expression levels of HSP70 and DNMT1 at dehydration levels reaching up to 63% of water loss. CONCLUSION Intracellular trehalose delivery through CRNPs improves dehydration tolerance of COCs, which opens new options for oocyte storage and fertility preservation at ambient temperatures.
Collapse
Affiliation(s)
- Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Hannah Sylvester
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA.
| |
Collapse
|
34
|
Newton HS, Zhang J, Donohue D, Unnithan R, Cedrone E, Xu J, Vermilya A, Malys T, Clogston JD, Dobrovolskaia MA. Multicolor flow cytometry-based immunophenotyping for preclinical characterization of nanotechnology-based formulations: an insight into structure activity relationship and nanoparticle biocompatibility profiles. FRONTIERS IN ALLERGY 2023; 4:1126012. [PMID: 37470031 PMCID: PMC10353541 DOI: 10.3389/falgy.2023.1126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Immunophenotyping, which is the identification of immune cell subsets based on antigen expression, is an integral technique used to determine changes of cell composition and activation in various disease states or as a response to different stimuli. As nanoparticles are increasingly utilized for diagnostic and therapeutic applications, it is important to develop methodology that allows for the evaluation of their immunological impact. Therefore, the development of techniques such as immunophenotyping are desirable. Currently, the most common technique used to perform immunophenotyping is multicolor flow cytometry. Methods We developed two distinct multicolor flow cytometry immunophenotyping panels which allow for the evaluation of the effects of nanoparticles on the composition and activation status of treated human peripheral blood mononuclear cells. These two panels assess the presence of various lymphoid and myeloid-derived cell populations as well as aspects of their activation statuses-including proliferation, adhesion, co-stimulation/presentation, and early activation-after treatment with controls or nanoparticles. To conduct assay performance qualification and determine the applicability of this method to preclinical characterization of nanoparticles, we used clinical-grade nanoformulations (AmBisome, Doxil and Feraheme) and research-grade PAMAM dendrimers of different sizes (G3, G4 and G5) and surface functionalities (amine-, carboxy- and hydroxy-). Results and Discussion We found that formulations possessing intrinsic fluorescent properties (e.g., Doxil and AmBisome) interfere with accurate immunophenotyping; such interference may be partially overcome by dilution. In the absence of interference (e.g., in the case of dendrimers), nanoparticle size and surface functionalities determine their effects on the cells with large amine-terminated dendrimers being the most reactive.
Collapse
Affiliation(s)
- Hannah S. Newton
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Jenny Zhang
- Agilent Technologies, Santa Clara, CA, United States
| | - Duncan Donohue
- Statistics Department, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Ragi Unnithan
- Statistics Department, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Jie Xu
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Alison Vermilya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Tyler Malys
- Statistics Department, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Jeffrey D. Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
35
|
Fortuni B, Ricci M, Vitale R, Inose T, Zhang Q, Hutchison JA, Hirai K, Fujita Y, Toyouchi S, Krzyzowska S, Van Zundert I, Rocha S, Uji-I H. SERS Endoscopy for Monitoring Intracellular Drug Dynamics. ACS Sens 2023; 8:2340-2347. [PMID: 37219991 DOI: 10.1021/acssensors.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells. The unique spatio-temporal resolution of this technique reveals unprecedented information on the mode of action of doxorubicin: its localization in the nucleus, its complexation with medium components, and its intercalation with DNA as a function of time. Notably, we were able to discriminate these factors for the direct administration of doxorubicin or the use of a doxorubicin delivery system. The results reported here show that SERS endoscopy may have an important future role in medicinal chemistry for studying the dynamics and mechanism of action of drugs in cells.
Collapse
Affiliation(s)
- Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Monica Ricci
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raffaele Vitale
- U. Lille, CNRS, LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Cité Scientifique, F-59000 Lille, France
| | - Tomoko Inose
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Qiang Zhang
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - James Andell Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Hirai
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Yasuhiko Fujita
- Toray Research Center, Inc., Sonoyama 3-3-7, Otsu, Shiga 520-8567, Japan
| | - Shuichi Toyouchi
- Research Institute for Light-Induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan
| | - Sandra Krzyzowska
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hiroshi Uji-I
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
36
|
Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab MAS, Gupta N, Chen ZS, Zhou Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer 2023; 22:98. [PMID: 37344887 DOI: 10.1186/s12943-023-01798-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is a grievous disease whose treatment requires a more efficient, non-invasive therapy, associated with minimal side effects. Gold nanoparticles possessing greatly impressive optical properties have been a forerunner in bioengineered cancer therapy. This theranostic system has gained immense popularity and finds its application in the field of molecular detection, biological imaging, cancer cell targeting, etc. The photothermal property of nanoparticles, especially of gold nanorods, causes absorption of the light incident by the light source, and transforms it into heat, resulting in tumor cell destruction. This review describes the different optical features of gold nanoparticles and summarizes the advance research done for the application of gold nanoparticles and precisely gold nanorods for combating various cancers including breast, lung, colon, oral, prostate, and pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York City, NY, 11439, USA
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
37
|
Mescheryakova SA, Matlakhov IS, Strokin PD, Drozd DD, Goryacheva IY, Goryacheva OA. Fluorescent Alloyed CdZnSeS/ZnS Nanosensor for Doxorubicin Detection. BIOSENSORS 2023; 13:596. [PMID: 37366961 DOI: 10.3390/bios13060596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Doxorubicin (DOX) is widely used in chemotherapy as an anti-tumor drug. However, DOX is highly cardio-, neuro- and cytotoxic. For this reason, the continuous monitoring of DOX concentrations in biofluids and tissues is important. Most methods for the determination of DOX concentrations are complex and costly, and are designed to determine pure DOX. The purpose of this work is to demonstrate the capabilities of analytical nanosensors based on the quenching of the fluorescence of alloyed CdZnSeS/ZnS quantum dots (QDs) for operative DOX detection. To maximize the nanosensor quenching efficiency, the spectral features of QDs and DOX were carefully studied, and the complex nature of QD fluorescence quenching in the presence of DOX was shown. Using optimized conditions, turn-off fluorescence nanosensors for direct DOX determination in undiluted human plasma were developed. A DOX concentration of 0.5 µM in plasma was reflected in a decrease in the fluorescence intensity of QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, for 5.8 and 4.4 %, respectively. The calculated Limit of Detection values were 0.08 and 0.03 μg/mL using QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, respectively.
Collapse
Affiliation(s)
- Svetlana A Mescheryakova
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Ivan S Matlakhov
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Pavel D Strokin
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Daniil D Drozd
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| | - Olga A Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya 83, 410012 Saratov, Russia
| |
Collapse
|
38
|
Zhu Z, Shen H, Xu J, Fang Z, Wo G, Ma Y, Yang K, Wang Y, Yu Q, Tang JH. GATA3 mediates doxorubicin resistance by inhibiting CYB5R2-catalyzed iron reduction in breast cancer cells. Drug Resist Updat 2023; 69:100974. [PMID: 37230023 DOI: 10.1016/j.drup.2023.100974] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
AIMS Neoadjuvant chemotherapy (NAC) is the primary preoperative therapy for breast cancer. The luminal subtype of breast cancer shows less NAC response than the basal subtype, with an inefficient NAC treatment effect. Understanding of the molecular and cellular mechanisms responsible for this chemoresistance is an important issue when determining optimal treatment. METHODS Doxorubicin-induced apoptosis and ferroptosis was investigated using cytotoxicity, western blotting, and flow cytometry assays. The role of GATA3 in modulating doxorubicin-induced cell death was investigated both in vitro and in vivo. RNA-seq, qPCR, ChIP, and luciferase assay and association analyses were performed to investigate the regulation of CYB5R2 by GATA3. The function of GATA3 and CYB5R2 in regulating doxorubicin-induced ferroptosis was evaluated with iron, ROS, and lipid peroxidation detection assays. Immunohistochemistry was performed for results validation. RESULTS Doxorubicin-induced basal breast cancer cell death is dependent on iron-mediated ferroptosis. Overexpression of the luminal signature transcriptional factor GATA3 mediates doxorubicin resistance. GATA3 promotes cell viability by decreasing ferroptosis-related gene CYB5R2 expression and by maintaining iron homeostasis. Analyzing data from the public and our cohorts demonstrates that GATA3 and CYB5R2 are associated with NAC response. CONCLUSIONS GATA3 promotes doxorubicin resistance by inhibiting CYB5R2-mediated iron metabolism and ferroptosis. Therefore, patients with breast cancer who display high GATA3 expression do not benefit from doxorubicin-based NAC regimens.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Hongyu Shen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China; Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215026, PR China
| | - Jialin Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zheng Fang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Guanqun Wo
- Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Kai Yang
- The People's Hospital of Pizhou, Xuzhou 221300, PR China
| | - Yalin Wang
- First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Qiang Yu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China; Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215026, PR China.
| |
Collapse
|
39
|
Szota M, Jachimska B. Effect of Alkaline Conditions on Forming an Effective G4.0 PAMAM Complex with Doxorubicin. Pharmaceutics 2023; 15:pharmaceutics15030875. [PMID: 36986735 PMCID: PMC10057121 DOI: 10.3390/pharmaceutics15030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, special attention was paid to the correlation between the degree of ionization of the components and the effective formation of the complex under alkaline conditions. Using UV-Vis, 1H NMR, and CD, structural changes of the drug depending on the pH were monitored. In the pH range of 9.0 to 10.0, the G4.0 PAMAM dendrimer can bind 1 to 10 DOX molecules, while the efficiency increases with the concentration of the drug relative to the carrier. The binding efficiency was described by the parameters of loading content (LC = 4.80-39.20%) and encapsulation efficiency (EE = 17.21-40.16%), whose values increased twofold or even fourfold depending on the conditions. The highest efficiency was obtained for G4.0PAMAM-DOX at a molar ratio of 1:24. Nevertheless, regardless of the conditions, the DLS study indicates system aggregation. Changes in the zeta potential confirm the immobilization of an average of two drug molecules on the dendrimer's surface. Circular dichroism spectra analysis shows a stable dendrimer-drug complex for all the systems obtained. Since the doxorubicin molecule can simultaneously act as a therapeutic and an imaging agent, the theranostic properties of the PAMAM-DOX system have been demonstrated by the high fluorescence intensity observable on fluorescence microscopy.
Collapse
Affiliation(s)
- Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| |
Collapse
|
40
|
Torres-Martinez Z, Pérez D, Torres G, Estrada S, Correa C, Mederos N, Velazquez K, Castillo B, Griebenow K, Delgado Y. A Synergistic pH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC. BIOTECH 2023; 12:13. [PMID: 36810440 PMCID: PMC9944877 DOI: 10.3390/biotech12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Nanosized drug delivery systems (DDS) have been studied as a novel strategy against cancer due to their potential to simultaneously decrease drug inactivation and systemic toxicity and increase passive and/or active drug accumulation within the tumor(s). Triterpenes are plant-derived compounds with interesting therapeutic properties. Betulinic acid (BeA) is a pentacyclic triterpene that has great cytotoxic activity against different cancer types. Herein, we developed a nanosized protein-based DDS of bovine serum albumin (BSA) as the drug carrier combining two compounds, doxorubicin (Dox) and the triterpene BeA, using an oil-water-like micro-emulsion method. We used spectrophotometric assays to determine protein and drug concentrations in the DDS. The biophysical properties of these DDS were characterized using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy, confirming nanoparticle (NP) formation and drug loading into the protein structure, respectively. The encapsulation efficiency was 77% for Dox and 18% for BeA. More than 50% of both drugs were released within 24 h at pH 6.8, while less drug was released at pH 7.4 in this period. Co-incubation viability assays of Dox and BeA alone for 24 h demonstrated synergistic cytotoxic activity in the low μM range against non-small-cell lung carcinoma (NSCLC) A549 cells. Viability assays of the BSA-(Dox+BeA) DDS demonstrated a higher synergistic cytotoxic activity than the two drugs with no carrier. Moreover, confocal microscopy analysis confirmed the cellular internalization of the DDS and the accumulation of the Dox in the nucleus. We determined the mechanism of action of the BSA-(Dox+BeA) DDS, confirming S-phase cell cycle arrest, DNA damage, caspase cascade activation, and downregulation of epidermal growth factor receptor (EGFR) expression. This DDS has the potential to synergistically maximize the therapeutic effect of Dox and diminish chemoresistance induced by EGFR expression using a natural triterpene against NSCLC.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Daraishka Pérez
- Neuroscience Department, Universidad Central del Caribe, Bayamon 00960, Puerto Rico
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico—Cayey, Cayey 00736, Puerto Rico
| | - Clarissa Correa
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Natasha Mederos
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Kimberly Velazquez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Betzaida Castillo
- Chemistry Department, University of Puerto Rico—Humacao, Humacao 00727, Puerto Rico
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| |
Collapse
|
41
|
Greco G, Ulfo L, Turrini E, Marconi A, Costantini PE, Marforio TD, Mattioli EJ, Di Giosia M, Danielli A, Fimognari C, Calvaresi M. Light-Enhanced Cytotoxicity of Doxorubicin by Photoactivation. Cells 2023; 12:cells12030392. [PMID: 36766734 PMCID: PMC9913797 DOI: 10.3390/cells12030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The combination of photodynamic therapy with chemotherapy (photochemotherapy, PCT) can lead to additive or synergistic antitumor effects. Usually, two different molecules, a photosensitizer (PS) and a chemotherapeutic drug are used in PCT. Doxorubicin is one of the most successful chemotherapy drugs. Despite its high efficacy, two factors limit its clinical use: severe side effects and the development of chemoresistance. Doxorubicin is a chromophore, able to absorb light in the visible range, making it a potential PS. Here, we exploited the intrinsic photosensitizing properties of doxorubicin to enhance its anticancer activity in leukemia, breast, and epidermoid carcinoma cells, upon irradiation. Light can selectively trigger the local generation of reactive oxygen species (ROS), following photophysical pathways. Doxorubicin showed a concentration-dependent ability to generate peroxides and singlet oxygen upon irradiation. The underlying mechanisms leading to the increase in its cytotoxic activity were intracellular ROS generation and the induction of necrotic cell death. The nuclear localization of doxorubicin represents an added value for its use as a PS. The use of doxorubicin in PCT, simultaneously acting as a chemotherapeutic agent and a PS, may allow (i) an increase in the anticancer effects of the drug, and (ii) a decrease in its dose, and thus, its dose-related adverse effects.
Collapse
Affiliation(s)
- Giulia Greco
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
| | - Alessia Marconi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
- Correspondence: (C.F.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
- Correspondence: (C.F.); (M.C.)
| |
Collapse
|
42
|
González-Ortiz A, Pulido-Capiz A, Castañeda-Sánchez CY, Ibarra-López E, Galindo-Hernández O, Calderón-Fernández MA, López-Cossio LY, Díaz-Molina R, Chimal-Vega B, Serafín-Higuera N, Córdova-Guerrero I, García-González V. eIF4A/PDCD4 Pathway, a Factor for Doxorubicin Chemoresistance in a Triple-Negative Breast Cancer Cell Model. Cells 2022; 11:4069. [PMID: 36552834 PMCID: PMC9776898 DOI: 10.3390/cells11244069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cells employ several adaptive mechanisms under conditions of accelerated cell division, such as the unfolded protein response (UPR). The UPR is composed of a tripartite signaling system that involves ATF6, PERK, and IRE1, which maintain protein homeostasis (proteostasis). However, deregulation of protein translation initiation could be associated with breast cancer (BC) chemoresistance. Specifically, eukaryotic initiation factor-4A (eIF4A) is involved in the unfolding of the secondary structures of several mRNAs at the 5' untranslated region (5'-UTR), as well as in the regulation of targets involved in chemoresistance. Importantly, the tumor suppressor gene PDCD4 could modulate this process. This regulation might be disrupted in chemoresistant triple negative-BC (TNBC) cells. Therefore, we characterized the effect of doxorubicin (Dox), a commonly used anthracycline medication, on human breast carcinoma MDA-MB-231 cells. Here, we generated and characterized models of Dox chemoresistance, and chemoresistant cells exhibited lower Dox internalization levels followed by alteration of the IRE1 and PERK arms of the UPR and triggering of the antioxidant Nrf2 axis. Critically, chemoresistant cells exhibited PDCD4 downregulation, which coincided with a reduction in eIF4A interaction, suggesting a sophisticated regulation of protein translation. Likewise, Dox-induced chemoresistance was associated with alterations in cellular migration and invasion, which are key cancer hallmarks, coupled with changes in focal adhesion kinase (FAK) activation and secretion of matrix metalloproteinase-9 (MMP-9). Moreover, eIF4A knockdown via siRNA and its overexpression in chemoresistant cells suggested that eIF4A regulates FAK. Pro-atherogenic low-density lipoproteins (LDL) promoted cellular invasion in parental and chemoresistant cells in an MMP-9-dependent manner. Moreover, Dox only inhibited parental cell invasion. Significantly, chemoresistance was modulated by cryptotanshinone (Cry), a natural terpene purified from the roots of Salvia brandegeei. Cry and Dox co-exposure induced chemosensitization, connected with the Cry effect on eIF4A interaction. We further demonstrated the Cry binding capability on eIF4A and in silico assays suggest Cry inhibition on the RNA-processing domain. Therefore, strategic disruption of protein translation initiation is a druggable pathway by natural compounds during chemoresistance in TNBC. However, plasmatic LDL levels should be closely monitored throughout treatment.
Collapse
Affiliation(s)
- Alina González-Ortiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - César Y. Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Esmeralda Ibarra-López
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Maritza Anahí Calderón-Fernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Raul Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22424, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| |
Collapse
|
43
|
Tissue-Specific Human Extracellular Matrix Scaffolds Promote Pancreatic Tumour Progression and Chemotherapy Resistance. Cells 2022; 11:cells11223652. [PMID: 36429078 PMCID: PMC9688243 DOI: 10.3390/cells11223652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Over 80% of patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed at a late stage and are locally advanced or with concurrent metastases. The aggressive phenotype and relative chemo- and radiotherapeutic resistance of PDAC is thought to be mediated largely by its prominent stroma, which is supported by an extracellular matrix (ECM). Therefore, we investigated the impact of tissue-matched human ECM in driving PDAC and the role of the ECM in promoting chemotherapy resistance. Decellularized human pancreata and livers were recellularized with PANC-1 and MIA PaCa-2 (PDAC cell lines), as well as PK-1 cells (liver-derived metastatic PDAC cell line). PANC-1 cells migrated into the pancreatic scaffolds, MIA PaCa-2 cells were able to migrate into both scaffolds, whereas PK-1 cells were able to migrate into the liver scaffolds only. These differences were supported by significant deregulations in gene and protein expression between the pancreas scaffolds, liver scaffolds, and 2D culture. Moreover, these cell lines were significantly more resistant to gemcitabine and doxorubicin chemotherapy treatments in the 3D models compared to 2D cultures, even after confirmed uptake by confocal microscopy. These results suggest that tissue-specific ECM provides the preserved native cues for primary and metastatic PDAC cells necessary for a more reliable in vitro cell culture.
Collapse
|
44
|
Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022; 14:pharmaceutics14112498. [PMID: 36432688 PMCID: PMC9698844 DOI: 10.3390/pharmaceutics14112498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.
Collapse
|
45
|
Santana-Krímskaya SE, Kawas J, Zarate-Triviño DG, Ramos-Zayas Y, Rodríguez-Padilla C, Franco-Molina MA. Orthotopic and heterotopic triple negative breast cancer preclinical murine models: A tumor microenvironment comparative. Res Vet Sci 2022; 152:364-371. [DOI: 10.1016/j.rvsc.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
|
46
|
Pietrzak M, Szabelski M, Wołąkiewicz G, Wieczorek Z. Spectroscopy studies of interaction hypericin with an anti-cancer therapy drug doxorubicin. Biophys Chem 2022; 288:106858. [PMID: 35905651 DOI: 10.1016/j.bpc.2022.106858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
The presented study was designed to estimate the ability of hypericin to interact with the anticancer drug doxorubicin. The hetero-association of hypericin and doxorubicin was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO in two-component mixtures: doxorubicin-hypericin and three component mixtures: DNA-doxorubicin-hypericin. The data indicate that hypericin forms complexes with doxorubicin and that the association constants are on the order of 300,000 M-1 in a buffer with 30% DMSO content. The absorption spectra of the hypericin - doxorubicin complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule to detoxification of patients after chemotherapy.
Collapse
Affiliation(s)
- Monika Pietrzak
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | - Mariusz Szabelski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Grzegorz Wołąkiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Zbigniew Wieczorek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
47
|
Tentori P, Signore G, Camposeo A, Carretta A, Ferri G, Pingue P, Luin S, Pozzi D, Gratton E, Beltram F, Caracciolo G, Cardarelli F. Fluorescence lifetime microscopy unveils the supramolecular organization of liposomal Doxorubicin. NANOSCALE 2022; 14:8901-8905. [PMID: 35719059 DOI: 10.1039/d2nr00311b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The supramolecular organization of Doxorubicin (DOX) within the standard Doxoves® liposomal formulation (DOX®) is investigated using visible light and phasor approach to fluorescence lifetime imaging (phasor-FLIM). First, the phasor-FLIM signature of DOX® is resolved into the contribution of three co-existing fluorescent species, each with its characteristic mono-exponential lifetime, namely: crystallized DOX (DOXc, 0.2 ns), free DOX (DOXf, 1.0 ns), and DOX bound to the liposomal membrane (DOXb, 4.5 ns). Then, the exact molar fractions of the three species are determined by combining phasor-FLIM with quantitative absorption/fluorescence spectroscopy on DOXc, DOXf, and DOXb pure standards. The final picture on DOX® comprises most of the drug in the crystallized form (∼98%), with the remaining fractions divided between free (∼1.4%) and membrane-bound drug (∼0.7%). Finally, phasor-FLIM in the presence of a DOX dynamic quencher allows us to suggest that DOXf is both encapsulated and non-encapsulated, and that DOXb is present on both liposome-membrane leaflets. We argue that the present experimental protocol can be applied to the investigation of the supramolecular organization of encapsulated luminescent drugs/molecules all the way from the production phase to their state within living matter.
Collapse
Affiliation(s)
- Paolo Tentori
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy. E-mail:.
- Center for Nanotechnology Innovation @NEST, Pisa, Italy
| | | | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro, 12, I-56127, Pisa, Italy
| | | | - Gianmarco Ferri
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy. E-mail:.
| | - Pasqualantonio Pingue
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy. E-mail:.
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro, 12, I-56127, Pisa, Italy
| | - Stefano Luin
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy. E-mail:.
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California at Irvine, Irvine, California, USA
| | - Fabio Beltram
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy. E-mail:.
- Center for Nanotechnology Innovation @NEST, Pisa, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy. E-mail:.
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro, 12, I-56127, Pisa, Italy
| |
Collapse
|
48
|
McNamara RP, Eason AB, Zhou Y, Bigi R, Griffith JD, Costantini LM, Rudek MA, Anders NM, Damania BA, Dittmer DP. Exosome-Encased Nucleic Acid Scaffold Chemotherapeutic Agents for Superior Anti-Tumor and Anti-Angiogenesis Activity. ACS BIO & MED CHEM AU 2022; 2:140-149. [PMID: 35480227 PMCID: PMC9026271 DOI: 10.1021/acsbiomedchemau.1c00030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
Extracellular vesicles (EVs), or exosomes, play a pivotal role in tumor growth and metastasis, such as in the case of Kaposi Sarcoma. By loading tumor-derived EVs with chemotherapeutic drugs, we noted that their pro-tumor/pro-angiogenic phenotype was converted into an anti-tumor phenotype in vivo. Drug concentration in EVs was significantly higher than in clinically approved liposome formulation, as retention was facilitated by the presence of miRNAs inside the natural EVs. This demonstrates a new mechanism by which to increase the payload capacity of nanoparticles. By exploiting the targeting preferences of tumor-derived EVs, chemotherapeutics can be directed to specifically poison the cells and the microenvironment that enables metastasis.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Anthony B. Eason
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Yijun Zhou
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Rachele Bigi
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Jack D. Griffith
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Lindsey M. Costantini
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
- Department
of Biological and Biomedical Sciences, North
Carolina Central University, 1801 Fayetteville Street Durham, North Carolina 27707, United States
| | - Michelle A. Rudek
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 401 N. Broadway, Baltimore, Maryland 21205, United
States
| | - Nicole M. Anders
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 401 N. Broadway, Baltimore, Maryland 21205, United
States
| | - Blossom A. Damania
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Dirk P. Dittmer
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| |
Collapse
|
49
|
Oncocalyxone A (oncoA) has intrinsic fluorescence? Photodiagnosis Photodyn Ther 2022; 39:102869. [DOI: 10.1016/j.pdpdt.2022.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
|
50
|
Sola F, Montanari M, Fiorani M, Barattini C, Ciacci C, Burattini S, Lopez D, Ventola A, Zamai L, Ortolani C, Papa S, Canonico B. Fluorescent Silica Nanoparticles Targeting Mitochondria: Trafficking in Myeloid Cells and Application as Doxorubicin Delivery System in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23063069. [PMID: 35328491 PMCID: PMC8954043 DOI: 10.3390/ijms23063069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescent silica nanoparticles (SiNPs) appear to be a promising imaging platform, showing a specific subcellular localization. In the present study, we first investigated their preferential mitochondrial targeting in myeloid cells, by flow cytometry, confocal microscopy and TEM on both cells and isolated mitochondria, to acquire knowledge in imaging combined with therapeutic applications. Then, we conjugated SiNPs to one of the most used anticancer drugs, doxorubicin (DOX). As an anticancer agent, DOX has high efficacy but also an elevated systemic toxicity, causing multiple side effects. Nanostructures are usually employed to increase the drug circulation time and accumulation in target tissues, reducing undesired cytotoxicity. We tested these functionalized SiNPs (DOX-NPs) on breast cancer cell line MCF-7. We evaluated DOX-NP cytotoxicity, the effect on the cell cycle and on the expression of CD44 antigen, a molecule involved in adhesion and in tumor invasion, comparing DOX-NP to free DOX and stand-alone SiNPs. We found a specific ability to release a minor amount of CD44+ extracellular vesicles (EVs), from both CD81 negative and CD81 positive pools. Modulating the levels of CD44 at the cell surface in cancer cells is thus of great importance for disrupting the signaling pathways that favor tumor progression.
Collapse
Affiliation(s)
- Federica Sola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- AcZon s.r.l., 40050 Monte San Pietro, Italy;
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- AcZon s.r.l., 40050 Monte San Pietro, Italy;
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Daniele Lopez
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.S.); (M.M.); (M.F.); (C.B.); (C.C.); (S.B.); (D.L.); (L.Z.); (C.O.); (S.P.)
- Correspondence: ; Tel.: +39-0722304280
| |
Collapse
|