1
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Baki KB, Sapmaz T, Sevgin K, Topkaraoglu S, Erdem E, Tekayev M, Guler EM, Beyaztas H, Bozali K, Aktas S, Irkorucu O, Sapmaz E. Curcumin and gallic acid have a synergistic protective effect against ovarian surface epithelium and follicle reserve damage caused by autologous intraperitoneal ovary transplantation in rats. Pathol Res Pract 2024; 258:155320. [PMID: 38728794 DOI: 10.1016/j.prp.2024.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The objective of this study to examine the effects of curcumin and gallic acid use against oxidative stress damage in the autologous intraperitoneal ovarian transplantation model created in rats on ovarian follicle reserve, ovarian surface epithelium, and oxidant-antioxidant systems. 42 adult female Sprague Dawley rats (n=7) were allocated into 6 groups. Group 1 served as the control. In Group 2, rats underwent ovarian transplantation (TR) to their peritoneal walls. Group 3 received corn oil (CO) (0.5 ml/day) one day before and 14 days after transplantation. Group 4 was administered curcumin (CUR) (100 mg/kg/day), Group 5 received gallic acid (GA) (20 mg/kg/day), and Group 6 was treated with a combination of curcumin and gallic acid via oral gavage after transplantation. Rats were sacrificed on the 14th postoperative day, and blood along with ovaries were collected for analysis. The removed ovaries were analyzed at light microscopic, fluorescence microscopic, and biochemical levels. In Group 2 and Group 3, while serum and tissue Total Oxidant Levels (TOS) and Oxidative Stress Index (OSI) increased, serum Total Antioxidant Levels (TAS) decreased statistically significantly (p˂0.05) compared to the other groups (Groups 1, 4, 5, and 6). The ovarian follicle reserve was preserved and the changes in the ovarian surface epithelium and histopathological findings were reduced in the antioxidant-treated groups (Groups 4, 5, and 6). In addition, immunofluorescence examination revealed that the expression of Cytochrome C and Caspase 3 was stronger and Ki-67 was weaker in Groups 2 and 3, in comparison to the groups that were given antioxidants. It can be said that curcumin and gallic acid have a histological and biochemical protective effect against ischemia-reperfusion injury due to ovarian transplantation, and this effect is stronger when these two antioxidants are applied together compared to individual use.
Collapse
Affiliation(s)
- Kubra Basol Baki
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; Bezmialem Vakif University, Medical Faculty, Department of Histology and Embryology, Istanbul, Türkiye
| | - Tansel Sapmaz
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye.
| | - Kubra Sevgin
- University of Health Sciences, International Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Sude Topkaraoglu
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Esra Erdem
- University of Health Sciences, Vocational School of Health Services, Department of Medical Services and Techniques, Pathology Laboratory Techniques Program, Istanbul 34668, Türkiye
| | - Muhammetnur Tekayev
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Histology and Embryology, Istanbul 34668, Türkiye
| | - Eray Metin Guler
- University of Health Sciences, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Türkiye; University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Hakan Beyaztas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Kubra Bozali
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Türkiye
| | - Selman Aktas
- University of Health Sciences, Hamidiye Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Türkiye
| | - Oktay Irkorucu
- University of Sharjah, College of Medicine, Department of Clinical Sciences, Sharjah, United Arab Emirates
| | - Ekrem Sapmaz
- University of Health Sciences, Adana City Training and Research Hospital, Department of Gynecology and Obstetrics, Adana, Türkiye
| |
Collapse
|
3
|
Zhang L, Han Y, Wu X, Chen B, Liu S, Huang J, Kong L, Wang G, Ye Z. Research progress on the mechanism of curcumin in cerebral ischemia/reperfusion injury: a narrative review. Apoptosis 2023; 28:1285-1303. [PMID: 37358747 DOI: 10.1007/s10495-023-01869-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury can result in different levels of cerebral impairment, and in severe cases, death. Curcumin, an essential bioactive component of turmeric, has a rich history as a traditional medicine for various ailments in numerous countries. Experimental and clinical research has established that curcumin offers a protective effect against cerebral I/R injury. Curcumin exerts its protective effects by acting on specific mechanisms such as antioxidant, anti-inflammatory, inhibition of ferroptosis and pyroptosis, protection of mitochondrial function and structure, reduction of excessive autophagy, and improvement of endoplasmic reticulum (ER) stress, which ultimately help to preserve the blood-brain barrier (BBB) and reducing apoptosis. There is currently a shortage of drugs undergoing clinical trials for the treatment of cerebral I/R injury, highlighting the pressing need for research and development of novel treatments to address this injury. The primary objective of this study is to establish a theoretical basis for future clinical applications of curcumin by delineating the mechanisms and protective effects of curcumin against cerebral I/R injury. Adapted with permission from [1].
Collapse
Affiliation(s)
- Liyuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xuelan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Baoyu Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, 400014, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
4
|
Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Zyoud TYT, Rahim EBA, Moklas MAM, Zakaria ZAB. Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles ameliorates lead-induced neurotoxicity in rats via attenuation of oxidative stress. Food Sci Nutr 2023; 11:2211-2231. [PMID: 37181299 PMCID: PMC10171497 DOI: 10.1002/fsn3.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
A substantial global health burden is associated with neurotoxicity caused by lead (Pb) exposure and the common mechanism of this toxicity is mainly via oxidative damage. Curcumin has remarkable pharmacological activities but remains clinically constrained due to its poor bioavailability when orally administered. Currently, cockle shell-derived calcium carbonate nanoparticle (CSCaCO3NP) is gaining more acceptance in nanomedicine as a nanocarrier to various therapeutics. This study aimed at investigating the ameliorative effect of curcumin-loaded CSCaCO3NP (Cur-CSCaCO3NP) on lead-induced neurotoxicity in rats. A total of 36 male Sprague-Dawley rats were randomly assigned into five groups. Each group consists of 6 rats apart from the control group which consists of 12 rats. During the 4 weeks induction phase, all rats received a flat dose of 50 mg/kg of lead while the control group received normal saline. The treatment phase lasted for 4 weeks, and all rats received various doses of treatments as follows: group C (Cur 100) received 100 mg/kg of curcumin, group D (Cur-CSCaCO3NP 50) received 50 mg/kg of Cur-CSCaCO3NP, and group E (Cur-CSCaCO3NP 100) received 100 mg/kg of Cur-CSCaCO3NP. The motor function test was carried out using the horizontal bar method. The cerebral and cerebellar oxidative biomarker levels were estimated using ELISA and enzyme assay kits. Lead-administered rats revealed a significant decrease in motor scores and SOD activities with a resultant increase in MDA levels. Furthermore, marked cellular death of the cerebral and cerebellar cortex was observed. Conversely, treatment with Cur-CSCaCO3NP demonstrated enhanced ameliorative effects when compared with free curcumin treatment by significantly reversing the aforementioned alterations caused by lead. Thus, CSCaCO3NP enhanced the efficacy of curcumin by ameliorating the lead-induced neurotoxicity via enhanced attenuation of oxidative stress.
Collapse
Affiliation(s)
- Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
- Department of Human Anatomy College of Medicine Federal University Lafia Lafia Nigeria
| | - Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
- Department of Human Anatomy College of Medicine Federal University Lafia Lafia Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
- Department of Human Anatomy, Faculty of Basic Medical Sciences University of Maiduguri Maiduguri Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine Usman Danfodiyo University Sokoto Nigeria
| | - Tawfiq Y T Zyoud
- Department of Radiology, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
| | - Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine University Putra Malaysia Serdang Malaysia
| |
Collapse
|
5
|
Yang X, Xu L, Zhao H, Xie T, Wang J, Wang L, Yang J. Curcumin protects against cerebral ischemia-reperfusion injury in rats by attenuating oxidative stress and inflammation: a meta-analysis and mechanism exploration. Nutr Res 2023; 113:14-28. [PMID: 36996692 DOI: 10.1016/j.nutres.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Accumulating evidence has suggested that curcumin may protect against cerebral ischemia-reperfusion injury (CIRI). However, biological mechanisms vary across studies, limiting the clinical applicability of these findings. We performed a meta-analysis on publications evaluating curcumin administration in rat models of CIRI. Furthermore, we sought to test the hypothesis that curcumin alleviates CIRI through diminishing oxidation and inflammation. We searched PubMed, Embase, Web of Science, and Cochrane from the starting date of each database to May 2022 for experimental rat studies exploring the use of curcumin after ischemia reperfusion. Included articles were assessed for bias using SYRCLE's risk of bias tool. Data were aggregated by a random effects model. Curcumin administration significantly reduced neurological deficit score (20 studies; pooled mean difference [MD] = -1.57; 95% CI, -1.78 to -1.36, P < .00001), infarct volume (18 studies; pooled MD = -17.56%; 95% CI, -20.92% to -14.20%; P < 0.00001), and brain water content (8 studies, pooled MD = -11.29%, 95% CI: -16.48%, -6.11%, P < .00001). Compared with control, the levels of superoxide dismutase, glutathione, and glutathione peroxidase were significantly higher, whereas the levels of reactive oxygen species, malondialdehyde, interleukin-1β, interleukin-6, interleukin-8, and nuclear factor kappa B were significantly lower (P < .05). Subgroup analysis raised the possibility that intervention affections differed by curcumin's dose. To our knowledge, this is the first meta-analysis of curcumin's neuroprotection and mechanisms in rat CIRI models. Our analysis suggests the neuroprotective potential of curcumin in CIRI via antioxidant activity and anti-inflammatory effect. More research is required to further confirm the effectiveness and safety of curcumin on ischemic stroke therapy.
Collapse
Affiliation(s)
- Xuyi Yang
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Liang Xu
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Hui Zhao
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Tinghui Xie
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Jiabing Wang
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianwei Yang
- General Practice, Zhejiang Taizhou Hospital, Linhai, China.
| |
Collapse
|
6
|
Domínguez-Avila JA, Salazar-López NJ, Montiel-Herrera M, Martínez-Martínez A, Villegas-Ochoa MA, González-Aguilar GA. Phenolic compounds can induce systemic and central immunomodulation, which result in a neuroprotective effect. J Food Biochem 2022; 46:e14260. [PMID: 35633197 DOI: 10.1111/jfbc.14260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 01/13/2023]
Abstract
Inflammation may negatively impact health, particularly that of the central nervous system. Phenolic compounds are bioactive molecules present in fruits and vegetables with potential anti-inflammatory effects. The purpose of the present work is to review the immunomodulatory bioactivities of phenolic compounds in the periphery and in the central nervous system. Results show that various types of phenolics are able to counter diet- or pathogen-induced systemic inflammation (among others) in various models. In vitro data show significant effects of flavonoids and phenolic acids in particular; similar bioactivities were reported in vivo, when administering them as pure compounds or from fruit and vegetable extracts that contain them. In the central nervous system, phenolics counter chronic inflammation and aggressive acute inflammatory processes, such as ischemic events, when administered preemptively and even therapeutically. We therefore conclude that the immunomodulatory potential of phenolic compounds can maintain an adequate immune response; their regular consumption should therefore be prioritized in order to maintain health. PRACTICAL APPLICATIONS: The immune response must be carefully regulated in order to avoid its deleterious effects. The present work highlights how phenolic compounds, dietary components ubiquitous in everyday diet, are able to maintain it within an adequate range. As humans are exposed to more proinflammatory stimuli (inadequate dietary pattern, mental stress, environmental pollution, chronic diseases, etc.), it becomes necessary to counter them, and consuming adequate amounts of foods that contain compounds with this ability is a rather simple strategy. Thus, the present work highlights how fruits and vegetables can help to maintain an adequate immune response that can preserve systemic health and that of the central nervous system. Furthermore, specific compounds contained in them can also be ideal candidates for additional in-depth studies, which can potentially lead to the development of potent, targeted, and safe anti-inflammatory molecules.
Collapse
Affiliation(s)
| | - Norma J Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.,Universidad Autónoma de Baja California, Facultad de Medicina Mexicali, Mexicali, Mexico
| | | | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Mexico
| | | | | |
Collapse
|
7
|
Marques MS, Marinho MAG, Vian CO, Horn AP. The action of curcumin against damage resulting from cerebral stroke: a systematic review. Pharmacol Res 2022; 183:106369. [PMID: 35914679 DOI: 10.1016/j.phrs.2022.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
Abstract
Stroke is the second leading cause of morbidity and mortality globally. Treatments for stroke are limited, and preventive treatments are scarce. Curcumin (CUR) has several biological effects, as described in the literature, which highlight its antioxidant and neuroprotective effects. Therefore, this qualitative systematic review aimed to investigate the effects of CUR on damage caused by stroke in rodent models. A systematic search was performed on three databases PubMed, Scopus, and Web of Science. In addition, the risk-of-bias and quality of the studies were assessed using SYRCLE and Collaborative Approach for Meta-Analysis and Review of Animal Data from Experimental Studies, respectively. The selection, inclusion, and exclusion criteria were established by the authors. At the end of our systematic search of the three databases, we found a total of 728 articles. After excluding duplicates and triplicates and reading the abstracts, keywords, and full texts, 53 articles were finally included in this systematic review. CUR exerts several beneficial effects against the damage caused by both ischemic and hemorrhagic stroke, via different pathways. However, because of its low bioavailability, Free-form CUR only exerted significant effects when it was administered at high concentrations. In contrast, when CUR was administered using nanostructured systems, positive responses were observed even at low concentrations. The mechanisms of action of CUR, free or in nanostructure, are extremely important for the recovery of injured brain tissue after a stroke; CUR has neuroprotective, antioxidant, anti-inflammatory, and anti-apoptotic effects and helps to maintain the integrity of the blood-brain barrier. Finally, we concluded that CUR presents an extremely important and significant response profile against the damage caused by stroke, making it a possible therapeutic candidate for individuals affected by this disease.
Collapse
Affiliation(s)
- M S Marques
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil.
| | - M A G Marinho
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - C O Vian
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| | - A P Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, 96210-900, Brazil
| |
Collapse
|
8
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
9
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Czuczwar SJ. Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer's Disease Proteinopathy: Possible Therapeutic Role of Curcumin. Nutrients 2022; 14:nu14020248. [PMID: 35057429 PMCID: PMC8779038 DOI: 10.3390/nu14020248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
For thousands of years, mankind has been using plant extracts or plants themselves as medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal substances that are virtually non-toxic, readily available, and have an impact on well-being and health. It has been noted that dietary curcumin is one of the regulators that may positively influence changes in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and for Alzheimer’s disease. Additionally, it has been shown that one of the potential mechanisms of severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability, apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and improves neurological and behavioral deficits. The available data suggest that curcumin may be a new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative disorders such as post-ischemic neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6086-540
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | | |
Collapse
|
10
|
Wasan H, Singh D, Joshi B, Sharma U, Dinda AK, Reeta KH. Post Stroke Safinamide Treatment Attenuates Neurological Damage by Modulating Autophagy and Apoptosis in Experimental Model of Stroke in Rats. Mol Neurobiol 2021; 58:6121-6135. [PMID: 34453687 DOI: 10.1007/s12035-021-02523-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Exploring and repurposing a drug have become a lower risk alternative. Safinamide, approved for Parkinson's disease, has shown neuroprotection in various animal models of neurological disorders. The present study aimed to explore the potential of safinamide in cerebral ischemia/reperfusion (I/R) in rats. Sprague-Dawley rats were used in middle cerebral artery occlusion model of stroke. The effective dose of safinamide was selected based on the results of neurobehavioral parameters and reduction in infarct size assessed 24 h post-reperfusion. For sub-acute study, the treatment with effective dose was extended for 3 days and effects on neurobehavioral parameters, infarct size (TTC staining and MRI), oxidative stress parameters (MDA, GSH, SOD, NOX-2), inflammatory cytokines (TNF-α, IL-1β, IL-10), apoptosis (Bax, Bcl-2, cleaved caspase-3 expression, and TUNEL staining), and autophagy (pAMPK, Beclin-1, LC3-II expression) were studied. The results of dose selection study showed significant reduction (p < 0.05) in infarct size and improvement in neurobehavioral parameters with safinamide (80 mg/kg). In sub-acute study, safinamide showed significant (p < 0.05) improvement in motor coordination and infarct size reduction. Additionally, safinamide treatment significantly normalized altered redox homeostasis and inflammatory cytokine levels. However, no change was observed in expression of NOX-2 in I/R or safinamide treatment group when compared with sham. I/R induced deranged expression of apoptotic markers and increased TUNEL positive cells in cortex were significantly normalized with safinamide treatment. Further, safinamide significantly (p < 0.05) induced the expressions of autophagic proteins (Beclin-1 and LC3-II) in cortex. Overall, the results demonstrated neuroprotective potential of safinamide via anti-oxidant, anti-inflammatory, anti-apoptotic, and autophagy inducing properties. Thus, safinamide can be explored for repurposing in ischemic stroke after further exploration.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Balu Joshi
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - A K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Subedi L, Gaire BP. Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms. ACS Chem Neurosci 2021; 12:2562-2572. [PMID: 34251185 DOI: 10.1021/acschemneuro.1c00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (Curcuma longa), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia. In the central nervous system (CNS), neuroprotective effects of curcumin have been experimentally validated in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and cerebral ischemia. Curcumin can exert pleiotropic effects in the postischemic brain including antioxidant, anti-inflammatory, antiapoptotic, vasculoprotective, and direct neuroprotective efficacies. Importantly, neuroprotective effects of curcumin has been reported in both ischemic and hemorrhagic stroke models. A broad-spectrum neuroprotective efficacy of curcumin suggested that curcumin can be an appealing therapeutic strategy to treat cerebral ischemia. In this review, we aimed to address the pharmacotherapeutic potential of curcumin in cerebral ischemia including its cellular and molecular mechanisms of neuroprotection revealing curcumin as an appealing therapeutic candidate for cerebral ischemia.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
12
|
10-O-(N N-Dimethylaminoethyl)-Ginkgolide B Methane-Sulfonate (XQ-1H) Ameliorates Cerebral Ischemia Via Suppressing Neuronal Apoptosis. J Stroke Cerebrovasc Dis 2021; 30:105987. [PMID: 34273708 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.
Collapse
|
13
|
Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capó X, Cabot J, Sanadgol N, Giampieri F, Tenore GC, Kashani HRK, Silva AS, Habtemariam S, Nabavi SF, Nabavi SM. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 2021; 128:437-453. [PMID: 34245757 DOI: 10.1016/j.neubiorev.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders, particularly in the elderly population, represent one of the most pressing social and health-care problems in the world. Besides the well-established role of both oxidative stress and inflammation, alterations of the immune response have been found to be closely linked to the development of neurodegenerative diseases. Interestingly, various scientific evidence reported that an altered gut microbiota composition may contribute to the development of neuroinflammatory disorders. This leads to the proposal of the concept of the gut-brain-immune axis. In this scenario, polyphenols play a pivotal role due to their ability to exert neuroprotective, immunomodulatory and microbiota-remodeling activities. In the present review, we summarized the available literature to provide a scientific evidence regarding this neuroprotective and immunomodulatory effects and the interaction with gut microbiota of polyphenols and, the main signaling pathways involved that can explain their potential therapeutic application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Istituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain.
| | - Joan Cabot
- Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | | | - Ana Sanches Silva
- National Institute of Agrarian and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Oporto, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Charham-Maritime, Kent, ME4 4TB, UK.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
15
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Xu Q, Guohui M, Li D, Bai F, Fang J, Zhang G, Xing Y, Zhou J, Guo Y, Kan Y. lncRNA C2dat2 facilitates autophagy and apoptosis via the miR-30d-5p/DDIT4/mTOR axis in cerebral ischemia-reperfusion injury. Aging (Albany NY) 2021; 13:11315-11335. [PMID: 33833132 PMCID: PMC8109078 DOI: 10.18632/aging.202824] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is an important pathophysiological process of ischemic stroke associated with various physiological and pathological processes, including autophagy and apoptosis. In this study, we examined the role and mechanism of long noncoding RNA CAMK2D-associated transcript 2 (C2dat2) in regulating CIRI in vivo and in vitro. C2dat2 up-regulation facilitated neuronal autophagy and apoptosis induced by CIRI. Mechanistically, C2dat2 acts as a competing endogenous RNA (ceRNA) to negatively regulate miR-30d-5p expression. More specifically, miR-30d-5p targeted the 3′-untranslated region of DNA damage-inducible transcript 4 (DDIT4) and silenced its target mRNA DDIT4. Additionally, C2dat2 binding with heat shock cognate 70/heat shock protein 90 blocked RNA-induced silencing complex assembly to abolish the miR-30d-5p targeting of DDIT4 and inhibited miR-30d-5p to silence its target mRNA DDIT4. Further analysis showed that C2dat2 knockdown conspicuously inhibited the up-regulation of DDIT4 and Beclin-1 levels and LC3B II/I ratio and the down-regulation of P62 and phosphorylated mammalian target of rapamycin (mTOR)/mTOR and phosphorylated-P70S6K/P70S6K ratio in Neuro-2a cells after oxygen-glucose deprivation/reoxygenation. This study first revealed that C2dat2/miR-30d-5p/DDIT4/mTOR forms a novel signaling pathway to facilitate autophagy and apoptosis induced by CIRI, contributing to the better understanding of the mechanisms of CIRI and enriching the ceRNA hypothesis in CIRI.
Collapse
Affiliation(s)
- Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Ma Guohui
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Dandan Li
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Fanghui Bai
- Henan Provincial Nanyang Central Hospital, Nanyang 473000, China
| | - Jintao Fang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Gui Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Yuxin Xing
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Jiawei Zhou
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| |
Collapse
|
17
|
Farkhondeh T, Ashrafizadeh M, Azimi-Nezhad M, Samini F, Aschner M, Samarghandian S. Curcumin Efficacy in a Serum/Glucose Deprivation-Induced Neuronal PC12 Injury Model. Curr Mol Pharmacol 2021; 14:1146-1155. [PMID: 33538682 PMCID: PMC8329120 DOI: 10.2174/1874467214666210203211312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glucose/serum deprivation (GSD), has been used for understanding molecular mechanisms of neuronal damage during ischemia. It has been suggested that curcumin may improve neurodegenerative diseases. AIM In this study, the protective effects of curcumin and its underlying mechanisms were investigated in PC12 cells upon GSD-induced stress. METHODS PC12 cells were cultured in DMEM overnight and then incubated in GSD condition for either 6 or 12h. GSD-treated cells were pretreated with various concentrations of curcumin (10, 20, and 40 μM) for 5h. The cell viability, apoptosis, reactive oxygen species (ROS) level, oxidative stress, expression of apoptosis-related genes, and IL-6 were determined. RESULTS Curcumin increased cell viability and caused an anti-apoptotic effect in PC12 cells exposed for 12h to GSD . Curcumin also increased antioxidant enzyme expression, suppressed lipid peroxidation, and decreased interleukin-6 secretion in PC12 cells subjected to GSD. In addition, pretreatment with curcumin down-regulated pro-apoptotic (Bax), and up-regulated antiapoptotic (Bcl2) mediators. CONCLUSION Curcumin mitigates many of the adverse effects of ischemia, and therefore, should be considered as an adjunct therapy in ischemic patients.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC),
Birjand University of Medical Sciences (BUMS), Birjand. Iran
- Faculty of Pharmacy, Birjand University of Medical
Sciences, Birjand, Iran
- Innovative Medical Research Center, Mashhad Branch, Islamic
Azad University, Mashhad, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla,
34956 Istanbul, Turkey
| | - Mohsen Azimi-Nezhad
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV “Interactions
Gène-Environnement en Physiopathologie CardioVasculaire”,
Université de Lorraine, 54000, Nancy, France
| | - Fariborz Samini
- Department of Neurosurgery, Faculty of Medicine, Mashhad
University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
18
|
Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis 2020; 9:310-324. [PMID: 35224148 PMCID: PMC8843880 DOI: 10.1016/j.gendis.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment (TME) is heterogeneous and contains a multiple cell population with surrounded immune cells, which plays a major role in regulating metastasis. The multifunctional pathways, Hedgehog (Hh), Wnt, Notch, and NF-kB, cross-regulates metastasis in breast cancer. This review presents substantial evidence for cross-regulation of TME components and signaling pathways, which makes breast TME more heterogeneous and complex, promoting breast cancer progression and metastasis as a highly aggressive form. We discoursed the importance of stromal and immune cells as well as their crosstalk in bridging the metastasis. We also discussed the role of Hh and Notch pathways in the intervention between breast cancer cells and macrophages to support TME; Notch signaling in the bidirectional communication between cancer cells and components of TME; Wnt signal pathway in controlling the factors responsible for EMT and NF-κB pathway in the regulation of genes controlling the inflammatory response. We also present the role of exosomes and their miRNAs in the cross-regulation of TME cells as well as pathways in the reprogramming of breast TME to support metastasis. Finally, we examined and discussed the targeted small molecule inhibitors and natural compounds targeting developmental pathways and proposed small molecule natural compounds as potential therapeutics of TME based on the multitargeting ability. In conclusion, the understanding of the molecular basis of the cross-regulation of TME pathways and their inhibitors helps identify molecular targets for rational drug discovery to treat breast cancers.
Collapse
|
19
|
Endoplasmic Reticulum Stress Regulates Cardiomyocyte Apoptosis in Myocardial Fibrosis Development via PERK-Mediated Autophagy. Cardiovasc Toxicol 2020; 20:618-626. [PMID: 32632848 DOI: 10.1007/s12012-020-09586-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endoplasmic reticulum stress (ERS) is involved in a variety of diseases. Recently, it was found that ERS induces not only apoptosis but also autophagy. Previous studies showed that inhibition of autophagy alleviates cell injury. The purpose of our study was to investigate the involvement of the R-like ER kinase (PERK) in ERS-induced autophagy in H9c2 cardiomyoblasts. To address this aim, therefore, H9c2 cells were treated with PERK agonist and inhibitor after establishment of rapamycin-induced ERS models in H9c2 cardiomyoblasts. Transmission electron microscopy and immunofluorescence staining were used to detect degrees of ERS-induced autophagy, apoptosis and myocardial fibrosis. Western blotting was employed to detect the levels of total and phosphorylated PERK, light chain 3 (LC3), P62, Caspase3, Bcl2 and Bax. Immunofluorescence staining was used to assess α-SMA density. TGF-β induced H9c2 cardiomyoblasts time-dependently upregulated col I, col III, FN, and LC3 expressions, PERK phosphorylation and α-SMA density, and downregulated P62 level compared with control cells. Treatment with PERK agonist and inhibitor respectively increased and decreased LC3 expression, conversely in P62 level, which is consistent with effect of ERS agonists and inhibitors. And a PERK inhibitor upregulated the expressions of Caspase3 and Bax, and downregulated Bcl2 level, which developed H9c2 cardiomyoblasts. Moreover, siRNA-mediated knockdown of PERK reduced ERS mediated autophagy activity and increased cells apoptosis. On the other hand, elevated autophagy activity could downregulated PERK level. Our finding showed that PERK activity mediates upregulation of ERS-induced autophagy and regulation of cardiomyocyte apoptosis in H9c2 cardiomyoblasts.
Collapse
|
20
|
Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Mohd Moklas MA, Zakaria ZAB. Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles: A novel strategy for the treatment of lead-induced hepato-renal toxicity in rats. Saudi J Biol Sci 2020; 27:1538-1552. [PMID: 32489292 PMCID: PMC7253904 DOI: 10.1016/j.sjbs.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.
Collapse
Affiliation(s)
- Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, 600230 Maiduguri, Borno State, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, 840213, Sultan Abubakar, Sokoto State, Nigeria
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Corresponding author at: Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| | - Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
21
|
Schmitt C, Lechanteur A, Cossais F, Bellefroid C, Arnold P, Lucius R, Held-Feindt J, Piel G, Hattermann K. Liposomal Encapsulated Curcumin Effectively Attenuates Neuroinflammatory and Reactive Astrogliosis Reactions in Glia Cells and Organotypic Brain Slices. Int J Nanomedicine 2020; 15:3649-3667. [PMID: 32547020 PMCID: PMC7259452 DOI: 10.2147/ijn.s245300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. Methods We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. Results We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. Discussion and Perspective In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.
Collapse
Affiliation(s)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | | - Coralie Bellefroid
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | - Philipp Arnold
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Ralph Lucius
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Kiel D-24105, Germany
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | |
Collapse
|
22
|
Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, Li N, Peng W. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020; 159:104795. [PMID: 32278035 DOI: 10.1016/j.phrs.2020.104795] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.
Collapse
Affiliation(s)
- Yu Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, PR China
| | - Yan Xiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Yulu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Jinyan Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Songyu Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| |
Collapse
|
23
|
Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TYT, Abdul Rahim E, Abu Bakar Zakaria MZ. Ameliorative effect of curcumin on lead-induced hematological and hepatorenal toxicity in a rat model. J Biochem Mol Toxicol 2020; 34:e22483. [PMID: 32125074 DOI: 10.1002/jbt.22483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/18/2019] [Accepted: 02/14/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Lead (Pb) is a ubiquitous toxic heavy metal that inflicts numerous clinical consequences on humans. Curcumin is the principal component of turmeric, which is reported to have antioxidative properties. This study aimed at evaluating the ameliorative effects of curcumin on Pb-induced hepatorenal toxicity in a rat model. METHODS Thirty-six male Sprague-Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and six rats each for the lead-treated group (LTG) (50 mg/kg lead acetate [Pb acetate] for 4 weeks), recovery group (50 mg/kg Pb acetate for 4 weeks and left with no treatment for another 4 weeks), treatment group 1 (Cur100) (50 mg/kg Pb acetate for 4 weeks, followed by 100 mg/kg curcumin for 4 weeks), and treatment group 2 (Cur200) (50 mg/kg Pb acetate for 4 weeks, followed by 200 mg/kg curcumin for 4 weeks). All the experimental groups received oral treatments via orogastric-tube on alternate days. Pb concentration in the liver and kidney of the rats were evaluated using inductive-coupled plasma mass spectrometry techniques. RESULTS Pb-administered rats revealed significant alteration in oxidative status and increased Pb concentration in their liver and kidney with obvious reduction of hemogram and increased in leukogram as well as aberration in histological architecture of the liver and kidney. However, treatment with curcumin reduces the tissue Pb concentrations and ameliorates the above mention alterations. CONCLUSIONS The results in this study suggested that curcumin attenuates Pb-induced hepatorenal toxicity via chelating activity and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia.,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, Lafia, Nigeria
| | - Maryam M Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia.,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, Lafia, Nigeria
| | - Samaila M Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Tawfiq Y T Zyoud
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Ezamin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Md Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
24
|
Zhou J, Wu N, Lin L. Curcumin Suppresses Apoptosis and Inflammation in Hypoxia/Reperfusion-Exposed Neurons via Wnt Signaling Pathway. Med Sci Monit 2020; 26:e920445. [PMID: 32107363 PMCID: PMC7061587 DOI: 10.12659/msm.920445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury contributes to mortality and morbidity in preterm infants. Curcumin has been shown to exert neuro-protective effects in the central nervous system (CNS). The aim of this study was to investigate the neuro-protective activity of curcumin and the possible underlying molecular mechanisms. MATERIAL AND METHODS A hypoxia/reoxygenation (H/R) protocol was used to simulate I/R injury in vitro. Isolated neonatal neurons were pre-treated with curcumin at serially diluted concentrations and exposed to H/R injury. Cell viability and apoptosis were assessed by MTT and flow cytometry, respectively. Contents of TNFa and IL6 in supernatant of cell culture medium were detected by ELISA. Protein expression, phosphorylation, and nuclear translocation levels were studied by Western blotting. RESULTS H/R reduced cell viability and increased apoptosis of neurons. H/R significantly increased Wnt5a expression, JNK1 phosphorylation, and NF-kappaB nuclear translocation. Moreover, expression levels of cleaved caspase3, TNFalpha, and IL6 were elevated in H/R-exposed neurons. Curcumin pre-treatment significantly increased cell viability and inhibited apoptosis of neurons exposed to H/R, in a concentration-dependent manner. Moreover, curcumin pre-treatment significantly decreased expression levels of Wnt5a, IL6, TNFalpha, and phosphorylation level of JNK1, as well as the nuclear translocation level of NF-kappaB in H/R-exposed neurons, in a concentration-dependent manner. CONCLUSIONS Curcumin exerted neuro-protective effects against H/R-induced neuron apoptosis and inflammation by inhibiting activation of the Wnt/JNK1 signaling pathway.
Collapse
Affiliation(s)
- Jiaxing Zhou
- Newborn Ward and Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital (North Section), Ningbo, Zhejiang, P.R. China
| | - Naisheng Wu
- Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, P.R. China
| | - Liyun Lin
- Newborn Ward and Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital (North Section), Ningbo, Zhejiang, P.R. China
| |
Collapse
|
25
|
Wu L, Jiang C, Kang Y, Dai Y, Fang W, Huang P. Curcumin exerts protective effects against hypoxia‑reoxygenation injury via the enhancement of apurinic/apyrimidinic endonuclease 1 in SH‑SY5Y cells: Involvement of the PI3K/AKT pathway. Int J Mol Med 2020; 45:993-1004. [PMID: 32124937 PMCID: PMC7053876 DOI: 10.3892/ijmm.2020.4483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Curcumin, a polyphenolic compound extracted from the plant Curcuma longa, has been reported to exert neuroprotective effects against cerebral ischemia reperfusion (I/R) injury. However, the mechanisms underlying these effects remain to be fully elucidated. Emerging evidence indicated that apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional enzyme, participates in neuronal survival against I/R injury. Therefore, the aim of the present study was to investigate whether curcumin alleviates oxygen-glucose deprivation/reper-fusion (OGD/R)-induced SH-SY5Y cell injury, which serves as an in vitro model of cerebral I/R injury, by regulating APE1. The results revealed that curcumin increased cell viability, decreased LDH activity, reduced apoptosis and caspase-3 activity, downregulated the pro-apoptotic protein Bax expression and upregulated the anti-apoptotic protein Bcl-2 expression in SH-SY5Y cells subjected to OGD/R. Simultaneously, curcumin eliminated the OGD/R-induced decreases in APE1 protein and mRNA expression, as well as 8-hydroxy-2′-deoxyguanosine (8-OHdG) level and AP sites in SH-SY5Y cells. However, APE1 knockdown by siRNA transfection markedly abrogated the protective effects of curcumin against OGD/R-induced cytotoxicity, apoptosis and oxidative stress, as illustrated by the decreases in reactive oxygen species production and NADPH oxidase 2 expression, and the increase in superoxide dismutase activity and glutathione levels in SH-SY5Y cells. Furthermore, curcumin mitigated the OGD/R-induced activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Treatment with LY294002, an inhibitor of PI3K/AKT pathway activity, attenuated the protective effects of curcumin on cytotoxicity and apoptosis, and reversed the curcumin-induced upregulation of APE1 protein expression in SH-SY5Y cells subjected to OGD/R. Taken together, these results demonstrated that curcumin protects SH-SY5Y cells against OGD/R injury by inhibiting apoptosis and oxidative stress, and via enhancing the APE1 level and activity, promoting PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- Lei Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Cao Jiang
- Department of Neurology, Deqing County People's Hospital, Huzhou, Zhejiang 313200, P.R. China
| | - Ying Kang
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Yaji Dai
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Wei Fang
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Peng Huang
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
26
|
Ułamek-Kozioł M, Czuczwar SJ, Januszewski S, Pluta R. Substantiation for the Use of Curcumin during the Development of Neurodegeneration after Brain Ischemia. Int J Mol Sci 2020; 21:ijms21020517. [PMID: 31947633 PMCID: PMC7014172 DOI: 10.3390/ijms21020517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/21/2023] Open
Abstract
Currently available pharmacological treatment of post-ischemia-reperfusion brain injury has limited effectiveness. This review provides an assessment of the current state of neurodegeneration treatment due to ischemia-reperfusion brain injury and focuses on the role of curcumin in the diet. The purpose of this review was to provide a comprehensive overview of what was published about the benefits of curcumin influence on post-ischemic brain damage. Some data on the clinical benefits of curcumin treatment of post-ischemic brain in terms of clinical symptoms and adverse reactions have been reviewed. The data in this review contributes to a better understanding of the potential benefits of curcumin in the treatment of neurodegenerative changes after ischemia and informs scientists, clinicians, and patients, as well as their families and caregivers about the possibilities of such treatment. Due to the pleotropic properties of curcumin, including anti-amyloid, anti-tau protein hyperphosphorylation, anti-inflammatory, anti-apoptotic, and neuroprotective action, as well as increasing neuronal lifespan and promoting neurogenesis, curcumin is a promising candidate for the treatment of post-ischemic neurodegeneration with misfolded proteins accumulation. In this way, it may gain interest as a potential therapy to prevent the development of neurodegenerative changes after cerebral ischemia. In addition, it is a safe substance and inexpensive, easily accessible, and can effectively penetrate the blood–brain barrier and neuronal membranes. In conclusion, the evidence available in a review of the literature on the therapeutic potential of curcumin provides helpful insight into the potential clinical utility of curcumin in the treatment of neurological neurodegenerative diseases with misfolded proteins. Therefore, curcumin may be a promising supplementary agent against development of neurodegeneration after brain ischemia in the future. Indeed, there is a rational scientific basis for the use of curcumin for the prophylaxis and treatment of post-ischemic neurodegeneration.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.U.-K.)
- Correspondence: ; Tel.: +48-22-6086-540/6086-469
| |
Collapse
|
27
|
Forouzanfar F, Read MI, Barreto GE, Sahebkar A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life 2019; 72:652-664. [DOI: 10.1002/iub.2209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research CenterMashhad University of Medical Sciences Mashhad Iran
- Department of Neuroscience, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Morgayn I. Read
- Department of PharmacologySchool of Medical Sciences, University of Otago Dunedin New Zealand
| | - George E. Barreto
- Department of Biological SciencesUniversity of Limerick Limerick Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA Tehran Iran
- Biotechnology Research CenterPharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
28
|
Zhang J, Zheng Y, Luo Y, Du Y, Zhang X, Fu J. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/ TLR4/ NF-κB pathways in BV2 cells. Mol Immunol 2019; 116:29-37. [PMID: 31590042 DOI: 10.1016/j.molimm.2019.09.020] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/16/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Microglia mediate multiple facets of neuroinflammation, which plays a double-edged role in various brain diseases via distinct microglial phenotypes (deleterious M1 and neuroprotective M2). Therefore, the inhibition of overactivated inflammatory M1 microglia by switching to the protective M2 phenotype appears to be a potential therapeutic strategy in neuroinflammatory disorders. Curcumin has been shown to exhibit anti-inflammatory and neuroprotective activities. The present study investigated the potential effects of curcumin on microglial M1/M2 polarization and elucidated the possible molecular mechanisms of action in vitro. In this study, the BV2 microglial cell line was pretreated with different curcumin concentrations in the presence or absence of lipopolysaccharide (LPS) to assess the anti-inflammatory efficacy of curcumin based on the morphological and inflammatory changes. The cytotoxicity of curcumin for BV2 cells was evaluated using the CCK-8 assay. Further, the effect of curcumin concentrations on LPS-induced BV2 cells was studied. The morphological changes were observed using an optical microscope and immunofluorescent staining. Nitric oxide (NO) expression was determined using the Griess reagent. The expression of cytokines and inflammatory mediators was also measured by ELISA, qRT-PCR, flow cytometry, and immunofluorescence. Western blot analysis was used to determine the levels of triggering receptor expressed on myeloid cells 2 (TREM2), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) p65, p-NF-κB p65, IκB, and p-IκB expression. Results showed that curcumin concentrations less than 10 μM did not induce any detectable cytotoxicity but decreased BV2 cell viability up to 20 μM. Curcumin inhibited LPS-induced microglial activation. Curcumin treatment switched the M1 pro-inflammatory phenotype to the M2 anti-inflammatory phenotype by decreasing the expression of M1 markers (i.e., iNOS, IL-1β, IL-6, and CD16/32) and elevating the expression of M2 markers (i.e., arginase 1, IL-4, IL-10, and CD206). Interestingly, curcumin attenuated the activation of TLR4/NF-κB pathways and the downregulation of TREM2 expression in LPS-activated BV2 cells. Collectively, these results suggest that curcumin significantly alleviates LPS-induced inflammation by regulating microglial (M1/M2) polarization by reducing the imbalance of TREM2 and TLR4 and balancing the downstream NF-κB activation.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yan Luo
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yu Du
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
29
|
Abubakar K, Muhammad Mailafiya M, Danmaigoro A, Musa Chiroma S, Abdul Rahim EB, Abu Bakar Zakaria MZ. Curcumin Attenuates Lead-Induced Cerebellar Toxicity in Rats via Chelating Activity and Inhibition of Oxidative Stress. Biomolecules 2019; 9:biom9090453. [PMID: 31489882 PMCID: PMC6770944 DOI: 10.3390/biom9090453] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Lead (Pb) is a toxic, environmental heavy metal that induces serious clinical defects in all organs, with the nervous system being its primary target. Curcumin is the main active constituent of turmeric rhizome (Curcuma longa) with strong antioxidant and anti-inflammatory properties. This study is aimed at evaluating the therapeutic potentials of curcumin on Pb-induced neurotoxicity. Thirty-six male Sprague Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and 6 rats in each of groups, i.e., the lead-treated group (LTG) (50 mg/kg lead acetate for four weeks), recovery group (RC) (50 mg/kg lead acetate for four weeks), treatment group 1 (Cur100) (50 mg/kg lead acetate for four weeks, followed by 100 mg/kg curcumin for four weeks) and treatment group 2 (Cur200) (50 mg/kg lead acetate for four weeks, followed by 200 mg/kg curcumin for four weeks). All experimental groups received oral treatment via orogastric tube on alternate days. Motor function was assessed using a horizontal bar method. The cerebellar concentration of Pb was evaluated using ICP-MS technique. Pb-administered rats showed a significant decrease in motor scores and Superoxide Dismutase (SOD) activity with increased Malondialdehyde (MDA) levels. In addition, a marked increase in cerebellar Pb concentration and alterations in the histological architecture of the cerebellar cortex layers were recorded. However, treatment with curcumin improved the motor score, reduced Pb concentration in the cerebellum, and ameliorated the markers of oxidative stress, as well as restored the histological architecture of the cerebellum. The results of this study suggest that curcumin attenuates Pb-induced neurotoxicity via inhibition of oxidative stress and chelating activity.
Collapse
Affiliation(s)
- Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
- Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, P.M.B 146 Akunza, Lafia, Nasarawa State, Nigeria.
| | - Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, P.M.B 146 Akunza, Lafia, Nasarawa State, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, P.M.B 2346 Sokoto, Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, Borno State, Nigeria
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| | - Md Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
30
|
Perrone L, Squillaro T, Napolitano F, Terracciano C, Sampaolo S, Melone MAB. The Autophagy Signaling Pathway: A Potential Multifunctional Therapeutic Target of Curcumin in Neurological and Neuromuscular Diseases. Nutrients 2019; 11:nu11081881. [PMID: 31412596 PMCID: PMC6723827 DOI: 10.3390/nu11081881] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is the major intracellular machinery for degrading proteins, lipids, polysaccharides, and organelles. This cellular process is essential for the maintenance of the correct cellular balance in both physiological and stress conditions. Because of its role in maintaining cellular homeostasis, dysregulation of autophagy leads to various disease manifestations, such as inflammation, metabolic alterations, aging, and neurodegeneration. A common feature of many neurologic and neuromuscular diseases is the alteration of the autophagy-lysosomal pathways. For this reason, autophagy is considered a target for the prevention and/or cure of these diseases. Dietary intake of polyphenols has been demonstrated to prevent/ameliorate several of these diseases. Thus, natural products that can modulate the autophagy machinery are considered a promising therapeutic strategy. In particular, curcumin, a phenolic compound widely used as a dietary supplement, exerts an important effect in modulating autophagy. Herein, we report on the current knowledge concerning the role of curcumin in modulating the autophagy machinery in various neurological and neuromuscular diseases as well as its role in restoring the autophagy molecular mechanism in several cell types that have different effects on the progression of neurological and neuromuscular disorders.
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Chemistry and Biology, University Grenoble Alpes, 2231 Rue de la Piscine, 38400 Saint-Martin-d'Hères, France
| | - Tiziana Squillaro
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Chiara Terracciano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, BioLife Building (015-00)1900 North 12th Street, Temple University, Philadelphia, PA 19122-6078, USA.
| |
Collapse
|
31
|
Sun J, Yue F. Suppression of REDD1 attenuates oxygen glucose deprivation/reoxygenation-evoked ischemic injury in neuron by suppressing mTOR-mediated excessive autophagy. J Cell Biochem 2019; 120:14771-14779. [PMID: 31021470 DOI: 10.1002/jcb.28737] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.
Collapse
Affiliation(s)
- Juguang Sun
- Department of Neurology, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu, China
| | - Fenglei Yue
- Department of Neurology, 521 Hospital of Norinco Group in Xi'an, Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Hou Y, Wang J, Feng J. The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1α in cerebral ischemia-reperfusion injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1135-1144. [PMID: 31040648 PMCID: PMC6461000 DOI: 10.2147/dddt.s194182] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose The beneficial, neuroprotective effects of curcumin against ischemia-reperfusion injury have been demonstrated. In the present study, whether curcumin exerts neuroprotective effects associated with the inhibition of autophagy and hypoxia inducible factor-1α (HIF-1α) was investigated. Materials and methods PC12 cellular model of oxygen glucose deprivation/reperfusion (OGD/R) has been developed to mimic cerebral ischemia-reperfusion injury. Cell viability was evaluated using the CellTiter 96® AQueous One Solution Cell Proliferation Assay. Apoptosis was assessed using flow cytometry. The expression levels of HIF-1α and autophagy-associated proteins, LC3 and P62, were examined using Western blot. The autophagy flux was quantitatively estimated based on the number of autophagic compartments using fluorescence microscopy. In addition, 3-methyladenine (3-MA) was administered to PC12 cells to investigate how autophagy affects HIF-1α. Moreover, the inhibitory effects of HIF-1α on autophagy activation level were examined. Results In this study, curcumin decreased the death and apoptosis of cells, and inhibited autophagy and HIF-1α under OGD/R conditions, consistent with 3-MA treatment or HIF-1α downregulation. Moreover, inhibition of autophagy caused a decrease in HIF-1α, and the attenuation of HIF-1α induced autophagy suppression under OGD/R conditions. Conclusion The results of this study showed that curcumin exerts neuroprotective effects against ischemia-reperfusion, which is associated with the regulation of the reciprocal function between autophagy and HIF-1α.
Collapse
Affiliation(s)
- Yang Hou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China,
| |
Collapse
|
33
|
Zhou H, Wang X, Ma L, Deng A, Wang S, Chen X. FoxO3 transcription factor promotes autophagy after transient cerebral ischemia/reperfusion. Int J Neurosci 2019; 129:738-745. [PMID: 30595062 DOI: 10.1080/00207454.2018.1564290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aim: Autophagy was activated after cerebral ischemia reperfusion (I/R) injury. However, the molecular mechanisms underlying regulation of autophagy in cerebral I/R injury were not completely understood. Studies reported that Forked-box class O (FoxO) transcription factors involved in autophagy and might be the regulator of autophagy in multiple cells. In this study, we investigated the effects of FoxO3 on regulating autophagy after cerebral I/R injury. Materials and methods: Rats were subjected to MCAO for 2 h and reperfusion for different times, western blot was used to examine the expression of p-FoxO3, FoxO3 and the autophagic marker LC3 and Beclin-1 in penumbral region. Then rats were injected with WT-FoxO3 or TM-FoxO3 adenovirus by lateral cerebral ventricle to increase the function of FoxO3, western blot was used to examine the expression of LC3 and Beclin-1 in penumbral region. TTC and HE staining were used to evaluate the effects of increased FoxO3 activation on I/R induced brain damage. Results: Our studies showed that I/R injury resulted in induction of autophagy in penumbral brain tissue with concomitant dephosphorylation of FoxO3, consistent with increased activity of nuclear FoxO3 transcription factor. Increased FoxO3 activation led to autophagy significantly increased and had a protective effects on I/R injury. Conclusion: These data revealed an important role of FoxO3 in regulating autophagy in brain, and provided a new approach for further prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hongzhi Zhou
- a Department of Neurology , Affiliated Hospital of Nantong University , Nantong , People's Republic of China
| | - Xin Wang
- b Basic Medical Research Centre, Medical School , Nantong University , Nantong , People's Republic of China
| | - Liming Ma
- b Basic Medical Research Centre, Medical School , Nantong University , Nantong , People's Republic of China
| | - Aiqing Deng
- c Department of Pharmacy , Affiliated Hospital of Nantong University , Nantong , People's Republic of China
| | - Shouyan Wang
- b Basic Medical Research Centre, Medical School , Nantong University , Nantong , People's Republic of China
| | - Xia Chen
- b Basic Medical Research Centre, Medical School , Nantong University , Nantong , People's Republic of China
| |
Collapse
|
34
|
Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer's Disease Phenotype. Int J Mol Sci 2018; 19:E4002. [PMID: 30545070 PMCID: PMC6320958 DOI: 10.3390/ijms19124002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, ongoing interest in ischemic brain injury research has provided data showing that ischemic episodes are involved in the development of Alzheimer's disease-like neuropathology. Brain ischemia is the second naturally occurring neuropathology, such as Alzheimer's disease, which causes the death of neurons in the CA1 region of the hippocampus. In addition, brain ischemia was considered the most effective predictor of the development of full-blown dementia of Alzheimer's disease phenotype with a debilitating effect on the patient. Recent knowledge on the activation of Alzheimer's disease-related genes and proteins-e.g., amyloid protein precursor and tau protein-as well as brain ischemia and Alzheimer's disease neuropathology indicate that similar processes contribute to neuronal death and disintegration of brain tissue in both disorders. Although brain ischemia is one of the main causes of death in the world, there is no effective therapy to improve the structural and functional outcomes of this disorder. In this review, we consider the promising role of the protective action of curcumin after ischemic brain injury. Studies of the pharmacological properties of curcumin after brain ischemia have shown that curcumin has several therapeutic properties that include anti-excitotoxic, anti-oxidant, anti-apoptotic, anti-hyperhomocysteinemia and anti-inflammatory effects, mitochondrial protection, as well as increasing neuronal lifespan and promoting neurogenesis. In addition, curcumin also exerts anti-amyloidogenic effects and affects the brain's tau protein. These results suggest that curcumin may be able to serve as a potential preventive and therapeutic agent in neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland.
| |
Collapse
|
35
|
Feng X, Chen L, Guo W, Zhang Y, Lai X, Shao L, Li Y. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater 2018; 81:278-292. [PMID: 30273743 DOI: 10.1016/j.actbio.2018.09.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
Abstract
Graphene oxide (GO), as a two-dimensional carbon nanosheet, has been extensively studied for potential biomedical applications due to its notable properties. Although a growing number of studies have investigated the adverse effects of GO nanosheets, the available toxicity data concerning GO's effect on the neuronal cells remain highly limited. In this work, we systematically investigated the toxic responses of commercially available GO on a rat pheochromocytoma-derived PC12 cell line, which was an ideal in vitro model to study the neurotoxicity of GO. GO exerted a significant toxic effect on PC12 cells in a dose- and time-dependent manner. GO treatments under doses of 40, 50, and 60 μg/mL triggered an autophagic response and the blockade of autophagic flux via disrupting lysosome degradation capability. Caspase 9-mediated apoptosis was also observed in GO-treated cells. Moreover, GO-induced apoptosis was relevant to the aberrant accumulation of autophagy substrate p62/SQSTM. Inhibitionofthe accumulation of autophagic substrate alleviated GO-caused apoptotic cell death. Our findings raise a concern for the putative biomedical applications of GO in the form of diagnostic and therapeutic tools, where its systematic biocompatibility should be thoroughly explored. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) has attracted considerable interests in biomedical fields, which also resulted in numerous safety risks to human bodies. It is urgently required to establish a paradigm for accurately evaluating their adverse effects in biological systems. This study thoroughly explored the neurotoxicity of GO in PC12 cells. We found GO triggered an increased autophagic response and the impairment of autophagic flux, which was functionally involved in cell apoptosis. Inhibitionofexcessive accumulation of autophagic cargo attenuated apoptotic cell death. Our findings highlight deep considerations on the regulation mechanism of autophagy-lysosomes-apotosis-axis, which will contribute to a better understanding of the neurotoxicity of graphene-family nanomaterials, and provide a new insight in the treatment of cancer cells at nanoscale levels.
Collapse
|
36
|
Sun JB, Li Y, Cai YF, Huang Y, Liu S, Yeung PK, Deng MZ, Sun GS, Zilundu PL, Hu QS, An RX, Zhou LH, Wang LX, Cheng X. Scutellarin protects oxygen/glucose-deprived astrocytes and reduces focal cerebral ischemic injury. Neural Regen Res 2018; 13:1396-1407. [PMID: 30106052 PMCID: PMC6108207 DOI: 10.4103/1673-5374.235293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxidative effects and has been used to treat cardiovascular and cerebrovascular diseases in China. However, the mechanisms by which scutellarin mediates neuroprotection in cerebral ischemia remain unclear. The interaction between scutellarin and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) was assessed by molecular docking study, which showed that scutellarin selectively binds to NOX2 with high affinity. Cultures of primary astrocytes isolated from the cerebral cortex of neonatal Sprague-Dawley rats were pretreated with 2, 10 or 50 μM scutellarin for 30 minutes. The astrocytes were then subjected to oxygen/glucose deprivation by incubation for 2 hours in glucose-free Dulbecco's modified Eagle's medium in a 95% N2/5% CO2 incubator, followed by simulated reperfusion for 22 hours. Cell viability was assessed by cell counting kit-8 assay. Expression levels of NOX2, connexin 43 and caspase-3 were assessed by western blot assay. Reactive oxygen species were measured spectrophotometrically. Pretreatment with 10 or 50 μM scutellarin substantially increased viability, reduced the expression of NOX2 and caspase-3, increased the expression of connexin 43, and diminished the levels of reactive oxygen species in astrocytes subjected to ischemia-reperfusion. We also assessed the effects of scutellarin in vivo in the rat transient middle cerebral artery occlusion model of cerebral ischemia-reperfusion injury. Rats were given intraperitoneal injection of 100 mg/kg scutellarin 2 hours before surgery. The Bederson scale was used to assess neurological deficit, and 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct size. Western blot assay was used to assess expression of NOX2 and connexin 43 in brain tissue. Enzyme-linked immunosorbent assay was used to detect 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosin (3-NT) in brain tissue. Immunofluorescence double staining was used to determine the co-expression of caspase-3 and NeuN. Pretreatment with scutellarin improved the neurological function of rats with focal cerebral ischemia, reduced infarct size, diminished the expression of NOX2, reduced levels of 8-OHdG, 4-HNE and 3-NT, and reduced the number of cells co-expressing caspase-3 and NeuN in the injured brain tissue. Furthermore, we examined the effect of the NOX2 inhibitor apocynin. Apocynin substantially increased connexin 43 expression in vivo and in vitro. Collectively, our findings suggest that scutellarin protects against ischemic injury in vitro and in vivo by downregulating NOX2, upregulating connexin 43, decreasing oxidative damage, and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Jing-Bo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Li
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Shu Liu
- Department of Anatomy, An Hui Medical University, Hefei, Anhui Province, China
| | - Patrick Kk Yeung
- Department of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min-Zhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Guang-Shun Sun
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Prince Lm Zilundu
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qian-Sheng Hu
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rui-Xin An
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Hua Zhou
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Xin Wang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|