1
|
Doneva D, Pál M, Szalai G, Vasileva I, Brankova L, Misheva S, Janda T, Peeva V. Manipulating the light spectrum to increase the biomass production, physiological plasticity and nutritional quality of Eruca sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109218. [PMID: 39461053 DOI: 10.1016/j.plaphy.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
The extensive development in light-emitting diodes (LEDs) in recent years provides an opportunity to positively influence plant growth and biomass accumulation and to optimize biochemical composition and nutritional quality. This study aimed to assess how different light spectra affect the growth, photosynthesis and biochemical properties of Eruca sativa. Therefore two LED lighting modes - red:blue (RB, 1:1) and red:green:blue (RGB, 2:1:2) were compared to the conventional white light fluorescent tubes (WL). Plant biomass, photosynthetic performance, several antioxidants, polyamines and nitrates contents were analyzed across different treatments. The plant growth was affected by the light quality - the presence of green light in the spectrum resulted in smaller plants and leaves, and correspondingly less biomass. RB spectral mode enhanced the total antioxidant and guaiacol peroxidase activity, pigments, flavonoids, polyphenols, ascorbate and polyamines contents. This effect under RB was combined with better leaf development compared to RGB and less nitrate in the leaves among all treatments. The RB light generated modifications in polyamines, which are interrelated with the nitrate content, further induce important metabolite and antioxidant changes. Both RB and RGB enhanced photosynthesis. The afterglow thermoluminescence band varied according to leaves development, being higher in RB and WL as a consequence of their faster growth. The RB light spectrum was found to be the most efficient for promoting the growth, biochemical composition, and overall quality of Eruca sativa compared to RGB and WL. These findings suggest that RB LEDs can be an effective tool for improving crop production in controlled environments.
Collapse
Affiliation(s)
- Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Magda Pál
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Ivanina Vasileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Liliana Brankova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Tibor Janda
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
2
|
Zubova MY, Goncharuk EA, Nechaeva TL, Aksenova MA, Zaitsev GP, Katanskaya VM, Kazantseva VV, Zagoskina NV. Influence of Primary Light Exposure on the Morphophysiological Characteristics and Phenolic Compounds Accumulation of a Tea Callus Culture ( Camellia sinensis L.). Int J Mol Sci 2024; 25:10420. [PMID: 39408751 PMCID: PMC11477156 DOI: 10.3390/ijms251910420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Tea plant calli (Camellia sinensis L.) are characterized by the accumulation of various phenolic compounds (PC)-substances with high antioxidant activity. However, there is still no clarity on the response of tea cells to light exposure of varying intensity. The purpose of the research was to study tea callus cultures grown under the influence of primary exposure to different light intensities (50, 75, and 100 µmol·m-2·s-1). The cultures' growth, morphology, content of malondialdehyde and photosynthetic pigments (chlorophyll a and b), accumulation of various PC, including phenylpropanoids and flavanols, and the composition of catechins were analyzed. Primary exposure to different light intensities led to the formation of chloroplasts in tea calli, which was more pronounced at 100 µmol·m-2·s-1. Significant similarity in the growth dynamics of cultures, accumulation of pigments, and content of malondialdehyde and various phenolics in tea calli grown at light intensities of 50 and 75 µmol·m-2·s-1 has been established, which is not typical for calli grown at 100 µmol·m-2·s-1. According to data collected using high-performance liquid chromatography, (+)-catechin, (-)-epicatechin, epigallocatechin, gallocatechin gallate, epicatechin gallate, and epigallocatechin gallate were the main components of the tea callus culture's phenolic complex. Its content changed under the influence of primary exposure to light, reaching the greatest accumulation in the final stages of growth, and depended on the light intensity. The data obtained indicate changes in the morphophysiological and biochemical characteristics of tea callus cultures, including the accumulation of PC and their individual representatives under primary exposure to light exposure of varying intensity, which is most pronounced at its highest values (100 µmol·m-2·s-1).
Collapse
Affiliation(s)
- Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Georgiy P. Zaitsev
- All-Russia National Research Institute of Viticulture and Winemaking “Magarach”, Russian Academy of Sciences, 298600 Yalta, Russia;
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| |
Collapse
|
3
|
Lee MJ, Yang SY, Kang MK. Biological, Antifungal, and Physical Efficacy of a Denture Cleanser Formulated with Cnidium officinale Extracts. Biomedicines 2024; 12:2029. [PMID: 39335543 PMCID: PMC11428326 DOI: 10.3390/biomedicines12092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES We aimed to assess the antifungal efficacy and impact of a denture cleanser containing Cnidium officinale extract on the surface characteristics of denture base materials, as well as its physical and biological properties. METHODS The experimental denture cleansers were formulated with C. officinale at concentrations of 100 and 150 μg/mL, combined with 1% cocamidopropyl betaine as a natural surfactant. Antifungal efficacy was evaluated using zone-of-inhibition assays against Candida albicans, revealing inhibition zones of 20 ± 1.8 mm for the 100 μg/mL concentration and 23.6 ± 1.6 mm for the 150 μg/mL concentration. Surface property assessments-including hardness, roughness, color stability, and solubility measurements-demonstrated no significant differences compared to the control group. Biological evaluations included the quantification of polyphenol and flavonoid content. RESULTS The C. officinale-based cleanser showed significant antifungal activity without affecting the hardness, roughness, color stability, or solubility of denture base materials. Biological tests revealed no cytotoxicity and minimal mucosal irritation. Polyphenol and flavonoid contents were quantitatively measured, revealing higher concentrations in the experimental groups, which were correlated with significant antifungal activity. These compounds are known for their roles in disrupting microbial processes and enhancing antimicrobial effects. These findings suggest that the C. officinale-based denture cleanser effectively inhibits C. albicans while preserving the physical properties of denture base materials. CONCLUSIONS This study highlights the potential of C. officinale in denture cleanser formulations, promoting denture hygiene and oral health. Future research should prioritize long-term clinical evaluations and formulation optimization.
Collapse
Affiliation(s)
- Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, Cheonan 31065, Republic of Korea
| | - Song-Yi Yang
- Department of Dental Hygiene, Konyang University, Daejeon 35365, Republic of Korea
| | - Min-Kyung Kang
- Department of Dental Hygiene, Hanseo University, Seosan 31963, Republic of Korea
| |
Collapse
|
4
|
Belete MT, Kim SE, Gudeta WF, Igori D, Kwon JA, Lee SH, Moon JS. Deciphering the virome of Chunkung (Cnidium officinale) showing dwarfism-like symptoms via a high-throughput sequencing analysis. Virol J 2024; 21:86. [PMID: 38622686 PMCID: PMC11017662 DOI: 10.1186/s12985-024-02361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Viruses have notable effects on agroecosystems, wherein they can adversely affect plant health and cause problems (e.g., increased biosecurity risks and economic losses). However, our knowledge of their diversity and interactions with specific host plants in ecosystems remains limited. To enhance our understanding of the roles that viruses play in agroecosystems, comprehensive analyses of the viromes of a wide range of plants are essential. High-throughput sequencing (HTS) techniques are useful for conducting impartial and unbiased investigations of plant viromes, ultimately forming a basis for generating further biological and ecological insights. This study was conducted to thoroughly characterize the viral community dynamics in individual plants. RESULTS An HTS-based virome analysis in conjunction with proximity sampling and a tripartite network analysis were performed to investigate the viral diversity in chunkung (Cnidium officinale) plants. We identified 61 distinct chunkung plant-associated viruses (27 DNA and 34 RNA viruses) from 21 known genera and 6 unclassified genera in 14 known viral families. Notably, 12 persistent viruses (7 DNA and 5 RNA viruses) were exclusive to dwarfed chunkung plants. The detection of viruses from the families Partitiviridae, Picobirnaviridae, and Spinareoviridae only in the dwarfed plants suggested that they may contribute to the observed dwarfism. The co-infection of chunkung by multiple viruses is indicative of a dynamic and interactive viral ecosystem with significant sequence variability and evidence of recombination. CONCLUSIONS We revealed the viral community involved in chunkung. Our findings suggest that chunkung serves as a significant reservoir for a variety of plant viruses. Moreover, the co-infection rate of individual plants was unexpectedly high. Future research will need to elucidate the mechanisms enabling several dozen viruses to co-exist in chunkung. Nevertheless, the important insights into the chunkung virome generated in this study may be relevant to developing effective plant viral disease management and control strategies.
Collapse
Affiliation(s)
- Mesele Tilahun Belete
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Plant System Engineering Research Center, Korean Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Amhara Agricultural Research Institute, Plant Biotechnology Research Division, Bahir Dar, Ethiopia
| | - Se Eun Kim
- Plant System Engineering Research Center, Korean Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Workitu Firmosa Gudeta
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Plant System Engineering Research Center, Korean Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Davaajargal Igori
- Plant System Engineering Research Center, Korean Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biology, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, Mongolia
| | - Jeong A Kwon
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Plant System Engineering Research Center, Korean Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Su-Heon Lee
- School of Applied Bioscience, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 98411, Republic of Korea.
| | - Jae Sun Moon
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
- Plant System Engineering Research Center, Korean Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Ma J, Liu W, Wang X, Lu C, Hao Z, Wang Y, Ding Y, Li Y. Cnidium officinale Makino: Phytology, Phytochemistry, Toxicology, Pharmacology and Prescriptions (1967-2023). Chem Biodivers 2024; 21:e202301639. [PMID: 38062000 DOI: 10.1002/cbdv.202301639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cnidium officinale Makino (COM), a perennial herbaceous plant in the Apiaceous family, widely distribute in Eastern Asia and Asia-Temperate. It has a long history application as a traditional medicine for invigorating the blood and removing blood stasis, and also has been employed to diet, pesticide, herbal bathing materials, the cosmetic and skin care industry. However, there has been no associated review of literature in the past half a century (1967-2023). By searching the international authoritative databases and collecting 229 literatures closely related to COM, herewith a comprehensive and systematic review was conducted. The phytology includes plant distribution and botanical characteristics. The phytochemistry covers 8 major categories, 208 compounds in total, and the quantitative determination of 14 monomer compounds, total polyphenols and total flavonoids. The clinical trial in pregnant women and toxic experiments in mice, the pharmacology of 7 aspects and 82 frequently used prescriptions are summarized. It is expected that this paper will provide forward-looking scientific thinking and literature support for the further modern research, development and utilization of COM.
Collapse
Affiliation(s)
- Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
6
|
Strieth D, Kollmen J, Stiefelmaier J, Mehring A, Ulber R. Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:83-117. [PMID: 38286901 DOI: 10.1007/10_2023_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.
Collapse
Affiliation(s)
- D Strieth
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - J Kollmen
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - J Stiefelmaier
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - A Mehring
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - R Ulber
- Bioprocess Engineering (BioVT), Department of Mechanical and Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
7
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Luna-Arias JP, Ahmad A, Kaushik P. Phytomediated selenium nanoparticles and light regimes elicited in vitro callus cultures for biomass accumulation and secondary metabolite production in Caralluma tuberculata. FRONTIERS IN PLANT SCIENCE 2023; 14:1253193. [PMID: 37810387 PMCID: PMC10556749 DOI: 10.3389/fpls.2023.1253193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Introduction Caralluma tuberculata holds significant importance as a medicinal plant due to its abundance of bioactive metabolites, which offer a wide range of therapeutic potentials. However, the sustainable production of this plant is challenged by overexploitation, changes in natural conditions, slow growth rate, and inadequate biosynthesis of bioactive compounds in wild populations. Therefore, the current study was conducted to establish an in vitro based elicitation strategy (nano elicitors and light regimes) for the enhancement of biomass and production of secondary metabolites. Methods Garlic clove extract was employed as a stabilizing, reducing, or capping agent in the green formulation of Selenium nanoparticles (SeNPs) and various physicochemical characterization analyses such as UV visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-Ray (EDX) Spectroscopy, fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were performed. Furthermore, the effects of phytosynthesized SeNPs at various concentrations (0, 50, 100, 200, and 400 µg/L on callus proliferation and biosynthesis of medicinal metabolites under different light regimes were investigated. Results and discussion Cultures grown on Murashige and Skoog (MS) media containing SeNPs (100 µg/L), in a dark environment for two weeks, and then transferred into normal light, accumulated maximum fresh weight (4,750 mg/L FW), phenolic contents (TPC: 3.91 mg/g DW), flavonoid content (TFC: 2.04 mg/g DW) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (85%). Maximum superoxide dismutase (SOD: 4.36 U/mg) and peroxide dismutase activity (POD: 3.85 U/mg) were determined in those cultures exposed to SeNPs (100 µg/L) under complete dark conditions. While the callus cultures proliferate on media augmented with SeNPs (200 µg/L) and kept under dark conditions for two weeks and then shifted to normal light conditions exhibited the highest catalase (CAT: 3.25 U/mg) and ascorbate peroxidase (APx: 1.93 U/mg) activities. Furthermore, LC-ESI-MS/MS analysis confirmed the effects of SeNPs and light conditions that elicited the antidiabetic metabolites (cumarins, gallic acid, caffeic acid, ferulic acid, catechin, querctin and rutin). This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites using in vitro callus cultures of C. tuberculata.
Collapse
Affiliation(s)
- Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Sher Mohammad
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - Juan Pedro Luna-Arias
- Department of Cell Biology, and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
8
|
Golkar P, Akbari R, Bazarganipour M, Javed R. Biochemical and phytochemical responses of Ammi visnaga L. (Apiaceae) callus culture elicited by SiO 2 and graphene Oxide-SiO 2 nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107741. [PMID: 37192582 DOI: 10.1016/j.plaphy.2023.107741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Ammi visnaga L. is an enriched medicinal plant with medicinally important compounds. Two types of nanoparticles (NPs) including silica (SiO2) and graphene oxide bound with SiO2 (GO-SiO2) NPs at different concentrations (0, 15, 25 mg L-1) were used as elicitors to investigate their effects on callus morphology, H2O2 content, total phenolic content (TPC), total flavonoids content (TFC), ferric reducing/antioxidant power (FRAP), and few antioxidant enzymes such as catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) in the callus cultures of A. visnaga. The effects of elicitation of both NPs on calli were observed using a scanning electron microscope (SEM). The 15 mg L-1 concentration of GO-SiO2 NPs produced the highest TPC (193.3 mg GAE g-1 FW), CAT (13.1 U mg-1 Protein), GPX (0.0089 U mg-1 Protein), and APX (0.079 U mg-1 Protein). Whereas, the maximum content of H2O2 (0.68 μmol g-1 FW), FRAP (0.0092 μmol mg-1), and TFC (62.27 mg QE g-1 FW) was observed at 25 mg L-1 and 15 mg L-1 of SiO2 NPs, respectively. Conclusively, in the callus culture of A. visnaga, the 15 mg L-1 concentration of GO-SiO2 NPs was the most suitable dosage for enhancing the enzymatic antioxidant activities (CAT, GPX, APX) and TPC, rather than SiO2 NPs.
Collapse
Affiliation(s)
- Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Reihaneh Akbari
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mehdi Bazarganipour
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada
| |
Collapse
|
9
|
Gai QY, Feng X, Jiao J, Xu XJ, Fu JX, He XJ, Fu YJ. Blue LED light promoting the growth, accumulation of high-value isoflavonoids and astragalosides, antioxidant response, and biosynthesis gene expression in Astragalus membranaceus (Fisch.) Bunge hairy root cultures. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:511-523. [PMID: 37197002 PMCID: PMC10042671 DOI: 10.1007/s11240-023-02486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7.
Collapse
Affiliation(s)
- Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xue Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jie Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jia He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yu-Jie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
10
|
Kirakosyan RN, Sumin AV, Polupanova AA, Pankova MG, Degtyareva IS, Sleptsov NN, Khuat QV. Influence of Plant Growth Regulators and Artificial Light on the Growth and Accumulation of Inulin of Dedifferentiated Chicory ( Cichorium intybus L.) Callus Cells. Life (Basel) 2022; 12:life12101524. [PMID: 36294959 PMCID: PMC9604921 DOI: 10.3390/life12101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Chicory (Chicorium intybus L.) is a perennial herb of the family Asteraceae, widely distributed in Asia and Europe, commonly used industrially as a raw material for extracting inulin because of a high content of inulin and biologically active compounds. Light conditions and plant growth regulators (PGRs) are two of many factors that affect the growth and inulin content of chicory callus. The aim of this work is to study the effect of PGRs and light conditions on proliferation and accumulation of inulin of chicory callus in vitro. In this study, we used semi-solid MS medium supplemented with different auxins (including Indole-3-acetic acid (IAA), naphthylacetic acid (NAA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) at a concentration of 5.5−9.5 mg/L in combination with 2.0 mg/L 6 benzylaminopurine (BA) to determine induction and proliferation of callus. The increasing value of callus fresh weight was used to assess the growth of the callus in treatments. The results showed that a steady increase in callus fresh weight and inulin content in callus cells was obtained when they were cultured on MS medium supplemented with a combination of 2.0 mg/L BA with 7.5 mg/L IAA in lighting conditions with radiation equalized by the flux density of photosynthetic photons and ratios of radiation levels in the region of FR—far red > R—red. Increasing demand for organic inulin sources in production practice can be met by our finding.
Collapse
Affiliation(s)
- Rima N. Kirakosyan
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)-460-66-65
| | - Anton V. Sumin
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Anna A. Polupanova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Maria G. Pankova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Irina S. Degtyareva
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Nikolay N. Sleptsov
- Department of Plant Physiology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Quyet V. Khuat
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
- Biology and Agricultural Engineering Faculty, Hanoi Pedagogical University 2, Nguyen Van Linh, Phuc Yen 15000, Vietnam
| |
Collapse
|
11
|
Abstract
The aims of this study were to induce calli from the seeds of three rice varieties (Hommali 105, Munpu, and Niawdum) and investigate their anti-aging potential. First, rice seeds were cultured on a Murashige and Skoog medium (MS medium) supplemented with 2 mg/L of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1 mg/L of 1-Naphthalene acetic acid (NAA), and 1 mg/L of 6-Benzylaminopurine (BAP). After three weeks, the calli were extracted with ethanol. Then, their phenolic contents were determined by spectrophotometer and the amino acids were identified by ultra-performance liquid chromatography (UPLC). Their cytotoxicity, anti-oxidant (potassium ferricyanide reducing power assay (PFRAP), DPPH radical scavenging assay (DPPH), lipid peroxidation inhibition (LPO), and superoxide dismutase activity (SOD)), and anti-aging (keratinocyte proliferation, anti-collagenase, anti-inflammation, and anti-tyrosinase) activities were also investigated. Munpu callus (385%) was obtained with a higher yield than Hommali (322%) and Niawdum (297%) calli. The results revealed that the phenolic and amino acid contents were enhanced in the calli. Moreover, the calli were rich in glutamic acid, alanine, and gamma aminobutyric acid (GABA). The callus extracts showed no cytotoxic effects at a concentration of equal to or lower than 0.25 mg/mL. The highest anti-oxidant activities (PFRAP (0.81 mg AAE/mL), DPPH (68.22%), LPO (52.21%), and SOD (67.16%)) was found in Munpu callus extract. This extract also had the highest keratinocyte proliferation (43.32%), anti-collagenase (53.83%), anti-inflammation (85.40%), and anti-tyrosinase (64.77%) activities. The experimental results suggest that the amounts of bioactive compounds and anti-aging activities of rice seeds can be enhanced by the induction of callus formation.
Collapse
|
12
|
da Silva Santos É, Savam A, Cabral MRP, Castro JC, de Oliveira Collet SA, Mandim F, Calhelha RC, Barros L, da Silva Machado MDFP, de Oliveira AJB, Gonçalves RAC. Low-cost alternative for the bioproduction of bioactive phenolic compounds of callus cultures from Cereus hildmannianus (K.) Schum. J Biotechnol 2022; 356:8-18. [PMID: 35842071 DOI: 10.1016/j.jbiotec.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The aim of this study was to establish a sustainable alternative callus culture of Cereus hildmannianus for the production and bioactive determination of phenolic compounds from this species. The conventional callus was cultivated using agar and Murashige and Skoog (MS) medium, while for the alternative culture the agar was replaced with a cotton support covered with filter paper and MS medium (incubated at 32°C with photoperiod of 16h), and the morphological characteristics and growth index were assessed (8 weeks). Extracts were obtained by maceration followed by partition, characterized by nuclear magnetic resonance - NMR and ultra-high performance liquid chromatography - UHPLC, quantified (phenolic compounds) by UV-Vis methods, and their antioxidant, antitumor activities, as well as cytotoxicity, were evaluated. The establishment of an alternative callus culture was carried out successfully. Characteristic signals of phenolic compounds were determined by NMR, and 46 compounds with fragment ions were identified using UHPLC analysis. The highest concentrations of phenolic compounds, and greatest antioxidant and antitumor activities, were obtained with the dichloromethane fractions of both callus tissue cultures, which were not cytotoxic. The callus culture from C. hildmannianus has shown promise as a source for the sustainable production of phenolic compounds with antioxidant and antiproliferative activities and thus, has potential use as a natural antitumor product.
Collapse
Affiliation(s)
- Éverton da Silva Santos
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Aline Savam
- Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Márcia Regina Pereira Cabral
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Juliana Cristina Castro
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Sandra Aparecida de Oliveira Collet
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | | | - Arildo José Braz de Oliveira
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil; Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil
| | - Regina Aparecida Correia Gonçalves
- Programa de Pós-graduação em Ciências Farmacêuticas (PCF), Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil; Departamento de Farmácia, Universidade Estadual de Maringá (UEM), Av. Colombo 5790, 87.020-900, Maringá, Brazil.
| |
Collapse
|
13
|
Cheng X, Wang R, Liu X, Zhou L, Dong M, Rehman M, Fahad S, Liu L, Deng G. Effects of Light Spectra on Morphology, Gaseous Exchange, and Antioxidant Capacity of Industrial Hemp. FRONTIERS IN PLANT SCIENCE 2022; 13:937436. [PMID: 35720586 PMCID: PMC9201404 DOI: 10.3389/fpls.2022.937436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
One of the most important growth factors in cannabis cultivation is light which plays a big role in its successful growth. However, understanding that how light controls the industrial hemp growth and development is poor and needs advanced research. Therefore, a pot study was conducted to investigate the effects of different colors of light, that is, white light (WL), blue light (BL), red light (RL), and 50% red with 50% blue mix light (RBL) on morphology, gaseous exchange and antioxidant capacity of industrial hemp. Compared with WL, BL significantly increase hemp growth in terms of shoot fresh biomass (15.1%), shoot dry biomass (27.0%), number of leaves per plant (13.7%), stem diameter (10.2%), root length (6.8%) and chlorophyll content (7.4%). In addition, BL promoted net photosynthesis, stomatal conductance, and transpiration, while reduces the lipid peroxidation and superoxide dismutase and peroxidase activities. However, RL and RBL significantly reduced the plant biomass, gas exchange parameters with enhanced antioxidant enzymes activities. Thus, blue light is useful for large-scale sustainable production of industrial hemp.
Collapse
Affiliation(s)
- Xia Cheng
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Rong Wang
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Xingzhu Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lijuan Zhou
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Minghua Dong
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Lijun Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Juneja K, Beuerle T, Sircar D. Enhanced Accumulation of Biologically Active Coumarin and Furanocoumarins in Callus Culture and Field-grown Plants of Ruta chalepensis Through LED Light-treatment. Photochem Photobiol 2022; 98:1100-1109. [PMID: 35191044 DOI: 10.1111/php.13610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
Ruta chalepensis, a medicinal plant, produces biologically active coumarins (CRs) and furanocoumarins (FCRs). However, their yield is quite low in cultivated plants. In this work, the influence of light emitting diodes (LEDs) was investigated on the accumulation of CRs and FCRs in the callus cultures and field-grown plants of R. chalepensis. Among the various tested wavelengths of LED lights, maximum accumulation of CR and FCRs was recorded under blue LED treatment in both the callus cultures as well as field-grown plants as compared to respective controls treated with white LED. Metabolite analyses of LED-treated field-grown plants showed that highest concentrations of CR (umbelliferone, 2.8-fold), and FCRs (psoralen, 2.3-fold; xanthotoxin, 3.8-fold; bergapten, 1.16-fold) were accumulated upon blue LED-treatment for six days. CR and FCRs contents were also analyzed in the blue- and red-LED-treated in vitro callus tissue. Upon blue LED-treatment, callus accumulated significantly high levels of umbelliferone (48.6 ± 1.2 µg/g DW), psoralen (370.12 ± 10.6 µg/g DW) and xanthotoxin (10.16 ± 0.48 µg/g DW). These findings imply that blue LED-treatment is a viable option as a non-invasive and low-cost elicitation technology for the enhanced production of biologically active CR and FCRs in field-grown plants and callus cultures of R. chalepensis.
Collapse
Affiliation(s)
- Kriti Juneja
- Plant Molecular Biology Group; Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Till Beuerle
- Institute for Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106, Braunschweig, Germany
| | - Debabrata Sircar
- Plant Molecular Biology Group; Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| |
Collapse
|
15
|
Abou El-Dis GR, Zavdetovna KL, Nikolaevich AA, Abdelazeez WMA, Arnoldovna TO. Influence of light on the accumulation of anthocyanins in callus culture of Vaccinium corymbosum L. cv. Sunt Blue Giant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Shehzad MA, Khan MA, Ali A, Mohammad S, Noureldeen A, Darwish H, Ali A, Ahmad A, Khan T, Khan RS. Interactive effects of zinc oxide nano particles and different light regimes on growth and silymarin biosynthesis in callus cultures of Silybum marianum L. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:523-535. [PMID: 34187267 DOI: 10.1080/21691401.2021.1946069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Silybum marianum L. commonly known as milk thistle is a medicinally potent plant with a multitude of pharmacological applications. The present investigations demonstrated the effects of Zinc Oxide nanoparticles (ZnO NPs) on callus growth and biosynthesis of silymarin in milk thistle under various light conditions. The callus cultures developed on Murashige and Skoog (MS) basal media containing ZnO NPs (0.15 mg/L), under the dark condition maintained for two weeks, followed by transference into normal light produced the maximum callus fresh weight (2294 mg/L FW). Further, the metabolite profiling revealed that ZnO NPs significantly augmented the production of silymarin and upregulated the antioxidant system in the callus cultures. Maximum TPC (total phenolic content: 37 ± 0.20 mg/g DW), TFC (total flavonoid content: 8.9 ± 0.023), DPPH antioxidant activity (91.5 ± 1.75%), Superoxide dismutase activity (SOD: 4.1 ± 0.045 nM/min/mg FW) and the highest silymarin content (14.6 ± 0.023 mg/g DW) were recorded in the callus cultures developed on MS media supplemented with solitary ZnO NPs (0.15 mg/L). While the callus culture evolved in presence of only PGRs (2,4 D and BA: 2 mg/L, each) accumulated the lesser fresh weight (562 mg/L FW). A higher concentration of ZnO NPs (0.15 mg/L) enhanced the secondary metabolite accumulation and silymarin content in the callus of Silybum marianum. This is the first standardized protocol to be applied on the industrial level for the production of silymarin.
Collapse
Affiliation(s)
- Muhammad Aamir Shehzad
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Amir Ali
- Biotechnology Lab, Agricultural Research Institute (ARI), Peshawar, Pakistan
| | - Sher Mohammad
- Biotechnology Lab, Agricultural Research Institute (ARI), Peshawar, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Asif Ali
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Islamabad, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| |
Collapse
|
17
|
Hashim M, Ahmad B, Drouet S, Hano C, Abbasi BH, Anjum S. Comparative Effects of Different Light Sources on the Production of Key Secondary Metabolites in Plants In Vitro Cultures. PLANTS (BASEL, SWITZERLAND) 2021; 10:1521. [PMID: 34451566 PMCID: PMC8398697 DOI: 10.3390/plants10081521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 05/13/2023]
Abstract
Plant secondary metabolites are known to have a variety of biological activities beneficial to human health. They are becoming more popular as a result of their unique features and account for a major portion of the pharmacological industry. However, obtaining secondary metabolites directly from wild plants has substantial drawbacks, such as taking a long time, posing a risk of species extinction owing to over-exploitation, and producing a limited quantity. Thus, there is a paradigm shift towards the employment of plant tissue culture techniques for the production of key secondary metabolites in vitro. Elicitation appears to be a viable method for increasing phytochemical content and improving the quality of medicinal plants and fruits and vegetables. In vitro culture elicitation activates the plant's defense response and increases the synthesis of secondary metabolites in larger proportions, which are helpful for therapeutic purposes. In this respect, light has emerged as a unique and efficient elicitor for enhancing the in vitro production of pharmacologically important secondary metabolites. Various types of light (UV, fluorescent, and LEDs) have been found as elicitors of secondary metabolites, which are described in this review.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan;
| | - Bushra Ahmad
- Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan;
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan;
| |
Collapse
|
18
|
Jung WS, Chung IM, Hwang MH, Kim SH, Yu CY, Ghimire BK. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021; 26:1477. [PMID: 33803168 PMCID: PMC7963184 DOI: 10.3390/molecules26051477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Myeong Ha Hwang
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Chang Yeon Yu
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| |
Collapse
|
19
|
Surface Characterization, Biocompatibility and Antifungal Efficacy of a Denture-Lining Material Containing Cnidium officinale Extracts. Molecules 2021; 26:molecules26051440. [PMID: 33799919 PMCID: PMC7962000 DOI: 10.3390/molecules26051440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, we investigated the surface characterization and biocompatibility of a denture-lining material containing Cnidium officinale extracts and its antifungal efficacy against Candida albicans. To achieve this, a denture-lining material containing various concentrations of C. officinale extract and a control group without C. officinale extract were prepared. The surface characterization and biocompatibility of the samples were investigated. In addition, the antifungal efficacy of the samples on C. albicans was investigated using spectrophotometric growth and a LIVE/DEAD assay. The results revealed that there was no significant difference between the biocompatibility of the experimental and control groups (p > 0.05). However, there was a significant difference between the antifungal efficiency of the denture material on C. albicans and that of the control group (p < 0.05), which was confirmed by the LIVE/DEAD assay. These results indicate the promising potential of the C. officinale extract-containing denture-lining material as an antifungal dental material.
Collapse
|
20
|
Induction, Multiplication, and Evaluation of Antioxidant Activity of Polyalthia bullata Callus, a Woody Medicinal Plant. PLANTS 2020; 9:plants9121772. [PMID: 33327608 PMCID: PMC7765093 DOI: 10.3390/plants9121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
Polyalthia bullata is an endangered medicinal plant species. Hence, establishment of P. bullata callus culture is hoped to assist in mass production of secondary metabolites. Leaf and midrib were explants for callus induction. Both of them were cultured on Murashige and Skoog (MS) and Woody Plant Medium (WPM) containing different types and concentrations of auxins (2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA), picloram, and dicamba). The callus produced was further multiplied on MS and WPM supplemented with different concentrations of 2,4-D, NAA, picloram, dicamba, indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA) media. The quantification of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant capacity was further carried out on P. bullata callus, and the results were subjected to correlation analysis. Among the media, the WPM + 16.56 µM picloram (53.33 ± 22.06%) was the best for callus induction while MS + 30 µM dicamba was the best for callus multiplication. The TPC, TFC, and EC50 of DPPH scavenging activity were determined at 0.657 ± 0.07 mg GAE/g FW, 0.491 ± 0.03 mg QE/g, and 85.59 ± 6.09 µg/mL in P. bullata callus, respectively. The positive correlation between DPPH scavenging activity with TPC was determined at r = 0.869, and that of TFC was at r = 0.904. Hence, the P. bullata callus has an ability to accumulate antioxidants. It therefore can be a medium for secondary metabolites production.
Collapse
|
21
|
Indirect somatic embryogenesis of purple coneflower (Echinacea purpurea (L.) Moench): a medicinal-ornamental plant: evaluation of antioxidant enzymes activity and histological study. Mol Biol Rep 2020; 47:6621-6633. [PMID: 32803508 PMCID: PMC7561546 DOI: 10.1007/s11033-020-05713-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022]
Abstract
Purple coneflower (Echinacea purpurea (L.) Moench) is a widely used medicinal and ornamental plant. In the present study, the callus embryogenesis was examined using benzyl adenine (BA) at three levels (3, 4, 5 mg L−1), 1-Naphthalene acetic acid (NAA) at three levels (0.1, 0.2 and 0.5 mg L−1) with or without activated charcoal (1 g L−1), coconut milk (50 ml L−1) and casein hydrolysate (50 mg L−1) in the MS (Murashige and Skoog 1962) medium. The embryogenesis indirectly occurred with the production of callus. The calli were observed in three forms: undifferentiated, embryogenic and organogenic. The embryogenic calli were dark green and coherent with a faster growth rate. The highest embryogenesis (100%) and embryonic regeneration (plantlet production) were obtained in the combined BA + NAA treatments with the activated charcoal, coconut milk and casein hydrolysate. However, the combined treatments of growth regulators failed to produce somatic embryos without the use of coconut milk and casein hydrolysate. The maximum amount of protein, peroxidase and catalase activity of embryogenic calli (2.02, 1.79 and 6.62ΔOD/Min/mg.protein, respectively), and highest percentage of acclimatization success (29.3% of plants) were obtained in the combined treatment of 5 mg L−1 BA + 0.5 mg L−1 NAA + activated charcoal + coconut milk + casein hydrolysate. The highest amount of chlorophyll content (33.3 SPAD value) and growth characteristics of acclimatized plantlets were observed in the media containing 3 mg L−1 BA + 0.1 and 0.2 mg L−1 NAA + 1 g. L−1 combined activated charcoal, coconut milk, casein hydrolysate. The histological studies confirmed the somatic embryogenesis in purple coneflower. Generally, it was found that the somatic embryogenesis of E. purpurea occurs at high levels of BA and low levels of NAA with the addition of coconut milk and casein hydrolysate.
Collapse
|
22
|
Growth Kinetics, Metabolites Production and Expression Profiling of Picrosides Biosynthetic Pathway Genes in Friable Callus Culture of Picrorhiza kurroa Royle ex Benth. Appl Biochem Biotechnol 2020; 192:1298-1317. [PMID: 32725372 DOI: 10.1007/s12010-020-03391-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
The rising demand for picrosides commercially and over-exploitation of Picrorhiza kurroa from natural habitat has to initiate alternative strategies for sustainable production of metabolites. In the present research, wild leaf explant of P. kurroa was used to produce friable callus under different culture condition, i.e., dark and light with two temperature variants (15 °C and 25 °C). Afterward, callus cell lines were screened based on growth biomass and metabolites content accumulation. The results revealed, maximum callus growth index along with antioxidant potential (IC50-40.88 μg/mL) and total phenol content (41.35 μg/mg) were observed under dark 25 °C. However, under light 15 °C, highest accumulation of picroside II (0.58 μg/mg), cinnamic acid (0.15 μg/mg), p-hydroxy acetophenone (0.30 μg/mg), total flavonoids (77.30 μg/mg), nitrogen (7.06%), carbohydrates (18.03%), and protein (44.12%) were detected. Major reported metabolite in callus was picroside I (1.63 μg/mg) under dark 15 °C. For the first time, picroside III content (range 0.15-0.56 μg/mg) was also detected and quantified in leaf-derived calli. Expression profiling of picroside biosynthetic pathway genes showed a positive correlation with the observed metabolites. Furthermore, an optimized protocol of metabolites enriched callus biomass could be used as potential strategy for sustainable production of picrosides at commercial scale.
Collapse
|
23
|
Kumar SS, Arya M, Mahadevappa P, Giridhar P. Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111937. [PMID: 32570057 DOI: 10.1016/j.jphotobiol.2020.111937] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022]
Abstract
Basella rubra L. is an important green leafy vegetable vine and is known for its health benefits in traditional medicine. Light is a basic physical factor essential to the development and bioactive secondary metabolite production in in vitro callus cultures. The present study researched the impact of different photoperiods on biomass, bioactive compounds, and antioxidant activity in callus cultures of B. rubra. The in vitro seedling based cotyledonary leaf explants responded differently, when cultured on Murashige and Skoog (MS) medium with varying concentrations and combination of auxins and cytokinins. The best callus proliferation was found in MS medium with 0.1 mg.L-1 1-naphthaleneacetic acid (NAA) and 6 mg.L-1 6-benzylaminopurine (BAP), with greenish callus inception by about 2 weeks. The growth curve recorded for 6 weeks of culturing revealed that the photoperiod effect was found to be pivotal for acquiring biomass. At the fifth week, the continuous light supported maximum biomass (12.42 g) production followed by the 16:8 h photoperiod (9.02 g) and continuous darkness (4.28 g). The 80% ethanol extract of 1-week-old callus that grows under the 16:8 h photoperiod showed the highest total phenolic content (TPC) (74 mg.100 g-1 fresh weight, FW) when compared to all other extracts at different stages. The ferric reducing antioxidant power assay showed the highest (336.23 mg.100 g-1 FW) activity in methanol extractions of first-week callus cultures maintained in the continuous light condition. HPLC-UV identification and quantification of individual phenolics and flavonoids, such as gallic, trans-cinnamic, quercetin, protocatechuic and rutin, were highest in the callus cultures. The outcome of this study is significant to this plant, as B. rubra is familiar for its important health constituents with high-value bioactives and applications in the pharma and nutraceutical industries.
Collapse
Affiliation(s)
- Sandopu Sravan Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India
| | - Monisha Arya
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India
| | - Paramesha Mahadevappa
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India; Presently : Department of Studies and Research in Food Technology, Davangere University, Davangere, Karnataka 577007, India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
24
|
Khurshid R, Ullah MA, Tungmunnithum D, Drouet S, Shah M, Zaeem A, Hameed S, Hano C, Abbasi BH. Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. PLoS One 2020; 15:e0233963. [PMID: 32530961 PMCID: PMC7292357 DOI: 10.1371/journal.pone.0233963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important physiological cascades. Current study was carried out to investigate growth and developmental aspects of E. alba under differential effect of multispectral lights. In vitro derived callus culture of E. alba was exposed to multispectral monochromatic lights under controlled aseptic conditions. Maximum dry weight was recorded in culture grown under red light (11.2 g/L) whereas negative effect was observed under exposure of yellow light on callus growth (4.87 g/L). Furthermore, red light significantly enhanced phenolics and flavonoids content (TPC: 57.8 mg/g, TFC: 11.1 mg/g) in callus cultures compared to rest of lights. HPLC analysis further confirmed highest accumulation of four major compounds i.e. coumarin (1.26 mg/g), eclalbatin (5.00 mg/g), wedelolactone (32.54 mg/g) and demethylwedelolactone (23.67 mg/g) and two minor compounds (β-amyrin: 0.38 mg/g, luteolin: 0.39 mg/g) in red light treated culture whereas stigmasterol was found optimum (0.22 mg/g) under blue light. In vitro based biological activities including antioxidant, antidiabetic and lipase inhibitory assays showed optimum values in cultures exposed to red light, suggesting crucial role of these phytochemicals in the enhancement of the therapeutic potential of E. alba. These results clearly revealed that the use of multispectral lights in in vitro cultures could be an effective strategy for enhanced production of phytochemicals.
Collapse
Affiliation(s)
- Razia Khurshid
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- COSM’ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, Orléans, France
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Afifa Zaeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Safia Hameed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- COSM’ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, Orléans, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
25
|
Manivannan A, Soundararajan P, Park YG, Jeong BR. Physiological and Proteomic Insights Into Red and Blue Light-Mediated Enhancement of in vitro Growth in Scrophularia kakudensis-A Potential Medicinal Plant. FRONTIERS IN PLANT SCIENCE 2020; 11:607007. [PMID: 33552100 PMCID: PMC7855028 DOI: 10.3389/fpls.2020.607007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 05/03/2023]
Abstract
The current study has determined the effect of red and blue lights on the enhancement of growth, antioxidant property, phytochemical contents, and expression of proteins in Scrophularia kakudensis. In vitro-grown shoot tip explants of S. kakudensis were cultured on the plant growth regulator-free Murashige and Skoog (MS) medium and cultured under the conventional cool white fluorescent lamp (control), blue light-emitting diodes (LED) light, or red LED light. After 4 weeks, growth, stomatal ultrastructure, total phenols and flavonoids, activities of antioxidant enzymes, and protein expressions were determined. Interestingly, blue or red LED treatment increased the shoot length, shoot diameter, root length, and biomass on comparison with the control. In addition, the LED treatments enhanced the contents of phytochemicals in the extracts. The red LED treatment significantly elicited the accumulation of flavonoids in comparison with the control. In accordance with the secondary metabolites, the LED treatments modulated the activities of antioxidant enzymes. Moreover, the proteomic insights using two-dimensional gel electrophoresis system revealed the proteins involved in transcription and translation, carbohydrate mechanism, post-translational modification, and stress responses. Taken together, the incorporation of blue or red LED during in vitro propagation of S. kakudensis can be a beneficial way to increase the plant quality and medicinal values of S. kakudensis.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | | | - Yoo Gyeong Park
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Byoung Ryong Jeong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Byoung Ryong Jeong,
| |
Collapse
|
26
|
Adil M, Haider Abbasi B, Ul Haq I. Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. ACTA ACUST UNITED AC 2019; 24:e00380. [PMID: 31641624 PMCID: PMC6796579 DOI: 10.1016/j.btre.2019.e00380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
Combination of thidiazuron and naphthalene acetic acid induced callus growth in Withania somnifera. Red light improved callus growth with lower antioxidant enzymes activities. Violet light enhanced the total phenolic and flavonoid content in callus culture of W. somnifera. Withaferin A and chlorogenic acid were detected in callus cultures.
Withania somnifera L. is an endangered medicinal plant of higher market value. The in vitro callus cultures were established on Murashige and Skoog (MS) media augmented with different plant growth regulators. The MS medium containing 0.5 mg∙L−1 of each TDZ and NAA was found to be optimal for callus formation and growth. Further, callus cultures were raised in different light wavelengths to find the right wavelength carrying the photons for the ideal cell growth of W. somnifera. Among the different wavelengths, red light was best for maximum biomass accumulation in callus culture. However, violet light condition was proven to be favouring the phenols and flavonoids synthesis in the callus cultures. Compared to other wavelengths, red light grown callus extract showed significantly higher content of chlorogenic acid, and withaferin A. This study concludes that red light treatment was optimum for maximum biomass accumulation and anti-oxidant activity in calli of W. somnifera.
Collapse
Affiliation(s)
- Muhammad Adil
- H.E.J. Research Institute of Chemistry-Biotechnology Wing, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Quaid I Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|