1
|
Wu R, Yuen J, Cheung E, Huang Z, Chu E. Review of three-dimensional spheroid culture models of gynecological cancers for photodynamic therapy research. Photodiagnosis Photodyn Ther 2024; 45:103975. [PMID: 38237651 DOI: 10.1016/j.pdpdt.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a specific cancer treatment with minimal side effects. However, it remains challenging to apply PDT clinically, partially due to the difficulty of translating research findings to clinical settings as the conventional 2D cell models used for in vitro research are accepted as less physiologically relevant to a solid tumour. 3D spheroids offer a better model for testing PDT mechanisms and efficacy, particularly on photosensitizer uptake, cellular and subcellular distribution and interaction with cellular oxygen consumption. 3D spheroids are usually generated by scaffold-free and scaffold-based methods and are accepted as physiologically relevant models for PDT anticancer research. Scaffold-free methods offer researchers advantages including high efficiency, reproducible, and controlled microenvironment. While the scaffold-based methods offer an extracellular matrix-like 3D scaffold with the necessary architecture and chemical mediators to support the spheroid formation, the natural scaffold used may limit its usage because of low reproducibility due to patch-to-patch variation. Many studies show that the 3D spheroids do offer advantages to gynceologcial cancer PDT investigation. This article will provide a review of the applications of 3D spheroid culture models for the PDT research of gynaecological cancers.
Collapse
Affiliation(s)
- Rwk Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Jwm Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Eyw Cheung
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China
| | - Z Huang
- MOE Key Laboratory of Photonics Science and Technology for Medicine, Fujian Normal University, Fuzhou, China
| | - Esm Chu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Pavlíčková VS, Škubník J, Ruml T, Rimpelová S. A Trojan horse approach for efficient drug delivery in photodynamic therapy: focus on taxanes. J Mater Chem B 2023; 11:8622-8638. [PMID: 37615658 DOI: 10.1039/d2tb02147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Photodynamic therapy is an effective method for the treatment of several types of cancerous and noncancerous diseases. The key to the success of this treatment method is effective drug delivery to the site of action, for instance, a tumor. This ensures not only the high effectiveness of the therapy but also the suppression of side effects. But how to achieve effective targeted delivery? Lately, much attention has been paid to systems based on the so-called Trojan horse model, which is gaining increasing popularity. The principle of this model is that the effective drug is hidden in the internal structure of a nanoparticle, liposome, or nanoemulsion and is released only at the site of action. In this review article, we focus on drugs from the group of mitotic poisons, taxanes, and their use with photosensitizers in combined therapy. Here, we discuss the possibilities of how to improve the paclitaxel and docetaxel bioavailability, as well as their specific targeting for use in combined photo- and chemotherapy. Moreover, we also present the state of the art multifunctional drugs based on cabazitaxel which, owing to a suitable combination with photosensitizers, can be used besides photodynamic therapy and also in photoacoustic imaging or sonodynamic therapy.
Collapse
Affiliation(s)
- Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
4
|
Majeed Z, Farhat H, Ahmad B, Iqbal A, Faiz AUH, Mahnashi MH, Alqarni AO, Alqahtani O, Ali AA, Momenah AM. Process optimization, antioxidant, antibacterial, and drug adjuvant properties of bioactive keratin microparticles derived from porcupine ( Hystrix indica) quills. PeerJ 2023; 11:e15653. [PMID: 37609437 PMCID: PMC10441523 DOI: 10.7717/peerj.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/07/2023] [Indexed: 08/24/2023] Open
Abstract
A structural protein called keratin is often employed in the medical industry to create medication carriers. Process improvement, antioxidant, antibacterial, and adjuvant drug studies of synthetic bioactive keratin microparticles made from lipids and keratin derived from porcupine (Hystrix indica) quills are the main objectives of this study. After coating the keratin microparticles with lipids which were obtained from the same porcupine quills, the bioactive keratin microparticles were produced. The response surface technique was applied to optimize the conditions for extraction of the keratin protein and sizing of the keratin microparticles. An infrared spectroscopy was used to analyze the chemical shifts in compositions of keratin microparticles while the optical microscopy was used to measure the size of the keratin microparticles. The results of this work revealed that a yield 27.36 to 42.25% of the keratin protein could be obtained from porcupine quills. The keratin microparticles were sized between 60.65 and 118.87 µm. Through response surface optimization, mercaptoethanol and urea were shown to be the main variables which positively affected the yield and the size of the keratin protein. The lipid stacking on the keratin microparticles' surface was confirmed by infrared spectroscopy. The 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) assay confirmed the keratin microparticle's antioxidant activity of 29.83%. Compared to lipid alone, the antibacterial properties of the keratin microparticles against Escherichia coli-a gram-negative-and Staphylococcus aureus-a gram-positive-bacteria enhanced by up to 55% following the coating of the microparticles with the lipids. The pharmacological action against these bacterial species was further improved by the lipid-loaded erythromycin that was carried on the surface of keratin microparticles. This work has demonstrated the design and uses of the keratin microparticles obtained from porcupine quills for clinical applications.
Collapse
Affiliation(s)
- Zahid Majeed
- Department of Biotechnology, Faculty of Science, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Hoorulain Farhat
- Department of Zoology, Faculty of Science, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Basharat Ahmad
- Department of Zoology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Atia Iqbal
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | - Abu ul Hassan Faiz
- Department of Zoology, Faculty of Science and Technology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, Najran University, Najran, Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, Najran University, Najran, Saudi Arabia
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil Bisha, Saudi Arabia
| | - Aiman M. Momenah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Avancini G, Menilli L, Visentin A, Milani C, Mastrotto F, Moret F. Mesenchymal Stem Cell Membrane-Coated TPCS 2a-Loaded Nanoparticles for Breast Cancer Photodynamic Therapy. Pharmaceutics 2023; 15:1654. [PMID: 37376102 PMCID: PMC10302938 DOI: 10.3390/pharmaceutics15061654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial improvements in breast cancer (BC) treatment there is still an urgent need to find alternative treatment options to improve the outcomes for patients with advanced-stage disease. Photodynamic therapy (PDT) is gaining a lot of attention as a BC therapeutic option because of its selectivity and low off-target effects. However, the hydrophobicity of photosensitizers (PSs) impairs their solubility and limits the circulation in the bloodstream, thus representing a major challenge. The use of polymeric nanoparticles (NPs) to encapsulate the PS may represent a valuable strategy to overcome these issues. Herein, we developed a novel biomimetic PDT nanoplatform (NPs) based on a polymeric core of poly(lactic-co-glycolic)acid (PLGA) loaded with the PS meso-tetraphenylchlorin disulfonate (TPCS2a). TPCS2a@NPs of 98.89 ± 18.56 nm with an encapsulation efficiency percentage (EE%) of 81.9 ± 7.92% were obtained and coated with mesenchymal stem cells-derived plasma membranes (mMSCs) (mMSC-TPCS2a@NPs, size of 139.31 ± 12.94 nm). The mMSC coating armed NPs with biomimetic features to impart long circulation times and tumor-homing capabilities. In vitro, biomimetic mMSC-TPCS2a@NPs showed a decrease in macrophage uptake of 54% to 70%, depending on the conditions applied, as compared to uncoated TPCS2a@NPs. Both NP formulations efficiently accumulated in MCF7 and MDA-MB-231 BC cells, while the uptake was significantly lower in normal breast epithelial MCF10A cells with respect to tumor cells. Moreover, encapsulation of TPCS2a in mMSC-TPCS2a@NPs effectively prevents its aggregation, ensuring efficient singlet oxygen (1O2) production after red light irradiation, which resulted in a considerable in vitro anticancer effect in both BC cell monolayers (IC50 < 0.15 µM) and three-dimensional spheroids.
Collapse
Affiliation(s)
- Greta Avancini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Luca Menilli
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Adele Visentin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Celeste Milani
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Francesca Moret
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| |
Collapse
|
6
|
Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2023; 6:349-364. [PMID: 36700563 DOI: 10.1021/acsabm.2c00891] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | | | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
7
|
Wang C, Li F, Zhang T, Yu M, Sun Y. Recent advances in anti-multidrug resistance for nano-drug delivery system. Drug Deliv 2022; 29:1684-1697. [PMID: 35616278 PMCID: PMC9154776 DOI: 10.1080/10717544.2022.2079771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy for tumors occasionally results in drug resistance, which is the major reason for the treatment failure. Higher drug doses could improve the therapeutic effect, but higher toxicity limits the further treatment. For overcoming drug resistance, functional nano-drug delivery system (NDDS) has been explored to sensitize the anticancer drugs and decrease its side effects, which are applied in combating multidrug resistance (MDR) via a variety of mechanisms including bypassing drug efflux, controlling drug release, and disturbing metabolism. This review starts with a brief report on the major MDR causes. Furthermore, we searched the papers from NDDS and introduced the recent advances in sensitizing the chemotherapeutic drugs against MDR tumors. Finally, we concluded that the NDDS was based on several mechanisms, and we looked forward to the future in this field.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Min Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Sarma A. Biological importance and pharmaceutical significance of keratin: A review. Int J Biol Macromol 2022; 219:395-413. [DOI: 10.1016/j.ijbiomac.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
|
9
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
10
|
HSA-Binding Prodrugs-Based Nanoparticles Endowed with Chemo and Photo-Toxicity against Breast Cancer. Cancers (Basel) 2022; 14:cancers14040877. [PMID: 35205627 PMCID: PMC8870514 DOI: 10.3390/cancers14040877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Exploiting the tumor environment features (EPR effect, elevated glutathione, reactive oxygen species levels) might allow attaining a selective and responsive carrier capable of improving the therapeutic outcome. To this purpose, the in situ covalent binding of drugs and nanoparticles to circulating human serum albumin (HSA) might represent a pioneering approach to achieve an effective strategy. This study describes the synthesis, in vitro and in vivo evaluation of bioresponsive HSA-binding nanoparticles (MAL-PTX2S@Pba), co-delivering two different paclitaxel (PTX) prodrugs and the photosensitizer pheophorbide a (Pba), for the combined photo- and chemo-treatment of breast cancer. Stable and reproducible MAL-PTX2S@Pba nanoparticles with an average diameter of 82 nm and a PTX/Pba molar ratio of 2.5 were obtained by nanoprecipitation. The in vitro 2D combination experiments revealed that MAL-PTX2S@Pba treatment induces a strong inhibition of cell viability of MDA-MB-231, MCF7 and 4T1 cell lines, whereas 3D experiments displayed different trends: while MAL-PTX2S@Pba effectiveness was confirmed against MDA-MB-231 spheroids, the 4T1 model exhibited marked resistance. Lastly, despite using a low PTX-PDT regimen (e.g., 8.16 mg/Kg PTX and 2.34 mg/Kg Pba), our formulation showed to foster primary tumor reduction and curb lung metastases growth in 4T1 tumor-bearing mice, thus setting the basis for further preclinical validations.
Collapse
|
11
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
12
|
Moret F, Conte C, Esposito D, Dal Poggetto G, Avitabile C, Ungaro F, Tiso N, Romanelli A, Laurienzo P, Reddi E, Quaglia F. Biodegradable nanoparticles combining cancer cell targeting and anti-angiogenic activity for synergistic chemotherapy in epithelial cancer. Drug Deliv Transl Res 2022; 12:2488-2500. [PMID: 34973132 PMCID: PMC9458690 DOI: 10.1007/s13346-021-01090-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
A biodegradable engineered nanoplatform combining anti-angiogenic activity and targeting of cancer cells to improve the anticancer activity of docetaxel (DTX) is here proposed. Indeed, we have developed biodegradable nanoparticles (NPs) of poly(ethylene glycol)-poly(ε-caprolactone), exposing on the surface both folate motifs (Fol) for recognition in cells overexpressing Folate receptor-α (FRα) and the anti-angiogenic hexapeptide aFLT1. NPs showed a size around 100 nm, the exposure of 60% of Fol moieties on the surface, and the ability to entrap DTX and sustain its release with time. NPs were stable in simulated biological fluids and slightly interacted with Fetal Bovine serum, especially in the formulation decorated with Fol and aFLT1. The presence of Fol on NPs did not impair the anti-angiogenic activity of aFLT1, as assessed by in vitro tube formation assay in HUVEC endothelial cells. In both 2D and 3D KB cell cultures in vitro, the cytotoxicity of DTX loaded in NPs was not significantly affected by Fol/aFLT1 double decoration compared to free DTX. Remarkably, NPs distributed differently in 3D multicellular spheroids of FRα-positive KB cancer cells depending on the type of ligand displayed on the surface. In particular, NPs unmodified on the surface were randomly distributed in the spheroid, whereas the presence of Fol promoted the accumulation in the outer rims of the spheroid. Finally, NPs with Fol and aFLT1 gave a uniform distribution throughout the spheroid structure. When tested in zebrafish embryos xenografted with KB cells, NPs displaying Fol/aFLT1 reduced DTX systemic toxicity and inhibited the growth of the tumor mass and associated vasculature synergistically. Overall, nanotechnology offers excellent ground for combining therapeutic concepts in cancer, paving the way to novel multifunctional nanopharmaceuticals decorated with bioactive elements that can significantly improve therapeutic outcomes.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | - Diletta Esposito
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | | | | | - Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, Milano, 20133, Italy
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Pozzuoli, 80078, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, Padova, 35121, Italy.
| | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy. .,Institute for Polymers, Composites and Biomaterials, CNR, Pozzuoli, 80078, Italy.
| |
Collapse
|
13
|
Mollaeva MR, Nikolskaya E, Beganovskaya V, Sokol M, Chirkina M, Obydennyi S, Belykh D, Startseva O, Mollaev MD, Yabbarov N. Oxidative Damage Induced by Phototoxic Pheophorbide a 17-Diethylene Glycol Ester Encapsulated in PLGA Nanoparticles. Antioxidants (Basel) 2021; 10:1985. [PMID: 34943088 PMCID: PMC8750000 DOI: 10.3390/antiox10121985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023] Open
Abstract
Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Veronika Beganovskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
- Department of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Sergey Obydennyi
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Dmitry Belykh
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Murad D. Mollaev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| |
Collapse
|
14
|
Xu Q, Zhang R, Zhang H, Jin GQ, Wang BW, Zhu M, Zhang J, Gao S, Zhang JL. Porpholactam-cinnamaldehyde conjugates for promoting ROS generation in photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive method for cancer treatment that relies on the generation of excess reactive oxygen species (ROS), upon excitation of photosensitizer (PS), to eradicate tumor cells. However, the overexpress of endogenous antioxidants in tumor cells will eliminate the ROS and restrict the therapeutic efficacy of PDT. Herein, a novel type of PS was developed by conjugating cinnamaldehyde (CA), a kind of oxidative stress amplified agent, with porpholactam through a hydrazone bond. The new PS retains the photophysical properties of porpholactam, which displays high singlet oxygen quantum yield for the PDT function. The results of in vitro experiments performed including ROS assay and the cytotoxicity in cancer cells suggest that the rational design of the novel porpholactam-CA derivatives result in enhanced ROS generation upon irradiation, providing a possible approach to achieve enhanced therapeutic effects in PDT.
Collapse
Affiliation(s)
- Qifan Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515031, China
| | - Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515031, China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
15
|
Moret F, Menilli L, Battan M, Tedesco D, Columbaro M, Guerrini A, Avancini G, Ferroni C, Varchi G. Pheophorbide A and Paclitaxel Bioresponsive Nanoparticles as Double-Punch Platform for Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13081130. [PMID: 34452091 PMCID: PMC8399365 DOI: 10.3390/pharmaceutics13081130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer therapy is still a challenging issue. To address this, the combination of anticancer drugs with other therapeutic modalities, such as light-triggered therapies, has emerged as a promising approach, primarily when both active ingredients are provided within a single nanosystem. Herein, we describe the unprecedented preparation of tumor microenvironment (TME) responsive nanoparticles exclusively composed of a paclitaxel (PTX) prodrug and the photosensitizer pheophorbide A (PheoA), e.g., PheoA≅PTX2S. This system aimed to achieve both the TME-triggered and controlled release of PTX and the synergistic/additive effect by PheoA-mediated photodynamic therapy. PheoA≅PTX2S were produced in a simple one-pot process, exhibiting excellent reproducibility, stability, and the ability to load up to 100% PTX and 40% of PheoA. Exposure of PheoA≅PTX2S nanoparticles to TME-mimicked environment provided fast disassembly compared to normal conditions, leading to PTX and PheoA release and consequently elevated cytotoxicity. Our data indicate that PheoA incorporation into nanoparticles prevents its aggregation, thus providing a greater extent of ROS and singlet oxygen production. Importantly, in SK-OV-3 cells, PheoA≅PTX2S allowed a 30-fold PTX dose reduction and a 3-fold dose reduction of PheoA. Our data confirm that prodrug-based nanocarriers represent valuable and sustainable drug delivery systems, possibly reducing toxicity and expediting preclinical and clinical translation.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Manuele Battan
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | - Daniele Tedesco
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | | | - Andrea Guerrini
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | - Greta Avancini
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Claudia Ferroni
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
- Correspondence: (C.F.); (G.V.); Tel.: +39-0516398283 (G.V.)
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
- Correspondence: (C.F.); (G.V.); Tel.: +39-0516398283 (G.V.)
| |
Collapse
|
16
|
Alhamami T, Chowdhury PR, Gomes N, Carr M, Veltman T, Khazandi M, Mollinger J, Deutscher AT, Turni C, Mahdi L, Venter H, Abraham S, Djordjevic SP, Trott DJ. First Emergence of Resistance to Macrolides and Tetracycline Identified in Mannheimia haemolytica and Pasteurella multocida Isolates from Beef Feedlots in Australia. Microorganisms 2021; 9:1322. [PMID: 34204544 PMCID: PMC8233904 DOI: 10.3390/microorganisms9061322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023] Open
Abstract
Bovine respiratory disease (BRD) causes high morbidity and mortality in beef cattle worldwide. Antimicrobial resistance (AMR) monitoring of BRD pathogens is critical to promote appropriate antimicrobial stewardship in veterinary medicine for optimal treatment and control. Here, the susceptibility of Mannheimia haemolytica and Pasteurella multicoda isolates obtained from BRD clinical cases (deep lung swabs at post-mortem) among feedlots in four Australian states (2014-2019) was determined for 19 antimicrobial agents. The M. haemolytica isolates were pan-susceptible to all tested agents apart from a single macrolide-resistant isolate (1/88; 1.1%) from New South Wales (NSW). Much higher frequencies of P. multocida isolates were resistant to tetracycline (18/140; 12.9%), tilmicosin (19/140; 13.6%), tulathromycin/gamithromycin (17/140; 12.1%), and ampicillin/penicillin (6/140; 4.6%). Five P. multocida isolates (3.6%), all obtained from NSW in 2019, exhibited dual resistance to macrolides and tetracycline, and a further two Queensland isolates from 2019 (1.4%) exhibited a multidrug-resistant phenotype to ampicillin/penicillin, tetracycline, and tilmicosin. Random-amplified polymorphic DNA (RAPD) typing identified a high degree of genetic homogeneity among the M. haemolytica isolates, whereas P. multocida isolates were more heterogeneous. Illumina whole genome sequencing identified the genes msr(E) and mph(E)encoding macrolide resistance, tet(R)-tet(H) or tet(Y) encoding tetracycline resistance, and blaROB-1 encoding ampicillin/penicillin resistance in all isolates exhibiting a corresponding resistant phenotype. The exception was the tilmicosin-resistant, tulathromycin/gamithromycin-susceptible phenotype identified in two Queensland isolates, the genetic basis of which could not be determined. These results confirm the first emergence of AMR in M. haemolytica and P. multocida from BRD cases in Australia, which should be closely monitored.
Collapse
Affiliation(s)
- Tamara Alhamami
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (T.A.); (N.G.); (T.V.); (M.K.)
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (P.R.C.); (S.P.D.)
| | - Nancy Gomes
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (T.A.); (N.G.); (T.V.); (M.K.)
| | - Mandi Carr
- Department of Animal Health and Production, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (T.A.); (N.G.); (T.V.); (M.K.)
| | - Manouchehr Khazandi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (T.A.); (N.G.); (T.V.); (M.K.)
| | - Joanne Mollinger
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Coopers Plains, QLD 4108, Australia;
| | - Ania T. Deutscher
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia;
| | - Conny Turni
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Layla Mahdi
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (L.M.); (H.V.)
| | - Henrietta Venter
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (L.M.); (H.V.)
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, WA 6150, Australia;
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (P.R.C.); (S.P.D.)
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (T.A.); (N.G.); (T.V.); (M.K.)
| |
Collapse
|
17
|
Li X, Vinothini K, Ramesh T, Rajan M, Ramu A. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug Deliv 2021; 27:791-804. [PMID: 32420760 PMCID: PMC7301704 DOI: 10.1080/10717544.2020.1765431] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The combined chemotherapy and photodynamic therapy have significant advantages for cancer treatments, which have higher therapeutic effects compared with other medicines. Herein, we focused on the synthesis of carbon quantum dot (CQD) based nanocarrier system. CQD and 5-aminolevulinic acid (5-ALA) were conjugated with mono-(5-BOC-protected-glutamine-6-deoxy) β-cyclodextrin (CQD-Glu-β-CD) moiety, and finally, the anticancer chemotherapy doxorubicin (DOX) drug was loaded in the 5-ALA-CQD-Glu-β-CD system. The stepwise physicochemical changes for the preparation of the DOX loaded 5-ALA-CQD-Glu-β-CD system were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and Raman fluorescence spectroscopy. The encapsulation efficiency of DOX in 5-ALA-CQD-Glu-β-CD was observed at ∼83.0%, and the loading capacity of DOX is ∼20.37%. The in vitro releasing of DOX and 5-ALA was observed through the UV-vis spectroscopy by the λmax value of 487 nm and 253 nm, respectively. By the investigation against the breast MCF-7 cancer cells, the high cytotoxicity and morphological changes of cancer cells were observed by the treating of DOX/5-ALA-CQD-Glu-β-CD. The generation of reactive oxygen species (ROS) upon 635 nm (25 mW cm-2) for 15 min laser irradiation-induced improved the therapeutic effects. In vitro cellular uptake studies recommend the synthesized DOX/5-ALA-CQD-Glu-β-CD nanocarrier could significantly enhance the cell apoptosis and assist in the MCF-7 cell damages. The result suggests a multifunctional therapeutic system for chemo/photodynamic synergistic effects on cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Department of Medical Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Kandasamy Vinothini
- Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India.,Department of Natural Products Chemistry, School of Chemistry, Biomaterials in Medicinal Chemistry Laboratory, Madurai Kamaraj University, Madurai, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Biomaterials in Medicinal Chemistry Laboratory, Madurai Kamaraj University, Madurai, India
| | - Andy Ramu
- Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
18
|
Keratin nanoparticles and photodynamic therapy enhance the anticancer stem cells activity of salinomycin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111899. [DOI: 10.1016/j.msec.2021.111899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 12/20/2022]
|
19
|
Liew HS, Mai CW, Zulkefeli M, Madheswaran T, Kiew LV, Delsuc N, Low ML. Recent Emergence of Rhenium(I) Tricarbonyl Complexes as Photosensitisers for Cancer Therapy. Molecules 2020; 25:E4176. [PMID: 32932573 PMCID: PMC7571230 DOI: 10.3390/molecules25184176] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is emerging as a significant complementary or alternative approach for cancer treatment. PDT drugs act as photosensitisers, which upon using appropriate wavelength light and in the presence of molecular oxygen, can lead to cell death. Herein, we reviewed the general characteristics of the different generation of photosensitisers. We also outlined the emergence of rhenium (Re) and more specifically, Re(I) tricarbonyl complexes as a new generation of metal-based photosensitisers for photodynamic therapy that are of great interest in multidisciplinary research. The photophysical properties and structures of Re(I) complexes discussed in this review are summarised to determine basic features and similarities among the structures that are important for their phototoxic activity and future investigations. We further examined the in vitro and in vivo efficacies of the Re(I) complexes that have been synthesised for anticancer purposes. We also discussed Re(I) complexes in conjunction with the advancement of two-photon PDT, drug combination study, nanomedicine, and photothermal therapy to overcome the limitation of such complexes, which generally absorb short wavelengths.
Collapse
Affiliation(s)
- Hui Shan Liew
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| | - Mohd Zulkefeli
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| | - Thiagarajan Madheswaran
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France;
| | - May Lee Low
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (M.Z.); (T.M.)
| |
Collapse
|
20
|
Mó I, Sabino IJ, Melo-Diogo DD, Lima-Sousa R, Alves CG, Correia IJ. The importance of spheroids in analyzing nanomedicine efficacy. Nanomedicine (Lond) 2020; 15:1513-1525. [PMID: 32552537 DOI: 10.2217/nnm-2020-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of nanomedicines for cancer treatment holds a great potential due to their improved efficacy and safety. During the nanomedicine preclinical in vitro evaluation stage, these are mainly tested on cell culture monolayers. However, these 2D models are an unrealistic representation of the in vivo tumors, leading to an inaccurate screening of the candidate formulations. To address this problem, spheroids are emerging as an additional tool to validate the efficacy of new therapeutics due to the ability of these 3D in vitro cancer models to mimic the key features displayed by in vivo solid tumors. In this review, the application of spheroids for the evaluation of nanomedicines' physicochemical properties and therapeutic efficacy is discussed.
Collapse
Affiliation(s)
- Inês Mó
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Ivo J Sabino
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506, Covilhã, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790, Coimbra, Portugal
| |
Collapse
|
21
|
Gaio E, Conte C, Esposito D, Reddi E, Quaglia F, Moret F. CD44 Targeting Mediated by Polymeric Nanoparticles and Combination of Chlorine TPCS 2a-PDT and Docetaxel-Chemotherapy for Efficient Killing of Breast Differentiated and Stem Cancer Cells In Vitro. Cancers (Basel) 2020; 12:E278. [PMID: 31979218 PMCID: PMC7072409 DOI: 10.3390/cancers12020278] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
The presence of rare but highly tumorigenic cancer stem cells (CSCs) within the tumors is recognized as one of the major reasons of failure of conventional chemotherapies, mainly attributed to the development of drug resistance and increasing metastatic potential. Here, we propose a therapeutic strategy based on the simultaneous delivery of docetaxel (DTX) and the photosensitizer meso-tetraphenyl chlorine disulfonate (TPCS2a) using hyaluronic acid (HA) coated polymeric nanoparticles (HA-NPs) for the targeting and killing of CD44 over-expressing breast cancer (BC) cells, both differentiated and CSCs (CD44high/CD24low population), thus combining chemotherapy and photodynamic therapy (PDT). Using the CD44high MDA-MB-231 and the CD44low MCF-7 cells, we demonstrated the occurrence of CD44-mediated uptake of HA-NPs both in monolayers and mammosphere cultures enriched in CSCs. Cell treatments showed that combination therapy using co-loaded NPs (HA@DTX/TPCS2a-NPs) had superior efficacy over monotherapies (HA@DTX-NPs or HA@TPCS2a-NPs) in reducing the self-renewal capacity, measured as mammosphere formation efficiency, and in eradicating the CSC population evaluated with aldehyde dehydrogenase activity assay and CD44/CD24 immunostaining. In summary, these in vitro studies demonstrated for the first time the potential of the combination of DTX-chemotherapy and TPCS2a-PDT for killing CSCs using properly designed NPs.
Collapse
Affiliation(s)
- Elisa Gaio
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Elena Reddi
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| |
Collapse
|