1
|
Mendonça I, Silva D, Conde T, Maurício T, Cardoso H, Pereira H, Bartolomeu M, Vieira C, Domingues MR, Almeida A. Insight into the efficiency of microalgae' lipidic extracts as photosensitizers for Antimicrobial Photodynamic Therapy against Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:112997. [PMID: 39137701 DOI: 10.1016/j.jphotobiol.2024.112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Antibacterial resistance causes around 1.27 million deaths annually around the globe and has been recognized as a top 3 priority health threat. Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative to conventional antibiotic treatments. Algal lipid extracts have shown antibacterial effects when used as photosensitizers (PSs) in aPDT. In this work we assessed the photodynamic efficiency of lipidic extracts of microalgae belonging to different phyla (Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta, Ochrophyta and Rhodophyta). All the extracts (at 1 mg mL-1) demonstrated a reduction of Staphylococcus aureus >3 log10 (CFU mL-1), exhibiting bactericidal activity. Bacillariophyta and Haptophyta extracts were the top-performing phyla against S. aureus, achieving a reduction >6 log10 (CFU mL-1) with light doses of 60 J cm-2 (Bacillariophyta) and 90 J cm-2 (Haptophyta). The photodynamic properties of the Bacillariophyta Phaeodactylum tricornutum and the Haptophyta Tisochrysis lutea, the best effective microalgae lipid extracts, were also assessed at lower concentrations (75 μg mL-1, 7.5 μg mL-1, and 3.75 μg mL-1), reaching, in general, inactivation rates higher than those obtained with the widely used PSs, such as Methylene Blue and Chlorine e6, at lower concentration and light dose. The presence of chlorophyll c, which can absorb a greater amount of energy than chlorophylls a and b; rich content of polyunsaturated fatty acids (PUFAs) and fucoxanthin, which can also produce ROS, e.g. singlet oxygen (1O2), when photo-energized; a lack of photoprotective carotenoids such as β-carotene, and low content of tocopherol, were associated with the algal extracts with higher antimicrobial activity against S. aureus. The bactericidal activity exhibited by the extracts seems to result from the photooxidation of microalgae PUFAs by the 1O2 and/or other ROS produced by irradiated chlorophylls/carotenoids, which eventually led to bacterial lipid peroxidation and cell death, but further studies are needed to confirm this hypothesis. These results revealed the potential of an unexplored source of natural photosensitizers (microalgae lipid extracts) that can be used as PSs in aPDT as an alternative to conventional antibiotic treatments, and even to conventional PSs, to combat antibacterial resistance.
Collapse
Affiliation(s)
- Inês Mendonça
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Silva
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tatiana Maurício
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Hugo Pereira
- GreenColab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Bartolomeu
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505 Viseu, Portugal
| | - Cátia Vieira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Cui S, Guo X, Wang S, Wei Z, Huang D, Zhang X, Zhu TC, Huang Z. Singlet Oxygen in Photodynamic Therapy. Pharmaceuticals (Basel) 2024; 17:1274. [PMID: 39458915 PMCID: PMC11510636 DOI: 10.3390/ph17101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that depends on the interaction of light, photosensitizers, and oxygen. The photon absorption and energy transfer process can lead to the Type II photochemical reaction of the photosensitizer and the production of singlet oxygen (1O2), which strongly oxidizes and reacts with biomolecules, ultimately causing oxidative damage to the target cells. Therefore, 1O2 is regarded as the key photocytotoxic species accountable for the initial photodynamic reactions for Type II photosensitizers. This article will provide a comprehensive review of 1O2 properties, 1O2 production, and 1O2 detection in the PDT process. The available 1O2 data of regulatory-approved photosensitizing drugs will also be discussed.
Collapse
Affiliation(s)
- Shengdong Cui
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Xingran Guo
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Sen Wang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Zhe Wei
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Deliang Huang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Xianzeng Zhang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Huang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| |
Collapse
|
3
|
Steen CJ, Niklas J, Poluektov OG, Schaller RD, Fleming GR, Utschig LM. EPR Spin-Trapping for Monitoring Temporal Dynamics of Singlet Oxygen during Photoprotection in Photosynthesis. Biochemistry 2024; 63:1214-1224. [PMID: 38679935 PMCID: PMC11080054 DOI: 10.1021/acs.biochem.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).
Collapse
Affiliation(s)
- Collin J. Steen
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jens Niklas
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D. Schaller
- Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Graham R. Fleming
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lisa M. Utschig
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
5
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
6
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Kondo M, Aoki M, Hirai K, Ito R, Tsuzuki M, Sato N. Plastoquinone Lipids: Their Synthesis via a Bifunctional Gene and Physiological Function in a Euryhaline Cyanobacterium, Synechococcus sp. PCC 7002. Microorganisms 2023; 11:1177. [PMID: 37317151 DOI: 10.3390/microorganisms11051177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Eukaryotic photosynthetic organisms synthesize triacylglycerols, which are crucial physiologically as major carbon and energy storage compounds and commercially as food oils and raw materials for carbon-neutral biofuel production. TLC analysis has revealed triacylglycerols are present in several cyanobacteria. However, mass spectrometric analysis has shown that freshwater cyanobacterium, Synechocystis sp. PCC 6803, contains plastoquinone-B and acyl plastoquinol with triacylglycerol-like TLC mobility, concomitantly with the absence of triacylglycerol. Synechocystis contains slr2103, which is responsible for the bifunctional synthesis of plastoquinone-B and acyl plastoquinol and also for NaCl-stress acclimatizing cell growth. However, information is limited on the taxonomical distribution of these plastoquinone lipids, and their synthesis genes and physiological roles in cyanobacteria. In this study, a euryhaline cyanobacterium, Synechococcus sp. PCC 7002, shows the same plastoquinone lipids as those in Synechocystis, although the levels are much lower than in Synechocystis, triacylglycerol being absent. Furthermore, through an analysis of a disruptant to the homolog of slr2103 in Synechococcus, it is found that the slr2103 homolog in Synechococcus, similar to slr2103 in Synechocystis, contributes bifunctionally to the synthesis of plastoquinone-B and acyl plastoquinol; however, the extent of the contribution of the homolog gene to NaCl acclimatization is smaller than that of slr2103 in Synechocystis. These observations suggest strain- or ecoregion-dependent development of the physiological roles of plastoquinone lipids in cyanobacteria and show the necessity to re-evaluate previously identified cyanobacterial triacylglycerol through TLC analysis with mass spectrometric techniques.
Collapse
Affiliation(s)
- Mimari Kondo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motohide Aoki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuho Hirai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ryo Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mikio Tsuzuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norihiro Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
8
|
Boussardon C, Carrie C, Keech O. Comparing plastid proteomes points towards a higher plastidial redox turnover in vascular tissues than in mesophyll cells. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad133. [PMID: 37026385 PMCID: PMC10400147 DOI: 10.1093/jxb/erad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 06/19/2023]
Abstract
Plastids are complex organelles that vary in size and function depending on the cell type. Accordingly, they can be referred to as amyloplasts, chloroplasts, chromoplasts, etioplasts, proplasts to only cite a few denominations. Over the past decades, methods based on density gradients and differential centrifugations have been extensively used for the purification of plastids. However, these methods need large amounts of starting material, and hardly provide a tissue-specific resolution. Here, we applied our IPTACT (Isolation of Plastids TAgged in specific Cell Types) method, which involves the biotinylation of plastids in vivo using one-shot transgenic lines expressing the TOC64 gene coupled with a biotin ligase receptor particle and the BirA biotin ligase, to isolate plastids from mesophyll and companion cells of Arabidopsis thaliana using tissue specific pCAB3 and pSUC2 promoters, respectively. Subsequently, a proteome profiling was performed, and allowed the identification of 1672 proteins, among which 1342 were predicted plastidial, and 705 were fully confirmed according to SUBA5. Interestingly, although 92% of plastidial proteins were equally distributed between the two tissues, we observed an accumulation of proteins associated with jasmonic acid biosynthesis, plastoglobuli (e.g. NDC1, VTE1, PGL34, ABC1K1) and cyclic electron flow in plastids originating from vascular tissues. Besides demonstrating the technical feasibility of isolating plastids in a tissue-specific manner, our work provides strong evidence that plastids from vascular tissue have a higher redox turnover to ensure optimal functioning, notably under high solute strength as encountered in vascular cells.
Collapse
Affiliation(s)
- Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science, Umeå University, S-90187 Umeå, Sweden
| | - Chris Carrie
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland,1142, New Zealand
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
9
|
Tasaka T, Matsumoto T, Nagashima U, Nagaoka SI. Potential energy curve for singlet-oxygen quenching reaction by vitamin E. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
11
|
Kondo M, Aoki M, Hirai K, Sagami T, Ito R, Tsuzuki M, Sato N. slr2103, a homolog of type-2 diacylglycerol acyltransferase genes, for plastoquinone-related neutral lipid synthesis and NaCl-stress acclimatization in a cyanobacterium, Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2023; 14:1181180. [PMID: 37180399 PMCID: PMC10171310 DOI: 10.3389/fpls.2023.1181180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
A cyanobacterium, Synechocystis sp. PCC 6803, contains a lipid with triacylglycerol-like TLC mobility but its identity and physiological roles remain unknown. Here, on ESI-positive LC-MS2 analysis, it is shown that the triacylglycerol-like lipid (lipid X) is related to plastoquinone and can be grouped into two subclasses, Xa and Xb, the latter of which is esterified by 16:0 and 18:0. This study further shows that a Synechocystis homolog of type-2 diacylglycerol acyltransferase genes, slr2103, is essential for lipid X synthesis: lipid X disappears in a Synechocystis slr2103-disruptant whereas it appears in an slr2103-overexpressing transformant (OE) of Synechococcus elongatus PCC 7942 that intrinsically lacks lipid X. The slr2103 disruption causes Synechocystis cells to accumulate plastoquinone-C at an abnormally high level whereas slr2103 overexpression in Synechococcus causes the cells to almost completely lose it. It is thus deduced that slr2103 encodes a novel acyltransferase that esterifies 16:0 or 18:0 with plastoquinone-C for the synthesis of lipid Xb. Characterization of the slr2103-disruptant in Synechocystis shows that slr2103 contributes to sedimented-cell growth in a static culture, and to bloom-like structure formation and its expansion by promoting cell aggregation and floatation upon imposition of saline stress (0.3-0.6 M NaCl). These observations provide a basis for elucidation of the molecular mechanism of a novel cyanobacterial strategy to acclimatize to saline stress, and one for development of a system of seawater-utilization and economical harvesting of cyanobacterial cells with high-value added compounds, or blooming control of toxic cyanobacteria.
Collapse
|
12
|
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S. To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death? Cells 2022; 11:cells11244105. [PMID: 36552869 PMCID: PMC9777155 DOI: 10.3390/cells11244105] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the environmental and organism context, oxidative stress is complex and unavoidable. Organisms simultaneously cope with a various combination of stress factors in natural conditions. For example, excess light stress is accompanied by UV stress, heat shock stress, and/or water stress. Reactive oxygen species (ROS) and antioxidant molecules, coordinated by electrical signalling (ES), are an integral part of the stress signalling network in cells and organisms. They together regulate gene expression to redirect energy to growth, acclimation, or defence, and thereby, determine cellular stress memory and stress crosstalk. In plants, both abiotic and biotic stress increase energy quenching, photorespiration, stomatal closure, and leaf temperature, while toning down photosynthesis and transpiration. Locally applied stress induces ES, ROS, retrograde signalling, cell death, and cellular light memory, then acclimation and defence responses in the local organs, whole plant, or even plant community (systemic acquired acclimation, systemic acquired resistance, network acquired acclimation). A simplified analogy can be found in animals where diseases vs. fitness and prolonged lifespan vs. faster aging, are dependent on mitochondrial ROS production and ES, and body temperature is regulated by sweating, temperature-dependent respiration, and gene regulation. In this review, we discuss the universal features of stress factors, ES, the cellular production of ROS molecules, ROS scavengers, hormones, and other regulators that coordinate life and death.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- W. Szafer Institute of Botany of the Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| | - Roshanak Zarrin Ghalami
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Muhammad Kamran
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Frank Van Breusegem
- UGent Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| |
Collapse
|
13
|
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112548. [PMID: 36067596 DOI: 10.1016/j.jphotobiol.2022.112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.
Collapse
Affiliation(s)
- Gilberto Ú L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | | | - Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, United Kingdom.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
14
|
Xiao R, Zou Y, Guo X, Li H, Lu H. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol Biol Rep 2022; 49:9997-10011. [PMID: 35819557 DOI: 10.1007/s11033-022-07568-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biological and abiotic stresses such as salt, extreme temperatures, and pests and diseases place major constraints on plant growth and crop yields. Fatty acids (FAs) and FA- derivatives are unique biologically active substance that show a wide range of functions in biological systems. They are not only participated in the regulation of energy storage substances and cell membrane plasm composition, but also extensively participate in the regulation of plant basic immunity, effector induced resistance and systemic resistance and other defense pathways, thereby improving plant resistance to adversity stress. Fatty acid desaturases (FADs) is involved in the desaturation of fatty acids, where desaturated fatty acids can be used as substrates for FA-derivatives. OBJECTIVE In this paper, the role of omega-FADs (ω-3 FADs and ω-6 FADs) in the prokaryotic and eukaryotic pathways of fatty acid biosynthesis in plant defense against stress (biological and abiotic stress) and the latest research progress were summarized. Moreover' the existing problems in related research and future research directions were also discussed. RESULTS Fatty acid desaturases are involved in various responses of plants during biotic and abiotic stress. For example, it is involved in regulating the stability and fluidity of cell membranes, reactive oxygen species signaling pathways, etc. In this review, we have collected several experimental studies to represent the differential effects of fatty acid desaturases on biotic and abiotic species. CONCLUSION Fatty acid desaturases play an important role in regulating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ruixue Xiao
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Yirong Zou
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Xiaorui Guo
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hai Lu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
15
|
Zhang QW, Kong CL, Tao YS. Fate of carotenoids in yeasts: synthesis and cleavage. Crit Rev Food Sci Nutr 2022; 63:7638-7652. [PMID: 35275506 DOI: 10.1080/10408398.2022.2048352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids and their cleavage products (norisoprenoids) have excellent functional properties with diverse applications in foods, medicaments, cosmetics, etc. Carotenoids can be oxidatively cleaved through nonspecific reactions or by carotenoid cleavage oxygenases (CCOs), the product of which could further modify food flavor. This review provides comprehensive information on both carotenoid synthesis and cleavage processes with emphasis on enzyme characterization and biosynthetic pathway optimization. The use of interdisciplinary approaches of bioengineering and computer-aided experimental technology for key enzyme modification and systematic pathway design is beneficial to monitor metabolic pathways and assess pathway bottlenecks, which could efficiently lead to accumulation of carotenoids in microorganisms. The identification of CCOs spatial structures isolated from different species has made a significant contribution to the current state of knowledge. Current trends in carotenoid-related flavor modification are also discussed. In particular, we propose the carotenoid-synthesizing yeast Rhodotorula spp. for the production of food bioactive compounds. Understanding the behavior underlying the formation of norisoprenoids from carotenoids using interdisciplinary approaches may point toward other areas of investigation that could lead to better exploiting the potential use of autochthonous yeast in flavor enhancement.
Collapse
Affiliation(s)
- Qian-Wei Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cai-Lin Kong
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Sheng Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, China
| |
Collapse
|
16
|
Dixit N. Salinity Induced Antioxidant Defense in Roots of Industrial Hemp (IH: Cannabis sativa L.) for Fiber during Seed Germination. Antioxidants (Basel) 2022; 11:antiox11020244. [PMID: 35204127 PMCID: PMC8868197 DOI: 10.3390/antiox11020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Global climate change induced sea level rise, rainfed agriculture, poor quality irrigation water, and seawater intrusion through interconnected ditches and inland waterways cause soil salinity in inland and coastal areas. To reclaim and prevent further soil erosion, salt tolerant crops are required. Industrial Hemp (IH: Cannabis sativa L.) is used for food, fiber, and medicinal purposes throughout the world. In spite of that, little is known about the salt tolerance mechanisms in IH. Seed germination and development of the roots are the primary events in the life cycle of a plant, which directly interact with soil salinity. Therefore, in vitro germination experiments were conducted on the roots of 5-day-old seedlings using four varieties (V1: CFX-2, V2: Joey, V3: Bialobrzeskie, and V4: Henola) of IH for fiber. Five salinity treatments (0, 50, 80, 100, 150, and 200 mM NaCl) were used to screen the IH varieties on the basis of I: seed germination percent (SGP), II: quantitative morphological observations (root length (RL) and root fresh weight (RFW)), III: oxidative stress indices (hydrogen peroxide (H2O2) and lipid peroxidation), and IV: antioxidant defense system comprises of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPOD), ascorbate peroxidase (APOD), glutathione reductase (GR). The varieties V1 and V3 showed salt tolerance up to 100 mM by maintaining higher SGP, less reduction in RL and RFW. These roots in V1 and V3 showed lower levels of H2O2 and lipid peroxidation by displaying higher activities of SOD, CAT, GPOD, APOD, and GR while a reciprocal trend was observed in V4. However, roots in V2 showed higher activities of antioxidant enzymes with lower levels of H2O2 and lipid peroxidation, but showed declines in RL and RFW at 80 mM NaCl onward. Roots in V4 were the most susceptible to NaCl stress at 50 mM and onward.
Collapse
Affiliation(s)
- Naveen Dixit
- Department of Agriculture Food and Resources Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
17
|
Nowicka B, Trela-Makowej A, Latowski D, Strzalka K, Szymańska R. Antioxidant and Signaling Role of Plastid-Derived Isoprenoid Quinones and Chromanols. Int J Mol Sci 2021; 22:2950. [PMID: 33799456 PMCID: PMC7999835 DOI: 10.3390/ijms22062950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| |
Collapse
|