1
|
Yang W, Bu C, Zhao M, Li Y, Cui S, Yang J, Lian H. Full-Spectrum Utilization of ZIF-67/Ag NPs/NaYF 4:Yb,Er Photocatalysts for Efficient Degradation of Sulfadiazine: Upconversion Mechanism and DFT Calculation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309972. [PMID: 38279615 DOI: 10.1002/smll.202309972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Indexed: 01/28/2024]
Abstract
In this work, novel ternary composite ZIF-67/Ag NPs/NaYF4:Yb,Er is synthesized by solvothermal method. The photocatalytic activity of the composite is evaluated by sulfadiazine (SDZ) degradation under simulated sunlight. High elimination efficiency of the composite is 95.4% in 180 min with good reusability and stability. The active species (h+, ·O2 - and ·OH) are identified. The attack sites and degradation process of SDZ are deeply investigated based on theoretical calculation and liquid chromatography-mass spectrometry analysis. The upconversion mechanism study shows that favorable photocatalytic effectiveness is attributed to the full utilization of sunlight through the energy transfer upconversion process and fluorescence resonance energy transfer. Additionally, the composite is endowed with outstanding light-absorbing qualities and effective photogenerated electron-hole pair separation thanks to the localized surface plasmon resonance effect of Ag nanoparticles. This work can motivate further design of novel photocatalysts with upconversion luminescence performance, which are applied to the removal of sulphonamide antibiotics in the environment.
Collapse
Affiliation(s)
- Weijin Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Bu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Hongzhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Wang Z, Zhao D, Wei Q, Lan Y, Li W. Cobalt-bismuth bimetallic composite anchored on carbon derived from cigarette butts as peroxymonosulfate activator for rapid removal of chloramphenicol. CHEMOSPHERE 2023; 312:137156. [PMID: 36368532 DOI: 10.1016/j.chemosphere.2022.137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Chloramphenicol (CAP) is a typical kind of antibiotics, which has posed a severe threat to nature and human beings due to its wide application. In this study, cobalt-bismuth bimetallic composite anchored on carbon derived from cigarette butts (Co-Bi@CCB) was prepared to activate peroxymonosulfate (PMS) for the removal of CAP. Our results demonstrated Co-Bi@CCB not only possessed excellent catalytic performance, but also significantly limited metal ions dissolution. Over 98% of CAP (10 mg/L) was degraded in the presence of Co-Bi@CCB (0.05 g/L) and PMS (1 mM) within 20 min at pH = 7. Quenching tests and electron paramagnetic resonance (EPR) spectrometry confirmed that SO4•-, •OH, and 1O2 led to the rapid decomposition of CAP. Combined with X-ray photoelectron spectroscopy (XPS) of Co-Bi@CCB before and after reaction, the mechanism of PMS activation was deduced. Finally, the possible pathways of CAP degradation was further speculated according to the intermediates determination by high-performance liquid chromatography equipped with high resolution mass spectrometer (HPLC-HRMS). Thus, the present study provides a new strategy to utilize discarded cigarette butts (recycled materials) as a carrier to fabricate novel and efficient catalysts to activate PMS for the removal of organic contaminants.
Collapse
Affiliation(s)
- Zihao Wang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Daoyuan Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qianqian Wei
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Wei Li
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210019, PR China.
| |
Collapse
|
3
|
Ye C, Ma X, Deng J, Li X, Li Q, Dietrich AM. Degradation of saccharin by UV/H 2O 2 and UV/PS processes: A comparative study. CHEMOSPHERE 2022; 288:132337. [PMID: 34592214 DOI: 10.1016/j.chemosphere.2021.132337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Artificial sweeteners have raised emerging concern due to their potential threats to human health, which were frequently detected in aquatic environment with median concentrations. Although current researches have widely reported that ultraviolet light-activated persulfate process (UV/PS) was superior to UV/H2O2 process for the degradation of refractory organic contaminants, UV/H2O2 process presented a more satisfactory saccharin (SAC) removal efficiency than UV/PS process, completely degraded 20 mg/L SAC within 45 min. Hence, quenching and probe experiments were employed to investigate the difference between hydroxyl radical (OH)- and sulfate radical (SO4-)-mediated oxidation mechanisms, which revealed the higher reactivity of OH (1.37-1.56 × 109 M-1 s-1) toward SAC than SO4- (3.84-4.13 × 108 M-1 s-1). A combination of density functional theory calculation and transformation products identification disclosed that OH preferred to attack the benzene ring of SAC via hydrogen atom transfer pathway, whereas SO4- oxidation was conducive to the cleavage of -C-NH2 bond. Increasing oxidant concentration significantly accelerated SAC degradation in both processes, while UV/H2O2 process consumed lower electrical energy with respect to UV/PS process. Additionally, UV/H2O2 system presented excellent adaptability and stability under various water matrices parameters (e.g. pH, anions and humic acid). While both UV/H2O2 and UV/PS processes promoted the generation of disinfection by-products (DBPs) during subsequent chlorination, and prolonging pretreatment time posed positive effect on reducing the formation of DBPs. Overall, the results clearly demonstrate the high efficiency, economy and practicality of UV/H2O2 process in the remediation of SAC-contaminated water.
Collapse
Affiliation(s)
- Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Rodríguez-Blanco LAJ, Ocampo-Pérez R, Gómez-Durán CFA, Mojica-Sánchez JP, Razo-Hernández RS. Removal of sulfamethoxazole, sulfadiazine, and sulfamethazine by UV radiation and HO • and SO 4•- radicals using a response surface model and DFT calculations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41609-41622. [PMID: 32691321 DOI: 10.1007/s11356-020-10071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, the degradation of sulfamethazine (SMT), sulfadiazine (SMD), and sulfamethoxazole (SMX) by using UV light, UV/H2O2, and UV/S2O8-2 was analyzed. Direct photolysis was studied by varying the lamp power and the solution pH. DFT calculations were carried out to corroborate the efficiency of the degradation as a function of the solution pH. The variation of the apparent rate constant, kap, was determined in the indirect photolysis by employing an experimental Box-Behnken-type response surface design. The results evidenced that SMX can be efficiently degraded by applying UV radiation independent of the operating conditions. Nevertheless, the quantum yields for SMT and SMD were close to zero, indicating a low energy efficiency for their photochemical transformation. The effect of the solution pH showed that the photodegradation of sulfonamides depends both on the amount of radiation absorbed as the electronic density. Calculations based on density functional theory and supported by the quantum theory of atoms in molecules allowed to describe fragmentation patterns in the systems under study, proving the lability of S14-C2, N17-C18, and N22-O22 bonds, for SMT, SMD, and SMX, respectively. From response surface methodology, four statistically reliable equations were obtained to determine the kap value as a function of the system operating conditions. Finally, SO4•- radicals proved to have a higher reactivity to degrade SMT and SMD compared with HO• radicals regardless of the operating conditions of the system.
Collapse
Affiliation(s)
- Luis A J Rodríguez-Blanco
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico.
| | - Cesar F A Gómez-Durán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Juan P Mojica-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez Campus Tamazula de Gordiano, Carretera Tamazula-Santa Rosa No. 329, 49650, Tamazula de Gordiano, Jalisco, Mexico
| | - Rodrigo S Razo-Hernández
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Mexico
| |
Collapse
|
5
|
Hu ZT, Liu JW, Zhao J, Ding Y, Jin Z, Chen J, Dai Q, Pan B, Chen Z, Chen J. Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways. J Colloid Interface Sci 2020; 577:54-65. [DOI: 10.1016/j.jcis.2020.05.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
|
6
|
Loureiro Dos Louros V, Silva CP, Nadais H, Otero M, Esteves VI, Lima DLD. Photodegradation of sulfadiazine in different aquatic environments - Evaluation of influencing factors. ENVIRONMENTAL RESEARCH 2020; 188:109730. [PMID: 32516634 DOI: 10.1016/j.envres.2020.109730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The presence of antibiotics, such as sulfadiazine (SDZ), in the aquatic environment contributes to the generation of antimicrobial resistance, which is a matter of great concern. Photolysis is known to be a major degradation pathway for SDZ in surface waters. Therefore, influencing factors affecting SDZ photodegradation in different aquatic environments were here evaluated in order to have a better knowledge about its persistence in the environment. Photodegradation of SDZ was found to be more efficient at higher pH (t1/2 = 6.76 h, at pH = 7.3; t1/2 = 12.2 h, at pH = 6.3), in the presence of humic substances (HS) (t1/2 between 1.76 and 2.42 h), as well as in the presence of NaCl (t1/2 = 1.00 h) or synthetic sea salts (t1/2 = 0.78 h). Using ˙OH and 1O2 scavengers, it was possible to infer that direct photolysis was the main pathway for SDZ photodegradation in ultrapure water. Furthermore, results under N2 purging confirmed that 1O2 was not relevant in the phototransformation of SDZ. Then, the referred observations were used for the interpretation of results obtained in environmental matrices, namely the final effluent of a sewage treatment plant (STPF), fresh and brackish water (t1/2 between 2.3 and 3.48 h), in which SDZ photodegradation was found to be much faster than in ultrapure water (t1/2 = 6.76 h).
Collapse
Affiliation(s)
- Vitória Loureiro Dos Louros
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patrícia Silva
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Helena Nadais
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Otero
- CESAM & Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Li MR, Liu FF, Wang SC, Cheng X, Zhang H, Huang TY, Liu GZ. Phototransformation of zinc oxide nanoparticles and coexisting pollutant: Role of reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138335. [PMID: 32361107 DOI: 10.1016/j.scitotenv.2020.138335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
In this study, the photochemistry of ZnO NPs and their effect on phototransformation of coexisting pollutants (sulfamethazine, SMZ) were systematically investigated under UV illumination. SMZ (40 μM) degradation was accelerated by ZnO NPs, as the observed reaction rate constant (kobs) increased from 0.0809 h-1 to 0.7982 h-1 at the concentration of 5-50 mg/L ZnO NPs. Free radical quenching and quantification experiments indicated the reactive oxygen species, especially the hydroxyl radicals (OH) and singlet oxygen (1O2), made great contributions to SMZ degradation. Moreover, SMZ was prone to be degraded at high pH with kobs reaching upto 0.5734 h-1 at pH 12.0. The presence of Cl- (1000 mM) reduced the SMZ decomposition greatly by 2.4-fold while the effects of SO42- (30 mM) were very limited. Natural organic matter including humic acid and tannic acid both inhibited the degradation of SMZ with kobs decreasing by 35.4-fold and 132-fold, respectively. During the photoreaction process, ZnO NPs fragmented into relative small size pieces obviously along with the release of Zn2+. Finally, the possible cotransformation pathways of ZnO NPs and SMZ were proposed based on SMZ degradation intermediates and the above results. These findings of the present study suggested that the photoreactions of ZnO NPs greatly influenced the transformation of contaminants and ZnO NPs themselves in aquatic environment, which may have significant implications for the fate assessment of NPs and environmental pollutants.
Collapse
Affiliation(s)
- Meng-Ru Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| | - Su-Chun Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Xin Cheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Huan Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Tian-Yuan Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Guang-Zhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
8
|
Comparative Study of the Oxidative Degradation of Different 4-Aminobenzene Sulfonamides in Aqueous Solution by Sulfite Activation in the Presence of Fe(0), Fe(II), Fe(III) Or Fe(VI). WATER 2019. [DOI: 10.3390/w11112332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study is focused on advanced oxidation technologies (AOTs) using the combined effect of Fe(0–VI)/sulfite systems, that produce mainly SO4•− radicals, to remove different 4-aminobenzene sulfonamides (SAs), namely sulfamethazine, sulfadiazine, sulfamethizole, from aqueous solutions. Results obtained showed that neither sulfite nor iron alone is able to degrade SAs; however, the combined effect depends on the oxidation state of iron species whose effectiveness to activate sulfite to promote the degradation of SAs increased following this order: Fe(III) < Fe(II) < Fe(0) < Fe(VI). Using Fe(VI)/sulfite, the complete removal of SAs was obtained in 5 min largely surpassing the effectiveness of the other three systems. The sulfonamides’ removal percentage was markedly influenced by sulfite concentration and dissolved oxygen, which improved the generation of oxidant radicals. Response surface methodology was applied, and a quadratic polynomial model was obtained, which allowed us to determine the percentage of SAs degradation as a function of both the iron species and sulfite concentrations. The study of the influence of the water matrix on these AOTs revealed an inhibition of SAs’ removal percentage when using ground water. This is probably due to the presence of different anions, such as HCO3−, Cl−, and SO42− in relatively high concentrations. According to the byproducts identified, the proposed degradation pathways include hydroxylation, SO2 extrusion, and different bond-cleavage processes. Cytotoxicity of degradation byproducts, using MTS assay with HEK 293 and J774 cell lines for the first time, did not show an inhibition in cell proliferation, sustaining the safety of the process.
Collapse
|
9
|
Xia C, Geng H, Li X, Zhang Y, Wang F, Tang X, Blake RE, Li H, Chang SJ, Yu C. Mechanism of methylphosphonic acid photo-degradation based on phosphate oxygen isotopes and density functional theory. RSC Adv 2019; 9:31325-31332. [PMID: 35527942 PMCID: PMC9072446 DOI: 10.1039/c9ra05169d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022] Open
Abstract
Methylphosphonic acid (MPn) is an intermediate in the synthesis of the phosphorus-containing nerve agents, such as sarin and VX, and a biosynthesis product of marine microbes with ramifications to global climate change and eutrophication. Here, we applied the multi-labeled water isotope probing (MLWIP) approach to investigate the C-P bond cleavage mechanism of MPn under UV irradiation and density functional theory (DFT) to simulate the photo-oxidation reaction process involving reactive oxygen species (ROS). The results contrasted with those of the addition of the ROS-quenching compounds, 2-propanol and NaN3. The degradation kinetics results indicated that the extent of MPn degradation was more under alkaline conditions and that the degradation process was more rapid at the initial stage of the reaction. The phosphate oxygen isotope data confirmed that one exogenous oxygen atom was incorporated into the product orthophosphate (PO4) following the C-P bond cleavage, and the oxygen isotopic composition of this free PO4 was found to vary with pH. The combined results of the ROS-quenching experiments and DFT indicate that the C-P bond was cleaved by OH-/˙OH and not by other reactive oxygen species. Based on these results, we have established a mechanistic model for the photolysis of MPn, which provides new insights into the fate of MPn and other phosphonate/organophosphate compounds in the environment.
Collapse
Affiliation(s)
- Congcong Xia
- Jiangxi Transportation Institute China 809 Jinsha Road 330038 Nanchang China
- School of Energy & Environmental Engineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Xiaobao Li
- Jiangxi Transportation Institute China 809 Jinsha Road 330038 Nanchang China
| | - Yiyue Zhang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences, Sun Yet-sen University 510006 Guangzhou China
| | - R E Blake
- School of Energy & Environmental Engineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
- Department of Geology and Geophysics, Yale University P.O. Box 208109 New Haven CT 06520-8109 USA
| | - Hui Li
- Department of Geology and Geophysics, Yale University P.O. Box 208109 New Haven CT 06520-8109 USA
| | - Sae Jung Chang
- Department of Geology and Geophysics, Yale University P.O. Box 208109 New Haven CT 06520-8109 USA
| | - Chan Yu
- School of Energy & Environmental Engineering, University of Science and Technology Beijing 30 Xueyuan Road 100083 Beijing China
| |
Collapse
|
10
|
Ge L, Zhang P, Halsall C, Li Y, Chen CE, Li J, Sun H, Yao Z. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: kinetics, pathways, and comparisons with direct photolysis. WATER RESEARCH 2019; 149:243-250. [PMID: 30448736 DOI: 10.1016/j.watres.2018.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 11/04/2018] [Indexed: 05/08/2023]
Abstract
Sulfonamide antibiotics (SAs) are increasingly detected as aquatic contaminants and exist as different dissociated species depending on the pH of the water. Their removal in sunlit surface waters is governed by photochemical transformation. Here we report a detailed examination of the hydroxyl radical (•OH) and singlet oxygen (1O2) mediated photooxidation of nine SAs: sulfamethoxazole, sulfisoxazole, sulfamethizole, sulfathiazole, sulfamethazine, sulfamerazine, sulfadiazine, sulfachloropyridazine and sulfadimethoxine. Both •OH and 1O2 oxidation kinetics varied depending on the dominant protonated states of the SA in question (H2SAs+, HSAs0 and SAs-) as a function of pH. Based on competition kinetic experiments and matrix deconvolution calculations, HSAs0 or SAs- (pH ∼5-8) were observed to be more highly reactive towards •OH, while SAs- (pH ∼8) react the fastest with 1O2 for most of the SAs tested. Using the empirically derived rates of reaction for the speciated forms at different pHs, the environmental half-lives were determined using typical 1O2 and •OH concentrations observed in the environment. This approach suggests that photochemical 1O2 oxidation contributes more than •OH oxidation and direct photolysis to the overall phototransformation of SAs in sunlit waters. Based on the identification of key photointermediates using tandem mass spectrometry, 1O2 oxidation generally occurred at the amino moiety on the molecule, whereas •OH reaction experienced multi-site hydroxylation. Both these reactions preserve the basic parent structure of the compounds and raise concerns that the routes of phototransformation give rise to intermediates with similar antimicrobial potency as the parent SAs. We therefore recommend that these phototransformation pathways are included in risk assessments concerning the presence and fate of SAs in waste and surface waters.
Collapse
Affiliation(s)
- Linke Ge
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Peng Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Yanying Li
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Chang-Er Chen
- Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Jun Li
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Helin Sun
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Ziwei Yao
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| |
Collapse
|
11
|
Ao X, Liu W, Sun W, Yang C, Lu Z, Li C. Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process. CHEMOSPHERE 2018; 212:365-375. [PMID: 30149309 DOI: 10.1016/j.chemosphere.2018.08.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
In this work, a sulfate radical (SO4-)-based advanced oxidation process was applied to the degradation of sulfamethoxazole (SMX). In these experiments, a medium pressure UV (MPUV) lamp was employed to active peroxymonosulfate (PMS). It was found that 98% of SMX was removed by MPUV/PMS at a UV dose of 200 mJ cm-2 (3.95 μM SMX, 0.2 mM PMS, pH0 = 3.7). Direct MPUV photolysis played a remarkable role in SMX removal by MPUV/PMS process. As for the indirect photolysis, SO4- was the major reactive species under acidic and neutral conditions in MPUV/PMS system, while the hydroxyl radical (OH) became the predominant radical under alkaline conditions. The transformation products (TPs) of SMX that formed in the MPUV-only and MPUV/PMS experiments were identified, and the possible degradation pathways were proposed. Photoisomerization of the isoxazole ring was the major pathway of SMX during MPUV-only process. Hydroxylation/oxidation of the aniline and isoxazole ring was the predominant degradation mechanism of SMX by MPUV/PMS. Toxicity evaluation showed that MPUV/PMS was effective at reducing the antibacterial activity of SMX solutions, while MPUV-only was not. However, some TPs with equivalent or even higher antibacterial activity than SMX were formed during the initial degradation period in MPUV/PMS system. Ecotoxicity of SMX and its TPs was also hypothetically predicted via the ECOSAR program, and the results indicated that some TPs could be more toxic than SMX.
Collapse
Affiliation(s)
- Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Chao Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Acosta-Rangel A, Sánchez-Polo M, Polo AMS, Rivera-Utrilla J, Berber-Mendoza MS. Sulfonamides degradation assisted by UV, UV/H 2O 2 and UV/K 2S 2O 8: Efficiency, mechanism and byproducts cytotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:224-231. [PMID: 30092549 DOI: 10.1016/j.jenvman.2018.06.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to analyze the effectiveness of UVC, UVC/H2O2 and UVC/K2S2O8 on the degradation of SAs. Rate constant values increased in the order SMZ < SDZ < SML and showed the higher photodegradation of sulfonamides with a penta-heterocycle. Quantum yields were 1.72 × 10-5 mol E-1, 3.02 × 10-5 mol E-1, and 6.32 × 10-5 mol E-1 for SMZ, SDZ and SML, respectively, at 60 min of treatment. R254 values show that the dose habitually utilized for water disinfection is inadequate to remove this type of antibiotic. The initial sulfonamide concentration has a major impact on the degradation rate. The degradation rates were higher at pH 12 for SMZ and SML. SMZ and SML photodegradation kλ values are higher in tap versus distilled water. The presence of radical promoters generates a greater increase in the degradation rate, UVC/K2S2O8 cost less energy, a mechanism was proposed, and the degradation by-products are less toxic than the original product.
Collapse
Affiliation(s)
- A Acosta-Rangel
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico.
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - A M S Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - M S Berber-Mendoza
- Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico
| |
Collapse
|
13
|
Yi Z, Wang J, Jiang T, Tang Q, Cheng Y. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171457. [PMID: 29765630 PMCID: PMC5936895 DOI: 10.1098/rsos.171457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/13/2018] [Indexed: 05/19/2023]
Abstract
In this study, photocatalytic experiments of 20 mg l-1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.
Collapse
Affiliation(s)
- Zhigang Yi
- College of Chemistry, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Juan Wang
- Environmental Monitoring Station of Environmental Protection Bureau of Rizhao Lanshan, Lanshan, Shandong 276800, China
| | - Tao Jiang
- College of Chemistry, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Qiong Tang
- College of Chemistry, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Ying Cheng
- College of Chemistry, Leshan Normal University, Leshan, Sichuan 614004, China
| |
Collapse
|
14
|
Yi Z, Wang J, Tang Q, Jiang T. Photolysis of sulfamethazine using UV irradiation in an aqueous medium. RSC Adv 2018; 8:1427-1435. [PMID: 35540907 PMCID: PMC9077042 DOI: 10.1039/c7ra09564c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
Although many studies have been focused on the photochemistry of antibiotics, the roles of reactive species in photolysis and the effects of dissolved substances on antibiotic photochemical behavior have been poorly examined. The photolytic behaviors of sulfamethazine (SMN) in pure water were investigated via adding different scavengers to quench the active species. Results showed that decomposition of the triplet-excited state of SMN (3SMN*) by direct photolysis was the main path of SMN photolysis in water. Moreover, self-sensitized SMN cannot be ignored during SMN photodegradation. The main photoproducts of SMN were identified by LC-MS/MS, which indicated that SMN could not be mineralized although the photolysis under UV was effective. The effects of Cl−, NO3−, and fulvic acid (FA) (common substances in natural water) on SMN photolytic behaviors were also studied. The triplet-induced halogenation of SMN increases the ionic strength and reduces the ground state SMN; these are the primary causes of promotion of SMN photolysis by Cl−. More ˙OH produced in the presence of NO3− could promote SMN photolysis. Competitive absorption of photons of FA with SMN and ROS scavenged by FA were the main reasons for the inhibition of SMN photolysis. The research findings are helpful for further studies on the environmental risks of ACs in natural waters and promoting the development of AC pollution treatment technology. The role of reactive species in SMN photolysis and the effects of dissolved substances on SMN photochemical behavior.![]()
Collapse
Affiliation(s)
- Zhigang Yi
- College of Chemistry
- Leshan Normal University
- Leshan
- China
| | - Juan Wang
- Environmental Monitoring Station of Environmental Protection Bureau of Rizhao Lanshan
- Lanshan
- China
| | - Qiong Tang
- College of Chemistry
- Leshan Normal University
- Leshan
- China
| | - Tao Jiang
- College of Chemistry
- Leshan Normal University
- Leshan
- China
| |
Collapse
|
15
|
Saidi I, Fourcade F, Floner D, Soutrel I, Bellakhal N, Amrane A, Geneste F. Sulfamethazine removal by means of a combined process coupling an oxidation pretreatment and activated sludge culture - preliminary results. ENVIRONMENTAL TECHNOLOGY 2017; 38:2684-2690. [PMID: 27973980 DOI: 10.1080/09593330.2016.1273395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A coupled electrochemical process and biological treatment was used to remove a biorecalcitrant antibiotic: sulfamethazine (SMT). The pretreatment was performed in a home-made flow cell involving graphite felt as a working electrode at potentials of 1 and 1.6 V/saturated calomel electrode (SCE); it was followed by a biological process involving activated sludge purchased from a local wastewater treatment plant. Activated sludge cultures of pretreated and non-pretreated SMT solution were carried out for 3 weeks, and different parameters were monitored, especially total organic carbon (TOC) and SMT concentrations. high-performance liquid chromatography results revealed that the target molecule was not assimilated by activated sludge. However, and confirming the improvement previously observed for the biological oxygen demand/chemical oxygen demand (BOD5/COD) ratio, from 0.08 before electrolysis to 0.58 after electrolysis, a pretreatment step in oxidation at 1.6 V/SCE led to a fast decrease of TOC during the subsequent biological treatment, since the mineralization yields increased from 10% for a non-pretreated SMT solution to 76.6% after electrolysis in oxidation (1.6 V/SCE), confirming the efficiency of coupling the electro-oxidation process with a biological treatment for the mineralization of SMT. Moreover, when the electrolysis was performed at 1 V/SCE, no biodegradation was observed, underlining the importance of the electrochemical pretreatment.
Collapse
Affiliation(s)
- Imen Saidi
- a Institut des Sciences Chimiques de Rennes , Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- c Unité de recherche de Catalyse d'Electrochimie de Nanomatériaux et leurs applications et de didactique CENAD , Institut National des Sciences Appliquées et de Technologie (INSAT) , Tunis Cedex , Tunisie
- d Institute of Chemical Sciences of Rennes, Université Européenne de Bretagne, 5 boulevard Laënnec , 35000 Rennes , France
| | - Florence Fourcade
- a Institut des Sciences Chimiques de Rennes , Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- b Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- d Institute of Chemical Sciences of Rennes, Université Européenne de Bretagne, 5 boulevard Laënnec , 35000 Rennes , France
| | - Didier Floner
- a Institut des Sciences Chimiques de Rennes , Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- d Institute of Chemical Sciences of Rennes, Université Européenne de Bretagne, 5 boulevard Laënnec , 35000 Rennes , France
| | - Isabelle Soutrel
- a Institut des Sciences Chimiques de Rennes , Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- b Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- d Institute of Chemical Sciences of Rennes, Université Européenne de Bretagne, 5 boulevard Laënnec , 35000 Rennes , France
| | - Nizar Bellakhal
- c Unité de recherche de Catalyse d'Electrochimie de Nanomatériaux et leurs applications et de didactique CENAD , Institut National des Sciences Appliquées et de Technologie (INSAT) , Tunis Cedex , Tunisie
| | - Abdeltif Amrane
- a Institut des Sciences Chimiques de Rennes , Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- b Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
- d Institute of Chemical Sciences of Rennes, Université Européenne de Bretagne, 5 boulevard Laënnec , 35000 Rennes , France
| | - Florence Geneste
- a Institut des Sciences Chimiques de Rennes , Université de Rennes 1, UMR-CNRS 6226 , Rennes , France
| |
Collapse
|
16
|
Ji Y, Shi Y, Wang L, Lu J, Ferronato C, Chovelon JM. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: Formation of SO 2 extrusion products and effects of natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:704-712. [PMID: 28363182 DOI: 10.1016/j.scitotenv.2017.03.192] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
The widespread occurrence of sulfonamide antibiotics in the environment has raised great concerns about their potential to proliferate antibacterial resistance. Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) are promising in-situ chemical oxidation (ISCO) technologies for remediation of soil and groundwater contaminated by antibiotics. The present study reported that thermally activated persulfate oxidation of sulfonamides (SAs) bearing six-membered heterocyclic rings, e.g., sulfamethazine (SMZ), sulfapyridine (SPD), sulfadiazine (SDZ), sulfadimethoxine (SDM), and sulfachloropyridazine (SCP), all produced SO2 extrusion products (SEPs), a phenomenon that is of potential importance, but not systematically studied. As an electrophilic oxidant, SO4•- tends to attack the aniline moiety, the reactive site of SAs, via electro-transfer mechanism. The resulting anilinyl radical cations are subjected to further intermolecular Smiles-type rearrangement to produce SEPs. Formation of SEPs is expected to occur in other SR-AOPs as well. The temperature-dependent evolution pattern of SEP of SMZ, 4-(2-imino-4,6-dimethylpyrimidin-1(2H)-yl)aniline, can be well fitted by kinetic modeling concerning sequential formation and transformation of intermediate product. The presence of natural organic matter (NOM) influenced the evolution patterns of 4-(2-imino-4,6-dimethylpyrimidin-1(2H)-yl)aniline significantly. Toxicological effects of SEPs on ecosystem and human health remain largely unknown, thus, further monitoring studies are highly desirable.
Collapse
Affiliation(s)
- Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanyuan Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France.
| |
Collapse
|
17
|
Chong S, Zhang G, Zhang N, Liu Y, Huang T, Chang H. Diclofenac degradation in water by FeCeO x catalyzed H 2O 2: Influencing factors, mechanism and pathways. JOURNAL OF HAZARDOUS MATERIALS 2017; 334:150-159. [PMID: 28407542 DOI: 10.1016/j.jhazmat.2017.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The degradation of diclofenac in a like Fenton system, FeCeOx-H2O2, was studied in details. The influencing factors, reaction kinetics, reaction mechanism and degradation pathways of diclofenac were investigated. The optimum conditions were at a solution pH of 5.0, H2O2 concentration of 3.0mmol/L, diclofenac initial concentration of 0.07mmol/L, FeCeOx dosage of 0.5g/L, and 84% degradation of diclofenac was achieved within 40min. The kinetics of FeCeOx catalyzed H2O2 process involved adsorption-dominating and degradation-dominating stages and fitted pseudo-second order model and pseudo-first order model, respectively. Singlet oxygen 1O2 was the primary intermediate oxidative species in the degradation process; superoxide radical anion O2- also participated in the reaction. The surface cerium and iron sites and the oxygen vacancies in the FeCeOx catalyst were proposed to play an important role in H2O2 decomposition and active species generation. The detected intermediates were identified as hydroxylated derivatives (m/z of 310, 326 and 298), quinone imine compounds (m/z of 308, 278 and 264) and hydroxyl phenylamine (m/z of 178). The majority intermediates were hydroxylated derivatives and the minority was hydroxyl phenylamine. The degradation pathways were proposed to involve hydroxylation, decarboxylation, dehydrogenation and CN bond cleavage.
Collapse
Affiliation(s)
- Shan Chong
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Guangming Zhang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Nan Zhang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Yucan Liu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Ting Huang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Huazhen Chang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
18
|
Chong S, Zhang G, Wei Z, Zhang N, Huang T, Liu Y. Sonocatalytic degradation of diclofenac with FeCeO x particles in water. ULTRASONICS SONOCHEMISTRY 2017; 34:418-425. [PMID: 27773264 DOI: 10.1016/j.ultsonch.2016.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
This paper studies the sonocatalytic degradation of diclofenac in water using FeCeOx-catalyzed ultrasound. The effects of pre-adsorption and gas addition were investigated. Nitrogen adsorption/desorption, SEM, XRD, Raman and XPS analyses of FeCeOx before and after sonication were characterized. The proposed mechanism was based on the microstructure changes of FeCeOx and reactive-species-scavenging performances. The results show that FeCeOx has excellent performance in catalyzing an ultrasonic system in water, and 80% of diclofenac was removed in 30min ([Diclofenac]=20mg/L, FeCeOx amount=0.5g/L, pH=6, ultrasonic density=3.0W/cm3, ultrasonic frequency=20kHz, temperature=298K). The Fe, Ce, and O elements remained highly dispersed in the structure of FeCeOx, and the solid solution structure of FeCeOx remained stable after the reaction. Ce (III) was gradually oxidized to Ce (IV) and Fe (III) was gradually reduced to Fe (II) after the reaction, which indicates that Fe and Ce ions with different valences coexisted in dynamic equilibrium. The amount of oxygen vacancies in FeCeOx significantly decreased after the reaction, which indicates that oxygen vacancy participated in the ultrasonic process. Singlet oxygen 1O2 was the primary reactive species in the degradation process, and the hydroxyl radicals OH and superoxide radical anion O2- also participated in the reaction. FeCeOx had excellent chemical stability with negligible leaching ions in the ultrasonic process.
Collapse
Affiliation(s)
- Shan Chong
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Zhongheng Wei
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Nan Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Ting Huang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Yucan Liu
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
19
|
de Melo da Silva L, Pereira Cavalcante R, Fabbro Cunha R, Gozzi F, Falcao Dantas R, de Oliveira SC, Machulek A. Tolfenamic acid degradation by direct photolysis and the UV-ABC/H 2O 2 process: factorial design, kinetics, identification of intermediates, and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:518-531. [PMID: 27575359 DOI: 10.1016/j.scitotenv.2016.08.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
This study employed direct UV-ABC photolysis and the UV-ABC/H2O2 process to investigate the degradation of tolfenamic acid (TA), a common anti-inflammatory drug used in both human and veterinary medicine. A 23 factorial design with added center point was used to evaluate the effect of three independent variables-namely, H2O2 concentration ([H2O2]), TA concentration ([TA]), and experiment time (time)-on TA degradation and H2O2 photolysis during UV-ABC/H2O2 treatment using a high-pressure mercury vapor lamp (photon flux of 2.6307 × 104 J s-1) as the UV irradiation source. The responses yielded similar values, revealing a linear behavior, with correlation coefficients R = 0.9968 and Radj = 0.9921 for TA degradation and R = 0.9828 and Radj = 0.9570 for H2O2 photolysis. The most efficient combination of variables was [H2O2] = 255 mg L-1 and [TA] = 25 mg L-1, resulting in 100% TA degradation and 98.87% H2O2 photolysis by 90 min of treatment. Additionally, the second-order kinetic constant of the reaction between TA and HO● was determined using a competitive kinetic model, employing 2,4-dichlorophenoxyacetic acid (2,4D) as the reference compound. The kinetic constant was 1.9 × 1010 M-1 s-1 in alkaline medium. TA degradation by direct photolysis generated quinone imines as by-products, responsible for the formation of a dark red "internal filter" that increased the value of acute toxicity to Artemia salina. The UV-ABC/H2O2 process did not promote formation of quinone imines by 90 min of treatment and therefore did not increase acute toxicity values. Several by-products generated during TA degradation were identified and possible degradation pathways for the UV-ABC and UV-ABC/H2O2 processes were proposed.
Collapse
Affiliation(s)
- Lucas de Melo da Silva
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; CP 549; Campo Grande, MS 79074-460, Brazil
| | - Rodrigo Pereira Cavalcante
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; CP 549; Campo Grande, MS 79074-460, Brazil
| | - Rebeca Fabbro Cunha
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; CP 549; Campo Grande, MS 79074-460, Brazil
| | - Fábio Gozzi
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; CP 549; Campo Grande, MS 79074-460, Brazil
| | - Renato Falcao Dantas
- School of Technology, University of Campinas; Rua Paschoal Marmo, 1888; Limeira, SP 13484-332, Brazil
| | - Silvio Cesar de Oliveira
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; CP 549; Campo Grande, MS 79074-460, Brazil
| | - Amilcar Machulek
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; CP 549; Campo Grande, MS 79074-460, Brazil.
| |
Collapse
|
20
|
Afonso-Olivares C, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ. Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24476-24494. [PMID: 27488717 DOI: 10.1007/s11356-016-7325-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.
Collapse
Affiliation(s)
- Cristina Afonso-Olivares
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
21
|
Silva VHO, Dos Santos Batista AP, Silva Costa Teixeira AC, Borrely SI. Degradation and acute toxicity removal of the antidepressant Fluoxetine (Prozac(®)) in aqueous systems by electron beam irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11927-11936. [PMID: 26961524 DOI: 10.1007/s11356-016-6410-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Electron beam irradiation (EBI) has been considered an advanced technology for the treatment of water and wastewater, whereas very few previous investigations reported its use for removing pharmaceutical pollutants. In this study, the degradation of fluoxetine (FLX), an antidepressant marketed as Prozac(®), was investigated by using EBI at FLX initial concentration of 19.4 ± 0.2 mg L(-1). More than 90 % FLX degradation was achieved at 0.5 kGy, with FLX below the detection limit (0.012 mg L(-1)) at doses higher than 2.5 kGy. The elucidation of organic byproducts performed using direct injection mass spectrometry, along with the results of ion chromatography, indicated hydroxylation of FLX molecules with release of fluoride and nitrate anions. Nevertheless, about 80 % of the total organic carbon concentration remained even for 7.5 kGy or higher doses. The decreases in acute toxicity achieved 86.8 and 9.6 % for Daphnia similis and Vibrio fischeri after EBI exposure at 5 kGy, respectively. These results suggest that EBI could be an alternative to eliminate FLX and to decrease residual toxicity from wastewater generated in pharmaceutical formulation facilities, although further investigation is needed for correlating the FLX degradation mechanism with the toxicity results.
Collapse
Affiliation(s)
- Vanessa Honda Ogihara Silva
- Nuclear and Energy Research Institute, Radiation Technology Center-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, CEP 05508-000, São Paulo, São Paulo, Brazil
| | - Ana Paula Dos Santos Batista
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, 380, CEP 05508-010, São Paulo, São Paulo, Brazil
| | | | - Sueli Ivone Borrely
- Nuclear and Energy Research Institute, Radiation Technology Center-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, CEP 05508-000, São Paulo, São Paulo, Brazil
| |
Collapse
|