1
|
Mondal A, Manivannan V. A naphthyl appended ninhydrin based colorimetric chemosensor for Cu 2+ ion: Detection of cysteine and ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124734. [PMID: 38986255 DOI: 10.1016/j.saa.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
A ninhydrin-based colorimetric chemosensor (LH) was synthesized using 3-hydroxy-2-naphthoic hydrazide and 11H-indeno[1,2-b]quinoxalin-11-one. It was characterized by spectroscopic and single crystal X-ray diffraction techniques. In a semi-aqueous (MeOH/HEPES) system, LH displayed a characteristic chromogenic change from colorless to yellow upon adding Cu2+ ion, with the appearance of a new peak at λmax = 460 nm. A 1:1 binding stoichiometry between LH and Cu2+ ion has been found, with LOD = 2.3 μM (145 ppb) and LOQ = 8 μM (504 ppb). Based on experimental results the formula of [Cu(L)Cl(H2O)2] (1) was assigned and this in-situ generated 1 was found to exhibit a discoloration of upon gradual addition of cysteine (LOD = 60 nM) as well as ATP (LOD = 130 nM) having 1:2 and 1:1 stoichiometry respectively. The LH was useful for recognition of Cu2+ ion in real water samples and on filter paper strips. A two-input-two-output logic gate circuitry was also constructed by employing 1 and cysteine. The DFT/TDDFT calculations performed on LH and 1 were consistent with experimental findings. The binding affinity of LH towards HSA and BSA were determined with HSA having greater affinity than BSA, which was also supported by theoretical calculations.
Collapse
Affiliation(s)
- Anisha Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vadivelu Manivannan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Chetry A, Borah J, Hazarika UN, Sonowal DJ, Konwer S, Khakhlary P. A highly selective solution and film based sensor for colorimetric sensing of arginine in aqueous and blood samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7390-7396. [PMID: 39356033 DOI: 10.1039/d4ay01434k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A benzothiazole-azo based sensor (BTAN) was developed for rapid and on-site detection of arginine. The sensor's selectivity in a semi-aqueous medium was thoroughly investigated, focusing on the colorimetric response to arginine in the presence of 11 different amino acids. Notably, the limit of detection (LOD) for arginine was determined to be 0.7 μM. The underlying sensing mechanism was addressed using 1H-NMR and UV-vis spectroscopy. BTAN exhibited significant changes in both absorption as well as emission spectra exclusively in the presence of arginine. Furthermore, the arginine sensing capability was extended to the solid state by immobilizing BTAN into a starch-PVA hydrogel matrix as well as paper strips. The hydrogel film of BTAN enabled effective on-site sensing of arginine in a 100% aqueous medium. Moreover, the practicability of the sensor was demonstrated by detecting arginine in human blood samples.
Collapse
Affiliation(s)
- Arati Chetry
- Department of Chemistry, Dibrugarh University, Assam, 786004, India.
| | - Jhorna Borah
- Department of Chemistry, Dibrugarh University, Assam, 786004, India.
| | | | | | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Assam, 786004, India.
| | | |
Collapse
|
3
|
Ghosh R, Pradhan D, Debnath S, Mansingh A, Nagesh N, Chatterjee PB. A Hydrogen Bonded Non-Porous Organic-Inorganic Framework for Measuring Cysteine in Blood Plasma and Endogenous Cancer Cell. Chemistry 2024; 30:e202401255. [PMID: 39162779 DOI: 10.1002/chem.202401255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 08/21/2024]
Abstract
An imbalance in cysteine (Cys) levels in the cells and plasma has been identified as the risk indicator for various human diseases. The structural similarity of cysteine with its congener homocysteine and glutathione offers challenges in its measurement. Herein, we report a hydrogen-bonded organic-inorganic framework of Cu(II) (HOIF) for the selective detection of cysteine over other biothiols. The non-fluorescent HOIF showed 12-fold green emission in the presence of cysteine. The monomeric unit of HOIF is stabilized via intermolecular hydrogen bonds, resulting in a non-porous network structure. Non-interference from homocysteine, glutathione, and other competitive bio-analytes revealed explicit affinity of HOIF for cysteine. Fluorimetric titration showed a wide working concentration window (650 nM-800 μM) for measuring cysteine in an aqueous medium. The mechanistic investigation involving HRMS, EPR, and UV-vis spectroscopic studies revealed the decomplexation of HOIF with Cys, resulting in a fluorescence turn-on response from the luminescent ligand. Validation using a commercial dye, "Cysteine Green", confirmed the prospect of HOIF for early diagnostic purposes. Utilizing the fluorescence turn-on property of HOIF in the presence of cysteine, we measured cysteine quantitatively in the blood plasma samples. Bio-imaging of endogenous cysteine in cancer cells indicated the ability of HOIF to monitor the intracellular cysteine.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Debjani Pradhan
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Arushi Mansingh
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Narayana Nagesh
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
4
|
Yan Z, Zhang R, Qiao M, Ma M, Liu T, Ding L, Fang Y. Single-Probe-Based Sensor Array for Fingerprint Recognition of Trivalent Metal Ions and Application in Water Identification. Anal Chem 2024. [PMID: 39152896 DOI: 10.1021/acs.analchem.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Abnormal concentration levels of trivalent metal ions (M3+) might hinder their natural biological activities in physiological processes and cause severe health hazards. Herein, a dual-chromophore probe (RhB-TPE) composed of rhodamine and tetraphenylethene (TPE) units was synthesized and explored for discriminating M3+ ions. It exhibited special aggregation and AIE properties in aqueous media. Its ensemble with anionic surfactant SDBS assemblies (RhB-TPE/SDBS) could be utilized as fluorescent sensors for selective and sensitive detection of M3+ ions such as Fe3+, Al3+, and Cr3+ by illustrating quenched TPE emission and switched-on rhodamine emission. Moreover, the use of SDBS assemblies at two concentrations could provide a single-probe-based sensor array and realize four-signal pattern recognition of different concentrations of the three M3+ ions and identify M3+ mixtures or unknown samples. The cross-reactive fluorescence variation was attributed to the M3+ influence on the FRET process from TPE to open-ring form rhodamine in the two ensemble sensors. With the coexistence of Al3+, the optimized RhB-TPE/SDBS ensemble sensor array was successfully applied to differentiate commercially available brand mineral water and purified water, as well as tap water. The present work provides a novel strategy to generate a single-probe-based sensor array and realizes fingerprint recognition of three trivalent metal ions and efficient discrimination of different types of water. The modulation FRET process of a dual chromophore in different surfactant ensembles inspires the future construction of novel and effective sensing platforms.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Rongrong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Min Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Miao Ma
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
5
|
Zou YL, Liu YT. A novel isophorone-based NIR fluorescent and colormetric probe for Al 3+ sensing and its application for living cells and plants imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124040. [PMID: 38428211 DOI: 10.1016/j.saa.2024.124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
In this paper, an isophorone-based NIR fluorescent and colormetric probe BDDH for Al3+ was synthesized and characterized, it showed highly selectivity and sensitivity through significant fluorescence enhancement and visible color change towards Al3+. The job plot confirmed that the binding ratio of BDDH with Al3+ was 1:1. Furthermore, the limit of detection (LOD) of Al3+ was determined to be 4.01 × 10-8 M. Moreover, BDDH was successfully applicated in identification of Al3+ in the different water samples, cell imaging in alive MCF-7 cells and plant imaging in soybean roots.
Collapse
Affiliation(s)
- Yue-Li Zou
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Tong Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Fan E, Guo H, Hao T, Zhao R, Zhang P, Feng Y, Liu Y, Deng K. Morpholine-modified polyacrylamides with Polymerization-Induced emission and its specific detection to Cu 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123782. [PMID: 38215564 DOI: 10.1016/j.saa.2023.123782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
In this work, three morpholine-modified polyacrylamide derivatives (MMPAm) were successfully prepared by free radical polymerization of monomers with morpholine moiety. The intramolecular aggregation of morpholine rings on macromolecular backbone gives MMPAm a significant polymerization-induced emission (PIE). Particularly, poly(N-morpholine acrylamide) (PNMPA) has the characteristics of strong fluorescence at 450 nm, and its fluorescence quantum yield reaches 2.87 %. The introduction of morpholine moiety, the length of CH2 spacer between morpholine ring and the backbone and the molecular weight play the important roles in PIE properties of PNMPA. Interestingly, PNMPA can recognize and detect Cu2+ specifically even in the presence of 12 other metal ions by thorough fluorescence quenching, and the detection limit of PNMPA is 17.3 μM. Furthermore, the dynamic quenching of PNMPA by Cu2+ ions and the complexation ratio of 1:2 according to JOB's working diagram were confirmed by fluorescence titration. Under the assistance of EDTA, a reversible detection system for Cu2+ is achieved, and a portable test paper from PNMPA for the detection of Cu2+ was also made. In conclusion, PNMPA is endowed with a significant PIE effect by the intramolecular aggregation of morpholine rings along the backbone in the polymerization of non-fluorescent monomer, and is expected to be a promising material for specific detection to Cu2+ ions.
Collapse
Affiliation(s)
- Enze Fan
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Huiying Guo
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Tingting Hao
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Ronghui Zhao
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Department of Clinical Pharmacy, Affiliated Hospital of Hebei University, Baoding 071002, China
| | - Pengfei Zhang
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yayu Feng
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yunfei Liu
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kuilin Deng
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Kumar G, Srivastava A, Kumar P, Srikrishna S, Singh VP. A chromogenic diarylethene-based probe for the detection of Cu 2+ in aqueous medium in Drosophila for early diagnosis of Alzheimer. Heliyon 2024; 10:e24074. [PMID: 38230249 PMCID: PMC10789622 DOI: 10.1016/j.heliyon.2024.e24074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
A diarylethene-based probe (Z)-N'-((2-amino-5-chlorophenyl)(phenyl)methylene)-2-hydroxy benzohydrazide (KBH) has been proficiently developed and its structure has been confirmed by single crystal X-ray diffraction technique. It displays a selective and sensitive colorimetric sensing of Cu2+ ions in aqueous medium with a naked eye colour change from colourless to yellow. It exhibits a significantly low limit of detection as 1.5 nM. A plausible binding mechanism has been proposed using Job's plot, FT-IR, 1H NMR titration, HRMS and DFT studies. The chemosensor is effectively reversible and reusable with EDTA. Test strip kit and real water sample analysis have been shown to establish its practical applicability. Further, the potential of KBH for the early diagnosis of Cu2+ ion-induced amyloid toxicity has been investigated in eye imaginal disc of Alzheimer's disease model of Drosophila 3rd instar larvae. The in-vivo interaction of KBH with Cu2+ in gut tissues of Drosophila larvae establishes its sensing capability in biological system. Interestingly, the in-vivo detection of Cu2+ has been done using bright field imaging which eliminates the necessity of a fluorescent label, hence making the method highly economical.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prabhat Kumar
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - S. Srikrishna
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinod P. Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Kavitha V, Viswanathamurthi P, Haribabu J, Echeverria C. An aqueous mediated ultrasensitive facile probe incorporated with acrylate moiety to monitor cysteine in food samples and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122447. [PMID: 36764167 DOI: 10.1016/j.saa.2023.122447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A colorimetric probe TQA ((E)-4-(((8-(sec-butoxy)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)amino)benzylacrylate) possessing greater potent towards the sensing of cysteine was successfully synthesized and characterized. The aqueous soluble probe TQA detects Cys based on "ON-OFF" effect with excellent absorbance and emission properties. The probe TQA detects Cys up to its ultra-low level concentration of 1.5 nM and also quantifies the Cys up to 5.05 nM with the quicker response time of 140 s (2.3 min). In addition, the color change produced by the probe TQA on integrated with Cys was also identified easily via paper strip, cotton wool buds and RGB color picker app in smart mobiles. Further, the admirable selectivity and sensitivity of the probe TQA towards Cys extends its utility towards food samples and imaging of live HeLa cells.
Collapse
Affiliation(s)
| | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| |
Collapse
|
9
|
Sharma V, Sahu B, Kumar Das U, Kumar Patra G. A reversible fluorescent-colorimetric malononitrile based novel Schiff-base chemosensor for visual detection of bicarbonate ion in aqueous solution. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Gyanjyoti A, Guleria P, Awasthi A, Singh K, Kumar V. Recent advancement in fluorescent materials for optical sensing of pesticides. MATERIALS TODAY COMMUNICATIONS 2023; 34:105193. [DOI: 10.1016/j.mtcomm.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Sharma V, Sahu M, Manna AK, De D, Patra GK. A quinazolin-based Schiff-base chemosensor for colorimetric detection of Ni 2+ and Zn 2+ ions and ' turn-on' fluorometric detection of Zn 2+ ion. RSC Adv 2022; 12:34226-34235. [PMID: 36545589 PMCID: PMC9709804 DOI: 10.1039/d2ra05564c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Herein, we have reported a novel quinazolin-based Schiff base chemosensor (E)-2-benzamido-N'-(1-(pyridin-2-yl)ethylidene)benzohydrazide (L). L has been designed, synthesised and characterised by 1H-NMR, IR spectroscopy, ESI-MS spectrometry and theoretical studies. The receptor showed appreciable colorimetric λ max shift for both Ni2+ and Zn2+ ions and fluorometric "turn on" response in presence of only Zn2+ ion. The Jobs plot analysis revealed that receptor forms 2 : 1 complex with both the ions Ni2+ and Zn2+, further confirmed by ESI-MS analysis. The single crystal structure of L-Ni2+ complex (1) has also been determined. The colorimetric detection limits were calculated to 7.9 nM and 7.5 nM respectively for Ni2+ and Zn2+ in methanol-Tris-HCl buffer medium (10 mM, pH 7.2, 1 : 1 v/v). The chemosensor L can be applied for the recovery of contaminated water samples.
Collapse
Affiliation(s)
- Vanshika Sharma
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Meman Sahu
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Amit Kumar Manna
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Dinesh De
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| | - Goutam Kumar Patra
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C. G) India +91 7587312992
| |
Collapse
|
12
|
Santhiya K, Mathivanan M, Tharmalingam B, Anitha O, Ghorai S, Natarajan R, Murugesapandian B. A new 7-(diethylamino)coumarin and 4-(diethylamino)phenol appended unsymmetrical thiocarbohydrazone: Detection of moisture in organic solvent and sequential fluorimetric detection of Cu2+ ions and cysteine. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. ENVIRONMENTAL RESEARCH 2022; 214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The applications of conventional sensors are limited by the long response time, high cost, large detection limit, low sensitivity, complicated usage and low selectivity. These sensors are nowadays replaced by Nanocomposite-based modalities and nanomaterials which are known for their high selectivity and physical and chemical properties. These nanosensors effectively detect heavy metal contaminants in the environment as the discharge of heavy metals into natural water as a result of human activity has become a global epidemic. Exposure to these toxic metals might induce many health-related complications, including kidney failure, brain injury, immune disorders, muscle paleness, cardiac damage, nervous system impairment and limb paralysis. Therefore, designing and developing novel sensing systems for the detection and recognition of these harmful metals in various environmental matrices, particularly water, is of extremely important. Emerging nanotechnological approaches in the past two decades have played a key role in overcoming environmentally-related problems. Nanomaterial-based fabrication of chemical nanosensors has widely been applied as a powerful analytical tool for sensing heavy metals. Portability, high sensitivity, on-site detection capability, better device performance and selectivity are all advantages of these nanosensors. The detection and selectivity have been improved using molecular recognition probes for selective binding on different nanostructures. This study aims to evaluate the sensing properties of various nanomaterials such as metal-organic frameworks, fluorescent materials, metal-based nanoparticles, carbon-based nanomaterials and quantum dots and graphene-based nanomaterials and quantum dots for heavy metal ions recognition. All these nano-architectures are frequently served as effective fluorescence probes to directly (or by modification with some large or small biomolecules) sense heavy metal ions for improved selectivity. However, efforts are still needed for the simultaneous designing of multiple metal ion-based detection systems, exclusively in colorimetric or optical fluorescence nanosensors for heavy metal cations.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
14
|
Wang Y, Cui X, Gao H, Lu R, Zhou W. A fluorescent organic nanoparticles-based sensor synthesized through hydrothermal process and its application in sensing Hg 2+ of real samples and fast visual detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120833. [PMID: 34999359 DOI: 10.1016/j.saa.2021.120833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The fluorescent organic nanoparticles (FONs)-based sensor has been attracting great attention in recent years. There are still big challenges in the preparation and application of FONs-based sensor. In this study, a FONs-based sensor was designed and developed through facile hydrothermal process using 3-perylenecarboxaldehyde (PlCA) as the fluorophore and L-methionine (Met) as the recognition site for mercury ions. According to the experimental results, the fluorescence intensity of the as-prepared PlCA-M would decrease when adding Hg2+ and the mechanism was extrapolated to be photoinduced electron transfer inducing by specific coordination interaction. The acquired PlCA-M-based sensor was used to monitor Hg2+ in several real samples (environmental water, tea, and apple) with the limit of detection being 60 nM. Remarkably, a visual detection device based on FONs, SDS-PAAG (sodium dodecyl sulfate polyacrylamide gel) @PlCA-M was firstly constructed and successfully used to Hg2+ semi-quantitation by naked eyes. In addition, the acquired FONs was applied into imaging tool for security information detection and identified as solid-state luminescent material for the first time.
Collapse
Affiliation(s)
- Yujiao Wang
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Xiaoyan Cui
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Haixiang Gao
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Runhua Lu
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Mingyuanxilu No.2, Haidian District, Beijing, China.
| |
Collapse
|
15
|
Meng X, Zhang D, Zhao R, Zhou Z, Zhang P, Zhao J, Wang M, Guo H, Deng K. Aggregation-induced emission (AIE) from poly(1,4-dihydropyridine)s synthesized by Hantzsch polymerization and their specific detection of Fe 2+ ions. Polym Chem 2022. [DOI: 10.1039/d2py00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an important metal element widely existing in nature and the human body, the simple and specific detection of Fe2+ ions has always been of interest.
Collapse
Affiliation(s)
- Xue Meng
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Da Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Ronghui Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
- Affiliated Hospital of Hebei University, Baoding 071002, China
| | - Zhixia Zhou
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Pengfei Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jingyuan Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Meng Wang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Huiying Guo
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Kuilin Deng
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
16
|
Shaji LK, Ashok Kumar S. Antipyrine derived Schiff's base as a colorimetric probe for the rapid and selective detection of Cu2+ions. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Chai L, Chai Y, Li C, Zhou L. Two mono‐ and dinuclear Cu (II) complexes derived from 3‐ethoxy salicylaldehyde: X‐ray structures, spectroscopic, electrochemical, antibacterial activities, Hirshfeld surfaces analyses, and time‐dependent density functional theory studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lan‐Qin Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Yong‐Mei Chai
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Cheng‐Guo Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| | - Ling Zhou
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
18
|
Özdemir Ö. A new 2-hydroxynaphthalene based Schiff base receptor for detection of Cu2+, Fe3+, HSO4−, CN− ions and D–amino acids in aqueous DMSO solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Goel A, Tomer N, Ghule VD, Malhotra R. A multi-responsive pyranone based Schiff base for the selective, sensitive and competent recognition of copper metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119221. [PMID: 33257246 DOI: 10.1016/j.saa.2020.119221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Exploring a new multi-responsive pyranone chemosensor capable of sensing copper ions specifically and selectively through colorimetric, UV-Vis absorption and fluorescence methods is of great importance. In this piece of work, a novel pyranone based Schiff base ligand 4-Hydroxy-6-methyl-3-[1-(2-morpholin-4-yl-ethylimino)-ethyl]-pyran-2-one (DM) was synthesized by the condensation of dehydroacetic acid and 4-(2-aminoethyl) morpholine. The structural determination of ligand DM was executed using distinct spectral techniques i.e.,1H NMR, 13C NMR, FT-IR and HR-MS techniques. The reported Schiff base DM showed an immediate colorimetric change from pale yellow to colorless accompanied by a strong change in the UV-Vis absorption band onto the addition of Cu (II) ions. This metal ligand chelation leads a decrease in ICT process. Also the decrease in fluorescence emission intensity of Schiff base DM with Cu (II) ions addition showed its turn-off behavior towards copper ions. Further absorption/ emission titration studies, Job's plot, HR-MS and 1H NMR titration data designated 2:1 stoichiometric ratio between DM and Cu (II) ions respectively. Density functional theory studies were also performed to authenticate the binding mechanism theoretically. The sensitivity of Schiff base DM towards Cu (II) ions was applicable at every pH conditions and at the same time DM exhibited selectivity towards Cu (II) ions with a negligible interference of other metal ions. DM showed a detection limit of 7.7 nM towards copper ions via fluorescence emission studies. The best part about DM is that it has good stability but showed an instant chemical reversibility when titrated with EDTA solution.
Collapse
Affiliation(s)
- Apurva Goel
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Nisha Tomer
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India.
| |
Collapse
|
20
|
Wan H, Xu Q, Gu P, Li H, Chen D, Li N, He J, Lu J. AIE-based fluorescent sensors for low concentration toxic ion detection in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123656. [PMID: 33264865 DOI: 10.1016/j.jhazmat.2020.123656] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 05/25/2023]
Abstract
Ions, including anions and heavy metals, are extremely toxic and easily accumulate in the human body, threatening the health of humans and even causing human death at low concentrations. It is therefore necessary to detect these toxic ions in low concentrations in water. Fluorescent sensing is a good method for detecting these ions, but some conventional dyes often exhibit an aggregation caused quench (ACQ) effect in their solid state, limiting their large-scale application. Fluorescent probes based on aggregation-induced emission (AIE) properties have received significant attention due to their high fluorescence quantum yields in their nano aggragated states, easy fabrication, use of moderate conditions, and selevtive recognization of organic/inorganic compounds in water with obvious changes in fluorescence. We surmarize the recent advances of AIE-based sensors for low concentration toxic ion detection in water. The detection probes can be divided into three categories: chemical reaction types, chemical interaction types and physical interaction types. Chemical reaction types utilize nucleophilic addition and coordination reaction, while chemical interaction types rely on hydrogen bonding and anion-π interactions. The physical interaction types are composed of electrostatic attractions. We finally comment on the challenges and outlook of AIE-active sensors.
Collapse
Affiliation(s)
- Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
21
|
Sahu M, Manna AK, Chowdhury S, Patra GK. A novel dihydro phenylquinazolinone-based two-in-one colourimetric chemosensor for nickel(ii), copper(ii) and its copper complex for the fluorescent colourimetric nanomolar detection of the cyanide anion. RSC Adv 2020; 10:44860-44875. [PMID: 35516234 PMCID: PMC9058604 DOI: 10.1039/d0ra09023a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, considerable efforts have been devoted to the detection and quantification of hazardous multi-analytes using a single probe. Herein, we have developed a simple, environment-friendly colourimetric sensor for the sensitive, selective and rapid detection of Ni2+ and Cu2+ ions using a simple organic Schiff base ligand L in methanol-Tris-HCl buffer (1 : 1 v/v, 10 mM, pH = 7.2). The probe L exhibited a binding-induced colour change from colourless to yellow and fluorescence quenching in the presence of both Ni2+ and Cu2+ ions. The interactions between L and the respective metal ions were studied by Job's plot, electrospray ionisation-mass spectrometry (ESI-MS), Fourier-transform infrared spectroscopy (FT-IR), density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The limit of detection (LOD) of L towards Ni2+ and Cu2+ was calculated to be 7.4 × 10-7 M and 4.9 × 10-7 M, respectively. Furthermore, the L-Cu2+ complex could be used as a new cascade fluorescent-colourimetric sensor to detect CN- ions with a very low level of detection (40 nM). Additionally, L could operate in a wide pH range, and thus was successfully applied for the detection and quantification of Ni2+ and Cu2+ in environmental samples, and for building OR- and IMPLICATION-type logic gates.
Collapse
Affiliation(s)
- Meman Sahu
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C.G) India +917587312992
| | - Amit Kumar Manna
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C.G) India +917587312992
| | - Shubhamoy Chowdhury
- Department of Chemistry, Gour Banga University Malda West Bengal 732 103 India
| | - Goutam Kumar Patra
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya Bilaspur (C.G) India +917587312992
| |
Collapse
|
22
|
Zhang M, Hu T, Sun C, Li W, Chang Z. A Schiff base-based fluorescent probe for the quick detection of ClO − ions. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new Schiff base 2-hydroxy-5-[(2,7-dihydroxy-1-naphthyl)methylideneamino]benzoic acid (HNMB) has been designed and synthesized. HNMB was characterized by Fourier-transform infrared spectroscopy (FTIR), electrospray ionization mass spectrometry (ESI–MS), nuclear magnetic resonance spectrometry (NMR), and single crystal X-ray diffraction. Fluorescence spectra show that HNMB could be used as a “turn-on” probe to detect ClO− ions from other anions in DMSO/H2O (v/v = 1:1) with a fast response time of 10 s and a low detection limit of 3.6 × 10−7 mol/L. Moreover, the probe could work in a wide pH range of 4–10. The detection mechanism was studied by ESI–MS.
Collapse
Affiliation(s)
- Min Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tao Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changyan Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjun Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhidong Chang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
23
|
Chandra R, Sahu M, Manna AK, Rout K, Chowdhury S, Patra GK. Ether based flexible bis Schiff base fluorescent colorimetric chemosensors for selective and sensitive detection of HF2− ion. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Chandra R, Manna AK, Sahu M, Rout K, Patra GK. Simple salicylaldimine-functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Ye F, Wu N, Li P, Liu YL, Li SJ, Fu Y. A lysosome-targetable fluorescent probe for imaging trivalent cations Fe 3+, Al 3+ and Cr 3+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117242. [PMID: 31207489 DOI: 10.1016/j.saa.2019.117242] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
An effective morpholine-type naphthalimide chemsensor, N-p-chlorophenyl-4-(2-aminoethyl)morpholine-1,8-naphthalimide (CMN) has been developed as a lysosome-targeted fluorometric sensor for trivalent metal ions (Fe3+, Al3+ and Cr3+). Upon the addition of Fe3+, Al3+ or Cr3+ ions, the probe CMN showed an evident naked-eye color changes which pale yellow solution of CMN turned deepened and it displayed turn-on fluorescence response in methanol. CMN showed a significant selective and sensitive toward Fe3+, Al3+ or Cr3+ ions, while there was no obvious behavior to other monovalent or divalent metal ions from the UV-vis and fluorescence spectrum. Based on the Job's plot analyses the 1:1 coordination mode of CMN with Fe3+, Al3+ or Cr3+ was proposed. The limit of detection (LOD) observed were 0.65, 0.69 and 0.68 μM for Fe3+, Al3+ and Cr3+ ions, respectively. The N-atom of morpholine directly involved in complex formation, CMN emitted fluorescence through inhibition of photoinduced electron transfer (PET). This probe exhibited excellent imaging ability for Fe3+, Al3+and Cr3+ ions in living cells with low cytotoxicity. Significantly, the cellular confocal microscopic research indicated that the lysosome-targeted group of morpholine moiety was introduced which realized the capability of imaging lysosomal trivalent metal ions in living cells for the first time.
Collapse
Affiliation(s)
- Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Wu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Long Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Jie Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Mohammadi A, Khalili B, Haghayegh AS. A novel chromone based colorimetric sensor for highly selective detection of copper ions: Synthesis, optical properties and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117193. [PMID: 31174147 DOI: 10.1016/j.saa.2019.117193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 05/19/2023]
Abstract
In this work, a new chromone based colorimetric sensor (ChrCS) was developed for highly selective detection of copper ions in semi-aqueous media. Evaluation of color and spectral changes displayed by the developed sensor shows that the sensor can be applied to detect copper ions in the presence of other competing metal ions and anions. The developed sensor, which contains biologically active chromone ring, shows excellent selectivity at microlevel for Cu2+ with a color change from colorless to yellow. Job's plot based on spectroscopic data showed the complex formation between ChrCS and Cu2+ ions has the stoichiometric ratio of 1:1 (ChrCS-Cu2+ complex). In addition, the binding constant of the ChrCS to Cu2+ was determined using the Benesi-Hildebrand equation. Furthermore, the test papers of the developed ChrCS were successfully prepared and employed to detect different concentration Cu2+ (10-3 M to 10-7 M) in aqueous solution. Importantly, sensor ChrCS was applied to detect Cu2+ ions in real water samples. To better understand the optical character of ChrCS and the effect of metal ion titration, density functional theory (DFT) calculations at the B3LYP/6-31 + G(d,p) level were performed for ChrCS and its complex ChrCS-Cu2+. Furthermore, on the basis of the Job's plot analysis DFT calculations, and reversible nature of the developed sensor, the sensing mechanism was demonstrated.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Behzad Khalili
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
27
|
Manna AK, Chowdhury S, Patra GK. A novel hydrazide-based selective and sensitive optical chemosensor for the detection of Ni2+ ions: applications in live cell imaging, molecular logic gates and smart phone-based analysis. Dalton Trans 2019; 48:12336-12348. [DOI: 10.1039/c9dt02448d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrazide-based optical sensor for Ni2+ ions was designed, which can be applied for recovery of contaminated water samples, smart phone-based analysis and live cell imaging.
Collapse
Affiliation(s)
- Amit Kumar Manna
- Department of Chemistry
- Guru GhasidasVishwavidyalaya
- Bilaspur (C.G)
- India
| | | | - Goutam K. Patra
- Department of Chemistry
- Guru GhasidasVishwavidyalaya
- Bilaspur (C.G)
- India
| |
Collapse
|
28
|
Gu YQ, Shen WY, Mi Y, Jing YF, Yuan JM, Yu P, Zhu XM, Hu FL. Dual-response detection of Ni2+ and Cu2+ ions by a pyrazolopyrimidine-based fluorescent sensor and the application of this sensor in bioimaging. RSC Adv 2019; 9:35671-35676. [PMID: 35528093 PMCID: PMC9074711 DOI: 10.1039/c9ra06227k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, a dual-response fluorescent sensor, L, based on pyrazolopyrimidine was designed and developed for the simultaneous detection of Ni2+ and Cu2+ ions in the presence of other metal ions; the structural characterization of L was carried out by FTIR spectroscopy, NMR spectroscopy, HRMS and X-ray diffraction analysis. The sensor L effectively displayed fluorescence quenching towards the Ni2+ and Cu2+ ions with high sensitivity without interference from other metal ions. The results reveal that L binds to Ni2+ and Cu2+ in a 2 : 1 pattern, which matches well with the result of the Job's plot. The association constants of L with Ni2+ and Cu2+ were 3.2 × 104 M−1 and 7.57 × 104 M−1, respectively. The detection limits (DLs) are down to 8.9 nM for Ni2+ and 8.7 nM for Cu2+. The fluorescence imaging of L in T-24 cells was investigated because of the low cytotoxicity of L, indicating that L could be used to detect Ni2+ and Cu2+ in living cells. A pyrazolopyrimidine-based fluorescent sensor L was developed and applied for detection of Cu2+ and Ni2+ in ethanol solution by photoluminescence quenching. It shows low cytotoxicity and good imaging characteristics for Cu2+ and Ni2+ in living cells.![]()
Collapse
Affiliation(s)
- Yun-Qiong Gu
- School of Environment and Life Science
- Nanning Normal University
- Nanning
- China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University)
| | - Wen-Ying Shen
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University)
- Ministry of Education of China
- China
| | - Yan Mi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products
- Guangxi University for Nationalities
- Nanning
- China
| | - Yan-Fang Jing
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products
- Guangxi University for Nationalities
- Nanning
- China
| | - Jing-Mei Yuan
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University)
- Ministry of Education of China
- China
| | - Peng Yu
- School of Environment and Life Science
- Nanning Normal University
- Nanning
- China
| | - Xiao-Min Zhu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University)
- Ministry of Education of China
- China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products
- Guangxi University for Nationalities
- Nanning
- China
| |
Collapse
|
29
|
Manna AK, Rout K, Chowdhury S, Patra GK. A dual-mode highly selective and sensitive Schiff base chemosensor for fluorescent colorimetric detection of Ni 2+ and colorimetric detection of Cu 2. Photochem Photobiol Sci 2019; 18:1512-1525. [PMID: 30977507 DOI: 10.1039/c9pp00114j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this paper, a novel flexible Schiff base chemosensor N'-(2-hydroxy-3-methoxybenzylidene)-2-(benzamido)benzohydrazide (L) has been designed, synthesised and characterised by 1H-NMR, IR spectroscopy, ESI-MS spectrometry and single crystal XRD analysis. A significant fluorescence enhancement of L was observed only in the presence of Ni2+ ions with a detection limit of 3.64 μM whereas Cu2+ induced fluorescence quenching, although both the metals showed colorimetric responses in methanol-Tris-HCl buffer (10 mM, pH 7.2) solution (1 : 1, v/v). The single crystal structure of L-Cu2+ has also been determined. No major interference by the other effective background cations (Fe3+, Fe2+, Co2+, Zn2+, Cd2+, Hg2+, Pb2+, Cr3+, Ag+, Al3+ and Mn2+) was observed even at a higher concentration of analytes. The experimental results were further supported by DFT studies. The chemosensor L can be applied to the formation of binary logical devices, recovery of contaminated water samples and living intracellular media.
Collapse
Affiliation(s)
- Amit Kumar Manna
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G, India.
| | | | | | | |
Collapse
|
30
|
Yang M, Chae JB, Kim C, Harrison RG. A visible chemosensor based on carbohydrazide for Fe(ii), Co(ii) and Cu(ii) in aqueous solution. Photochem Photobiol Sci 2019; 18:1249-1258. [DOI: 10.1039/c8pp00545a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A colorless sensor with pyridyl and carbohydrazide components shows a unique photoresponse when exposed to Fe2+, Cu2+ and Co2+. The sensor's colorimetric response is unique to these metal ions and is stable around neutral pH.
Collapse
Affiliation(s)
- Minuk Yang
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Ju Byeong Chae
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Korea
| | - Roger G. Harrison
- Department of Chemistry and Biochemistry
- Brigham Young University
- Provo
- USA
| |
Collapse
|
31
|
Zhou L, Hu Q, Chai LQ, Mao KH, Zhang HS. X-ray characterization, spectroscopic, DFT calculations and Hirshfeld surface analysis of two 3-D supramolecular mononuclear zinc(II) and trinuclear copper(II) complexes. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Rout K, Manna AK, Sahu M, Mondal J, Singh SK, Patra GK. Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu2+ and Pb2+: application to living cell imaging and molecular logic gates. RSC Adv 2019; 9:25919-25931. [PMID: 35530070 PMCID: PMC9070313 DOI: 10.1039/c9ra03341f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022] Open
Abstract
A triazole-based novel bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized by elemental analysis, 1H-NMR, ESI-MS, FTIR spectra and DFT studies. The receptor L showed selective and sensitive colorimetric sensing ability for Cu2+ and Pb2+ ions by changing color from colorless to yellow and light yellow respectively in CH3OH–tris-buffer (1 : 1, v/v). However, it displayed strong fluorescence enhancement upon the addition of both Cu2+ and Pb2+ ions, attributed to the blocking of PET. The fluorometric detection limits for Cu2+ and Pb2+ were found to be 12 × 10−7 M and 9 × 10−7 M and the colorimetric detection limits were 3.7 × 10−6 M and 1.2 × 10−6 M respectively; which are far below the permissible concentration in drinking water determined by WHO. Moreover, it was found that chemosensor L worked as a reversible fluorescence probe towards Cu2+ and Pb2+ ions by the accumulation of S2− and EDTA respectively. Based on the physicochemical and analytical methods like ESI-mass spectrometry, Job plot, FT-IR, 1H-NMR spectra and DFT studies the detection mechanism may be explained as metal coordination, photoinduced electron transfer (PET) as well as an internal charge transfer (ICT) process. The sensor could work in a pH span of 4.0–12.0. The chemosensor L shows its application potential in the detection of Cu2+ and Pb2+ in real samples, living cells and building of molecular logic gate. A novel triazole-based bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized. The chemo-sensor L shows its application potential in the detection of Cu2+ and Pb2+ in living cells and building molecular logic gate.![]()
Collapse
Affiliation(s)
- Kalyani Rout
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Amit Kumar Manna
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Meman Sahu
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Jahangir Mondal
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Sunil K. Singh
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Goutam K. Patra
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| |
Collapse
|