1
|
Geçgel C, Yabalak E, Turabik M. Simultaneous synthesis of super-paramagnetic hydrochar in a one-pot using subcritical water medium and evaluation of its photocatalytic activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121333. [PMID: 38833925 DOI: 10.1016/j.jenvman.2024.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The unregulated release of chemical dyes into the environment presents considerable environmental hazards when left untreated. Photocatalytic degradation, acknowledged as an eco-friendly and cost-effective method, has garnered attention for its efficacy in eliminating organic pollutants like dye. Consequently, the development of multifunctional materials with different applications in environmental and catalytic fields emerges as a promising avenue. Recognizing the significance of integrating catalysts and porous materials for enhancing interactions between pollutants and photo-sensitive substances, magnetic hydrochar emerges as a solution offering heightened efficiency, scalability, recyclability, and broad applicability in various environmental processes, notably wastewater treatment, due to its facile separation capability. In this study, Fe3O4-based, super-paramagnetic hydrochar (SMHC) was simultaneously synthesized in a single step using a coconut shell in the subcritical water medium. A thorough analysis was conducted on both raw hydrochar (RHC) and SMHC to unravel the mechanism of interaction between Fe3O4 nanoparticles and the hydrochar matrix. The synthesized hydrochar exhibited super-paramagnetic characteristics, with a saturation magnetization of 23.7 emu/g and a magnetic hysteresis loop. SMHC displayed a BET surface area of 42.6 m2/g and an average pore size of 26.3 nm, indicating a mesoporous structure according to nitrogen adsorption-desorption isotherms. XRD analysis revealed magnetic crystal sizes in the obtained SMHC to be 13.7 nm. The photocatalytic performance of SMHC was evaluated under visible light exposure in the presence of H2O2 for Astrazon yellow (AY) dye degradation, with optimization conducted using response surface methodology (RSM). The most substantial dye removal, reaching 92.83%, was achieved with 0.4% H2O2 at a 20 mg/L dye concentration and an 80-min reaction duration.
Collapse
Affiliation(s)
- Cihan Geçgel
- Advanced Technology Education Research and Application Center, Mersin University, 33343, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey; Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343, Mersin, Turkey.
| | - Meral Turabik
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey; Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343, Mersin, Turkey
| |
Collapse
|
2
|
Saroa A, Singh A, Jindal N, Kumar R, Singh K, Guleria P, Boopathy R, Kumar V. Nanotechnology-assisted treatment of pharmaceuticals contaminated water. Bioengineered 2023; 14:2260919. [PMID: 37750751 PMCID: PMC10524801 DOI: 10.1080/21655979.2023.2260919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
The presence of pharmaceutical compounds in wastewater due to an increase in industrialization and urbanization is a serious health concern. The demand for diverse types of pharmaceutical compounds is expected to grow as there is continuous improvement in the global human health standards. Discharge of domestic pharmaceutical personal care products and hospital waste has aggravated the burden on wastewater management. Further, the pharmaceutical water is toxic not only to the aquatic organism but also to terrestrial animals coming in contact directly or indirectly. The pharmaceutical wastes can be removed by adsorption and/or degradation approach. Nanoparticles (NPs), such as 2D layers materials, metal-organic frameworks (MOFs), and carbonaceous nanomaterials are proven to be more efficient for adsorption and/or degradation of pharmaceutical waste. In addition, inclusion of NPs to form various composites leads to improvement in the waste treatment efficacy to a greater extent. Overall, carbonaceous nanocomposites have advantage in the form of being produced from renewable resources and the nanocomposite material is biodegradable either completely or to a great extent. A comprehensive literature survey on the recent advancement of pharmaceutical wastewater is the focus of the present article.
Collapse
Affiliation(s)
- Amandeep Saroa
- Department of Chemistry, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, India
| | - Amrit Singh
- Department of Physics, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib, India
| | - Neha Jindal
- Department of Chemistry, DAV College, Bathinda, India
| | - Raj Kumar
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, India
| | | | - Praveen Guleria
- Department of Biotechnology, DAV University, Jalandhar, India
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA, USA
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
4
|
Chowdhury MSH, Rahman Khan MM, Shohag MRH, Rahman S, Paul SK, Rahman MM, Asiri AM, Rahman MM. Easy synthesis of PPy/TiO 2/ZnO composites with superior photocatalytic performance, efficient supercapacitors and nitrite sensor. Heliyon 2023; 9:e19564. [PMID: 37810126 PMCID: PMC10558798 DOI: 10.1016/j.heliyon.2023.e19564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
The synthesis of Polypyrrole (PPy)/TiO2/ZnO composites involved a chemical oxidative polymerization process, wherein the addition of TiO2/ZnO was varied from 1 to 10 wt%. The composites' photocatalytic capabilities, supercapacitor performance, and potential use as a nitrite sensor were thoroughly assessed, alongside investigations into their photoluminescence (PL) and morphological characteristics. The strong interaction between TiO2/ZnO and PPy was confirmed using FTIR, UV-Vis, and PL spectroscopy techniques. The composites demonstrated aggregated and spherical-shaped morphological features investigated by FESEM. Such morphological structures of the composites were distinct from the TiO2/ZnO (rod-like) and similar to PPy structure (spherical). However, such composites showed dominating spherical-shaped morphology ensuring a diameter in the range of 50-200 nm. The PPy/TiO2/ZnO composites exhibited significantly enhanced photocatalytic efficiency in methylene blue (MB) removal, achieving a range of 88-93% compared to PPy alone, which only achieved 77.2% MB removal. The Cyclic Voltammetry (CV) data exhibited a promising hybrid supercapacitor performance of the composites with a high capacitance value, good energy density, as well as an excellent power density. The fabricated supercapacitor was capable of lightened up a single red 5 mm LED for a few minutes, indicating the commendable energy storage capacity. A newly developed PPy/TiO2/ZnO composite is potentially used to develop as a sensor probe for the detection of nitrite chemicals using the linear sweep voltammetry (LSV) technique in three electrodes system in room conditions. It is found an excellent sensor results in terms of sensitivity as well as detection limit and satisfactory results when validated with the real samples. These results offer novel insights into the fabrication of PPy/TiO2/ZnO photocatalysts for addressing organic waste treatment, while also presenting promising prospects for potential applications in supercapacitors and sensors.
Collapse
Affiliation(s)
| | | | | | - Samiur Rahman
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Suzon Kumar Paul
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Md Mizanur Rahman
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
5
|
Lv M, Liu H, He L, Zheng B, Tan Q, Hassan M, Chen F, Gong Z. Efficient photocatalytic degradation of ciprofloxacin by graphite felt-supported MnS/Polypyrrole composite: Dominant reactive species and reaction mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116218. [PMID: 37224952 DOI: 10.1016/j.envres.2023.116218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The accumulation of antibiotics in aquatic environments poses a serious threat to human health. Photocatalytic degradation is a promising method for removing antibiotics from water, but its practical implementation requires improvements in photocatalyst activity and recovery. Here, a novel graphite felt-supported MnS/Polypyrrole composite (MnS/PPy/GF) was constructed to achieve effective adsorption of antibiotics, stable loading of photocatalyst, and rapid separation of spatial charge. Systematic characterization of composition, structure and photoelectric properties indicated the efficient light absorption, charge separation and migration of the MnS/PPy/GF, which achieved 86.2% removal of antibiotic ciprofloxacin (CFX), higher than that of MnS/GF (73.7%) and PPy/GF (34.8%). The charge transfer-generated 1O2, energy transfer-generated 1O2, and photogenerated h+ were identified as the dominant reactive species, which mainly attacked the piperazine ring in the photodegradation of CFX by MnS/PPy/GF. The •OH was confirmed to participate in the defluorination of CFX via hydroxylation substitution. The MnS/PPy/GF-based photocatalytic process could ultimately achieve the mineralization of CFX. The facile recyclability, robust stability, and excellent adaptability to actual aquatic environments further confirmed MnS/PPy/GF is a promising eco-friendly photocatalyst for antibiotic pollution control.
Collapse
Affiliation(s)
- Miao Lv
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Hongchang Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Lei He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Binbin Zheng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Muhammad Hassan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
6
|
Araújo ES, Pereira MFG, da Silva GMG, Tavares GF, Oliveira CYB, Faia PM. A Review on the Use of Metal Oxide-Based Nanocomposites for the Remediation of Organics-Contaminated Water via Photocatalysis: Fundamentals, Bibliometric Study and Recent Advances. TOXICS 2023; 11:658. [PMID: 37624163 PMCID: PMC10458580 DOI: 10.3390/toxics11080658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds. Thus, this work presents an updated review of the main advances in the use of metal oxide nanocomposites-based photocatalysts for decontamination of water polluted by these substances. A bibliometric analysis allowed to show the evolution of the importance of this research topic in the literature over the last decade. The results of the study also showed that hierarchical and heterogeneous nanostructures of metal oxides, as well as conducting polymers and carbon materials, currently stand out as the main materials for the synthesis of MON, with better photocatalysis performance in the degradation of dyes, pharmaceuticals and pesticides.
Collapse
Affiliation(s)
- Evando S. Araújo
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Michel F. G. Pereira
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Georgenes M. G. da Silva
- Federal Institute of Education, Science and Technology of the Sertão Pernambucano, Petrolina 56314-520, Brazil;
| | - Ginetton F. Tavares
- Research and Extension Center, Laboratory of Fuels and Materials (NPE/LACOM), Department of Chemistry, Federal University of Paraíba, Campus I, João Pessoa 58051-900, Brazil;
| | - Carlos Y. B. Oliveira
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-535, Brazil;
| | - Pedro M. Faia
- Electrical and Computer Engineering Department, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), FCTUC, University of Coimbra, Polo 2, Pinhal de Marrocos, 3030-290 Coimbra, Portugal;
| |
Collapse
|
7
|
Self-assembled quantum dots decorated Polypyrrole based multifunctional nanocomposite. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
A novel Ppy/ZnO@Co ternary nanocomposite with enhanced visible light-driven photocatalytic performance. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Latif S, Liaqat A, Imran M, Javaid A, Hussain N, Jesionowski T, Bilal M. Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114500. [PMID: 36257452 DOI: 10.1016/j.envres.2022.114500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac sodium is an anti-inflammatory drug commonly used to cure pain in various treatments. The remarkable potential of this pain-killer leads to its excessive use and, therefore, a persistent water contaminant. Its presence in aqueous bodies is hazardous for both humans and the environment because it causes the growth of harmful drug-resistant bacteria in water. Herein, we present a comparative study of the ZnO and ZnFe2O4 as photocatalysts for the degradation of diclofenac sodium, along with their structural and morphological studies. A simple co-precipitation method was used for the synthesis of ZnO and ZnFe2O4 and characterized by various analytical techniques. For instance, the UV-Vis study revealed the absorption maxima of ZnO at 320 nm, which was shifted to a longer wavelength region at 365 nm for zinc ferrite. The optical band gaps obtained from the Tauc plot indicated that the incorporation of iron has led to a decreased band gap of zinc ferrite (2.89 eV) than pure ZnO (3.14 eV). The metal-oxygen linkages shown by FTIR indicated the formation of desired ZnO and ZnFe2O4, which was further confirmed by XRD. It elucidated the typical hexagonal structure for ZnO and spinel cubic structure for ZnFe2O4 with an average crystallite of 31 nm and 44 nm for ZnO and ZnFe2O4, respectively. The micrographs obtained by SEM showed rough spherical particles of ZnO, whereas for ZnFe2O4 flower-like clustered particles were observed. The photocatalytic investigation against diclofenac sodium revealed the higher degradation efficiency of ZnFe2O4 (61.4%) in only 120 min, whereas ZnO degraded only 48.9% of the drug. Moreover, zinc ferrite has shown good recyclability and was stable up to five runs of photodegradation with a small loss (3.9%) of photocatalytic activity. The comparison of two catalysts has suggested the promising role of zinc ferrite in wastewater remediation to eliminate hazardous pharmaceuticals.
Collapse
Affiliation(s)
- Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Amna Liaqat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
10
|
Bateni A, Valizadeh K, Salahshour Y, Behroozi AH, Maleki A. Fabrication and characterization of pectin-graphene oxide-magnesium ferrite-zinc oxide nanocomposite for photocatalytic degradation of diclofenac in an aqueous solution under visible light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116358. [PMID: 36179472 DOI: 10.1016/j.jenvman.2022.116358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wastewater containing pharmaceutical contaminants has become a critical environmental concern due to rising population and drug consumption caused by increased life expectancy. Diclofenac (DCF) is one of the most applicable drugs for veterinary and human health purposes, polluting surface waters in different ways. This work aims to synthesize a novel pectin-graphene oxide (GO)-magnesium ferrite (MgFe2O4)-zinc oxide (ZnO) nanocomposite (PGMZ) for photocatalytic degradation of DCF in an aquatic environment under visible light irradiation. The single and synthesized nanocomposites were characterized by several analyses, confirming the successful synthesis of the nanocomposite. Effects of four operation conditions, including nanocomposite dosage (1-1.25 g/L), nanocomposite type, initial contaminant concentration (35-55 mg/L), and solution pH (3-11), were investigated on the degradation performance. From the kinetic study, the effect of mixing two composites, i.e., synergy percentage, was 38.7% when ZnO-MgFe2O4 particles were added to the GO-pectin structure. By examining the effect of different free radical enhancers and scavenging compounds on the DCF photodegradation, the most influential scavenging components were in the following order; NaCl > Na2CO3 > Na2SO4, while K2S2O8 was a better enhancer than H2O2 at their optimal concentration. Finally, the PGMZ photocatalyst was reused six times with a reduction of about 20% in its removal efficiency, indicating excellent reusability and stability.
Collapse
Affiliation(s)
- Amir Bateni
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Kamran Valizadeh
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yasin Salahshour
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
11
|
Design of SnO2 nanorods/polypyrrole nanocomposite photocatalysts for photocatalytic activity towards various organic pollutants under the visible light irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Tanweer MS, Iqbal Z, Alam M. Experimental Insights into Mesoporous Polyaniline-Based Nanocomposites for Anionic and Cationic Dye Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8837-8853. [PMID: 35816402 DOI: 10.1021/acs.langmuir.2c00889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work presents the preparation of inorganic-organic hybrid nanocomposites, namely three-dimensional polyaniline (Pani)/activated silica gel (ASG) (3D Pani@ASG), their characterization, and in removing application as a potential adsorbent for cationic brilliant green (BG), crystal violet (CV), and anionic Congo red (CR), and methyl orange (MO) dyes. Pani@ASG nanocomposites have been prepared by the in situ polymerization method and characterized using various techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction, thermogravimetric analysis with derivative thermogravimetry, zeta potential analyses, and Brunauer-Emmett-Teller (BET). The scanning electron microscopy (SEM) study confirms the average particle size of the Pani@ASG nanocomposite is in the range of 5 nm. FESEM, TEM, FTIR, and XRD analysis proved the successful decoration of ASG over Pani. The BET result of Pani@ASG shows a mesoporous nature with a pore diameter of less than 3 nm and a surface area of 423.90 m2 g-1. Both SEM and TEM analyses show the proportional distribution of ASG over Pani's surface. The adsorption trend of BG and MO on the studied materials at pH 7 was found as follows: Pani@ASG > Pani > ASG. The highest sorption capacities of MO and BG on Pani@ASG were 161.29 and 136.98 mg/g (T = 298.15 K, and Pani@ASG dose: 0.04 g for MO and 0.06 g for BG), which were greater compared with bare Pani and bare ASG, respectively. The interaction mechanism behind the adsorption of BG and MO dyes onto the Pani@ASG nanocomposite includes electrostatic interaction, π-π interaction, and hydrogen bonding. The mechanistic pathway and the interactions between the targeted dyes and Pani@ASG were further studied using adsorption isotherm, adsorption kinetics, and thermodynamics.
Collapse
Affiliation(s)
- Mohd Saquib Tanweer
- Environmental Science Research Lab, Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Zafar Iqbal
- Environmental Science Research Lab, Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India
| | - Masood Alam
- Environmental Science Research Lab, Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
13
|
Singh AR, Dhumal PS, Bhakare MA, Lokhande KD, Bondarde MP, Some S. In-situ synthesis of metal oxide and polymer decorated activated carbon-based photocatalyst for organic pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Rajan MS, John A, Thomas J. Nanophotocatalysis for the Removal of Pharmaceutical Residues from
Water Bodies: State of Art and Recent Trends. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210412095354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Background:
The occurrence of pharmaceuticals in surface and drinking water is ubiquitous
and is a major concern of researchers. These compounds cause a destructive impact on
aquatic and terrestrial life forms, and the removal of these compounds from the environment is a
challenging issue. Existent conventional wastewater treatment processes are generally inefficacious
because of their low degradation efficiency and inadequate techniques associated with the disposal
of adsorbed pollutants during comparatively effective methods like the adsorption process.
Remediation Method:
Semiconductor-mediated photocatalysis is an attractive technology for the
efficient removal of pharmaceutical compounds. Among various semiconductors, TiO2 and ZnObased
photocatalysts gained much interest during the last years because of their efficiency in decomposing
and mineralizing the lethal organic pollutants with the utilization of UV-visible light.
Incessant efforts are being undertaken for tuning the physicochemical, optical, and electronic properties
of these photocatalysts to strengthen their overall photocatalytic performance with good recycling
efficiency.
Results:
This review attempts to showcase the recent progress in the rational design and fabrication
of nanosized TiO2 and ZnO photocatalysts for the removal of pollutants derived from the pharmaceutical
industry and hospital wastes.
Conclusion:
Photocatalysis involving TiO2 and ZnO provides a positive impact on pollution management
and could be successfully applied to remove pharmaceuticals from wastewater streams.
Structure modifications, the introduction of heteroatoms, and the integration of polymers with
these nano photocatalysts offer leapfrogging opportunities for broader applications in the field of
photocatalysis.
Collapse
Affiliation(s)
- Mekha Susan Rajan
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| | - Anju John
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| | - Jesty Thomas
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561,India
| |
Collapse
|
15
|
Jadoun S, Yáñez J, Mansilla HD, Riaz U, Chauhan NPS. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2063-2083. [PMID: 35221834 PMCID: PMC8857745 DOI: 10.1007/s10311-022-01398-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
The accessibility to clean water is essential for humans, yet nearly 250 million people die yearly due to contamination by cholera, dysentery, arsenicosis, hepatitis A, polio, typhoid fever, schistosomiasis, malaria, and lead poisoning, according to the World Health Organization. Therefore, advanced materials and techniques are needed to remove contaminants. Here, we review nanohybrids combining conducting polymers and zinc oxide for the photocatalytic purification of waters, with focus on in situ polymerization, template synthesis, sol-gel method, and mixing of semiconductors. Advantages include less corrosion of zinc oxide, less charge recombination and more visible light absorption, up to 53%.
Collapse
Affiliation(s)
- Sapana Jadoun
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Héctor D. Mansilla
- Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad de Concepción, 4070371 Edmundo Larenas 129, Concepción, Chile
| | - Ufana Riaz
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, 110025 India
| | | |
Collapse
|
16
|
Pang AL, Arsad A, Ahmadipour M, Azlan Hamzah A, Ahmad Zaini MA, Mohsin R. High efficient degradation of organic dyes by
polypyrrole‐multiwall
carbon nanotubes nanocomposites. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ai Ling Pang
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Agus Arsad
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Mohsen Ahmadipour
- Institute of Microengineering and Nanoelectronics Universiti Kebangsaan Malaysia Bangi, Selangor Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics Universiti Kebangsaan Malaysia Bangi, Selangor Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering & Applied Research (CLEAR), Ibnu‐Sina Institute for Scientific & Industrial Research (ISI‐SIR), School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Rahmat Mohsin
- UTM‐MPRC Institute for Oil and Gas, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| |
Collapse
|
17
|
|
18
|
Leichtweis J, Silvestri S, Stefanello N, Carissimi E. Degradation of ramipril by residues from the brewing industry: A new carbon-based photocatalyst compound. CHEMOSPHERE 2021; 281:130987. [PMID: 34289631 DOI: 10.1016/j.chemosphere.2021.130987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
This study is a pioneer in the use of hydrochar as a support for photocatalytic oxide and its application and evaluation as a catalyst in degradation reactions of ramipril. Novel composites were easily prepared by the support TiO2 or ZnO nanoparticles on the malt bagasse hydrochar. The preparation of the hydrochar requires low synthesis temperature (250 °C), generating the energy savings of the process. The production of the new composites was well supported by different analytical techniques XRD, FTIR, SSA, SEM, EDS, and reflectance diffuse. The effect of different proportions of TiO2 or ZnO on the composites was investigated on the degradation efficiency of the pharmaceutical ramipril, without pH adjustment. Composites with a 5:1 hydrochar/TiO2 or ZnO ratio (MH5T and MH5Z, respectively) showed degradations of 72 and 98% of ramipril at 120 min. This remarkable performance may be associated with the decrease in band gap energy and the electron-hole recombination rate. In addition, the composites were more efficient than metal oxides pristine, and this may be related to the fact that hydrochar have a high concentration of phenolic, hydroxyl, and carboxylic functional groups on their surface. Radical identification tests indicated that h+, O2•-, and •OH were the reactive species involved in the degradation. The proposed mechanism was studied via LC-MS/MS indicated that the ramipril molecule degrades into low m/z intermediates in the first 60 min of reaction using the MH5Z.
Collapse
Affiliation(s)
- Jandira Leichtweis
- Postgraduate Program in Environmental Engineering, Federal University of Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| | - Siara Silvestri
- Postgraduate Program in Environmental Engineering, Federal University of Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| | - Nádia Stefanello
- Postgraduate Program in Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000 - 7, 97105-900, Santa Maria, RS, Brazil
| | - Elvis Carissimi
- Postgraduate Program in Environmental Engineering, Federal University of Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
19
|
Zia J, Riaz U. Photocatalytic degradation of water pollutants using conducting polymer-based nanohybrids: A review on recent trends and future prospects. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Tran VV, Nu TTV, Jung HR, Chang M. Advanced Photocatalysts Based on Conducting Polymer/Metal Oxide Composites for Environmental Applications. Polymers (Basel) 2021; 13:3031. [PMID: 34577932 PMCID: PMC8470106 DOI: 10.3390/polym13183031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 01/12/2023] Open
Abstract
Photocatalysts provide a sustainable method of treating organic pollutants in wastewater and converting greenhouse gases. Many studies have been published on this topic in recent years, which signifies the great interest and attention that this topic inspires in the community, as well as in scientists. Composite photocatalysts based on conducting polymers and metal oxides have emerged as novel and promising photoactive materials. It has been demonstrated that conducting polymers can substantially improve the photocatalytic efficiency of metal oxides owing to their superior photocatalytic activities, high conductivities, and unique electrochemical and optical properties. Consequently, conducting polymer/metal oxide composites exhibit a high photoresponse and possess a higher surface area allowing for visible light absorption, low recombination of charge carriers, and high photocatalytic performance. Herein, we provide an overview of recent advances in the development of conducting polymer/metal oxide composite photocatalysts for organic pollutant degradation and CO2 conversion through photocatalytic processes.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Truong Thi Vu Nu
- Advanced Institute of Science and Technology, University of Danang, Danang 50000, Vietnam;
| | - Hong-Ryun Jung
- Industry-University Cooperation Foundation, Chonnam National University, Gwangju 61186, Korea
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
21
|
Meroni D, Bianchi CL, Boffito DC, Cerrato G, Bruni A, Sartirana M, Falletta E. Piezo-enhanced photocatalytic diclofenac mineralization over ZnO. ULTRASONICS SONOCHEMISTRY 2021; 75:105615. [PMID: 34111723 PMCID: PMC8193124 DOI: 10.1016/j.ultsonch.2021.105615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 05/08/2023]
Abstract
The degradation of diclofenac has been realized for the first time by a piezo-enhanced sonophotocatalytic approach based on ZnO. The sonophotocatalytic degradation showed a slight enhancement in the degradation of the parent compound, whereas strong synergistic effects were observed for the mineralization process when suitable ZnO morphologies are used, reaching 70% of complete degradation of 25 ppm diclofenac using 0.1 g/L ZnO in 360 min. Tests in a complex water matrix show enhanced diclofenac removal, outperforming a TiO2 benchmark photocatalyst. These promising experimental results promote this process as a good alternative to traditional degradation approaches for remediation of real water matrices.
Collapse
Affiliation(s)
- Daniela Meroni
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy.
| | - Claudia L Bianchi
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy
| | - Daria C Boffito
- Polytechnique Montréal - Génie Chimique 2900 Boul, Edouard Montpetit - H3T 1J4, Montréal, QC, Canada
| | - Giuseppina Cerrato
- Department of Chemistry, Università degli Studi di Torino, via Pietro Giuria, 7, 10125 Torino, Italy
| | - Anna Bruni
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marta Sartirana
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Ermelinda Falletta
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, 50121 Florence, Italy; ISTM-CNR, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
22
|
Pang YL, Law ZX, Lim S, Chan YY, Shuit SH, Chong WC, Lai CW. Enhanced photocatalytic degradation of methyl orange by coconut shell-derived biochar composites under visible LED light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27457-27473. [PMID: 33507503 DOI: 10.1007/s11356-020-12251-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The conversion of carbon-rich biomass into valuable material is an environmental-friendly approach for its reutilization. In this study, coconut shell-derived biochar, graphitic carbon nitride (g-C3N4), g-C3N4/biochar, titanium dioxide (TiO2)/biochar, zinc oxide (ZnO)/biochar, and ferric oxide (Fe2O3)/biochar were synthesized and characterized by using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), surface area analysis, UV-Vis diffuse reflectance spectroscopy (DRS), and zeta potential analysis. The g-C3N4 or metal oxide particles were found to be well-distributed on the coconut shell-derived biochar with the improvement in thermal stability and enlargement of specific surface area. A great reduction in band gap energy was observed in the composite materials after incorporating with the biochar. Among different biochar composites, g-C3N4/biochar was found to have the highest photocatalytic activity. The interactive effect of parameters such as catalyst dosage, peroxymonosulfate (PMS) oxidant dosage, and solution pH on the photocatalytic degradation of methyl orange was investigated using the response surface methodology (RSM). The highest photocatalytic degradation efficiency (96.63%) was achieved at catalyst dosage of 0.75 g/L, oxidant dosage of 0.6 mM, and solution pH 3 after 30 min.
Collapse
Affiliation(s)
- Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
| | - Zhi Xuan Law
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Yin Yin Chan
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Graduate Studies Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Vitiello G, Iervolino G, Imparato C, Rea I, Borbone F, De Stefano L, Aronne A, Vaiano V. F-doped ZnO nano- and meso-crystals with enhanced photocatalytic activity in diclofenac degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143066. [PMID: 33127133 DOI: 10.1016/j.scitotenv.2020.143066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Diclofenac (DCF), a non-steroidal anti-inflammatory drug, is considered one of the most widespread emerging contaminants. Its incidence in water can favor the growth of drug-resistant bacteria and harm aquatic organisms endangering both the human health and the ecosystem. Advanced oxidation processes (AOPs) based on the action of reactive oxygen species are very effective technologies for the removal of this contaminant from water. In this context, ZnO is one of the most studied semiconductors for photocatalytic water treatment. In this work, the photocatalytic activity of fluorine-doped ZnO nano- and meso-crystals synthesized by a hydrothermal approach is reported, exploring the role of a low F atomic concentration (0.25, 0.5 and 1 at. %) on the degradation of DCF in comparison with bare ZnO. All doped samples show high rates of DCF degradation and mineralization, which were realized primarily thanks to their high efficiency in the generation of hydroxyl radicals (OH). The property-structure-function relationships of the materials are investigated by complementary techniques, such as SEM, XRD, EPR, UV-vis DRS and PL, with the aim to evaluate the role of fluorine in determining their morphological, electronic and optical properties.
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio, 80, I-80125 Napoli, Italy; CSGI, Center for Colloid and Interface Science, via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | - Giuseppina Iervolino
- Dipartimento di Ingegneria Industriale, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, (Salerno), Italy
| | - Claudio Imparato
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio, 80, I-80125 Napoli, Italy
| | - Ilaria Rea
- ISASI-CNR, Istituto di Scienze Applicate e Sistemi Intelligenti-Consiglio Nazionale Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Fabio Borbone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, via Cinthia, 4, I-80126 Napoli, Italy
| | - Luca De Stefano
- ISASI-CNR, Istituto di Scienze Applicate e Sistemi Intelligenti-Consiglio Nazionale Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Antonio Aronne
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P.le Tecchio, 80, I-80125 Napoli, Italy.
| | - Vincenzo Vaiano
- CSGI, Center for Colloid and Interface Science, via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy.
| |
Collapse
|
24
|
Gonçalves MG, da Silva Veiga PA, Fornari MR, Peralta-Zamora P, Mangrich AS, Silvestri S. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141381. [PMID: 32798874 DOI: 10.1016/j.scitotenv.2020.141381] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Three different composites were produced, based on zinc oxide and biochar (ZnO/biochar), varying the type of biomass (Salvinia molesta: SM; exhausted husk of black wattle: EH; and sugarcane bagasse: SB), with pyrolysis under mild conditions at 350 and 450 °C. Evaluation was made of the capacities of the composites for photocatalytic degradation of sulfamethoxazole antibiotic (SMX) and methyl orange dye (MO). The properties of the prepared composites were influenced by the biomass source, with larger crystallite size (SB), lower band gap energy (SM), higher specific surface area (SB), and larger pore size (SM) resulting in higher photocatalytic efficiency. Good degradation results were obtained using these innovative photocatalysts prepared at low temperatures, when compared to ZnO/biochar materials reported in previous studies. The best degradation capacities were obtained for the composites produced at 450 °C from SB and SM, with 99.3 and 97% degradation of SMX after 45 min, and 90.8 and 88.3% degradation of MO after 120 min, respectively.
Collapse
Affiliation(s)
| | | | - Mayara Regina Fornari
- Department of Chemistry, Federal University of Paraná, 81531-980 Curitiba, PR, Brazil
| | | | | | - Siara Silvestri
- Postgraduate in Environmental Engineering, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
25
|
Lazarotto JS, Lima Brombilla V, Silvestri S, Foletto EL. Conversion of spent coffee grounds to biochar as promising TiO
2
support for effective degradation of diclofenac in water. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joseane Sarmento Lazarotto
- Graduate Program in Chemical Engineering Federal University of Santa Maria Av. Roraima, 1000‐9B Santa Maria RS 97105‐900 Brazil
| | - Vitória Lima Brombilla
- Graduate Program in Chemical Engineering Federal University of Santa Maria Av. Roraima, 1000‐9B Santa Maria RS 97105‐900 Brazil
| | - Siara Silvestri
- Graduate Program in Environmental Engineering Federal University of Santa Maria Av. Roraima, 1000‐7 Santa Maria RS 97105‐900 Brazil
| | - Edson Luiz Foletto
- Graduate Program in Chemical Engineering Federal University of Santa Maria Av. Roraima, 1000‐9B Santa Maria RS 97105‐900 Brazil
- Graduate Program in Environmental Engineering Federal University of Santa Maria Av. Roraima, 1000‐7 Santa Maria RS 97105‐900 Brazil
| |
Collapse
|
26
|
Humaira Y, Amir Z, Shouxin L. Surface plasmon resonance electron channeled through amorphous aluminum oxide bridged ZnO coupled g-C3N4 significantly promotes charge separation for pollutants degradation under visible light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Z-scheme BiFeO3-CNTs-PPy as a highly effective and stable photocatalyst for selective oxidation of benzyl alcohol under visible-light irradiation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Ameri A, Shakibaie M, Pournamdari M, Ameri A, Foroutanfar A, Doostmohammadi M, Forootanfar H. Degradation of diclofenac sodium using UV/biogenic selenium nanoparticles/H2O2: Optimization of process parameters. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112382] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Effect of conducting polymer on photoluminescence quenching of green synthesized ZnO thin film and its photocatalytic properties. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Arsalani N, Bazazi S, Abuali M, Jodeyri S. A new method for preparing ZnO/CNT nanocomposites with enhanced photocatalytic degradation of malachite green under visible light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112207] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Abstract
Solar radiation is becoming increasingly appreciated because of its influence on living matter and the feasibility of its application for a variety of purposes. It is an available and everlasting natural source of energy, rapidly gaining ground as a supplement and alternative to the nonrenewable energy feedstock. Actually, an increasing interest is involved in the development of efficient materials as the core of photocatalytic and photothermal processes, allowing solar energy harvesting and conversion for many technological applications, including hydrogen production, CO2 reduction, pollutants degradation, as well as organic syntheses. Particularly, photosensitive nanostructured hybrid materials synthesized coupling inorganic semiconductors with organic compounds, and polymers or carbon-based materials are attracting ever-growing research attention since their peculiar properties overcome several limitations of photocatalytic semiconductors through different approaches, including dye or charge transfer complex sensitization and heterostructures formation. The aim of this review was to describe the most promising recent advances in the field of hybrid nanostructured materials for sunlight capture and solar energy exploitation by photocatalytic processes. Beside diverse materials based on metal oxide semiconductors, emerging photoactive systems, such as metal-organic frameworks (MOFs) and hybrid perovskites, were discussed. Finally, future research opportunities and challenges associated with the design and development of highly efficient and cost-effective photosensitive nanomaterials for technological claims were outlined.
Collapse
|
32
|
|
33
|
Abstract
In the present comprehensive review we have specifically focused on polymer nanocomposites used as photocatalytic materials in fine organic reactions or in organic pollutants degradation. The selection of the polymer substrates for the immobilization of the active catalyst particles is motivated by several advantages displayed by them, such as: Environmental stability, chemical inertness and resistance to ultraviolet radiations, mechanical stability, low prices and ease availability. Additionally, the use of polymer nanocomposites as photocatalysts offers the possibility of a facile separation and reuse of the materials, eliminating thus the post-treatment separation processes and implicitly reducing the costs of the procedure. This review covers the polymer-based photocatalytic materials containing the most popular inorganic nanoparticles with good catalytic performance under UV or visible light, namely TiO2, ZnO, CeO2, or plasmonic (Ag, Au, Pt, Pd) NPs. The study is mainly targeted on the preparation, photocatalytic activity, strategies directed toward the increase of photocatalytic efficiency under visible light and reuse of the hybrid polymer catalysts.
Collapse
|
34
|
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00982-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Wang L, Jiang R. Investigation on the Ammonia Sensitivity Mechanism of Conducting Polymer Polypyrroles Using <i>In-Situ</i> FT-IR. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/msa.2019.107036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|