1
|
Thakuri A, Bhosle AA, Hiremath SD, Banerjee M, Chatterjee A. A carbon dots-MnO 2 nanosheet-based turn-on pseudochemodosimeter as low-cost probe for selective detection of hazardous mercury ion contaminations in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133998. [PMID: 38493622 DOI: 10.1016/j.jhazmat.2024.133998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Mercury is a highly hazardous element due to its profound toxicity and wide abundance in the environment. Despite the availability of various fluorimetric detection tools for Hg2+, including organic fluorophores and aptasensors, they often suffer from shortcomings like the utilization of expensive chemicals and toxic organic solvents, multi-step synthesis, sometimes with poor selectivity and low sensitivity. Whereas, biomass-derived fluorophores, such as carbon dots (CDs), present themselves as cost-effective and environmentally benign alternatives that exhibit comparable efficacy. Herein, we report a reaction-driven sensing assembly based on CDs, MnO2 nanosheets, and hydroquinone monothiocarbonate (HQTC) for the detection of Hg2+ ions, which relies on the formation of a CDs-MnO2 FRET-conjugate, resulting in the quenching of the intrinsic fluorescence of CDs. In a pseudochemodosimetric approach, the thiophilic nature of mercury was utilized for in-situ generation of the reducing species, hydroquinone from HQTC, resulting in the reduction of MnO2 nanosheets, the release of fluorescent CDs back to the solution. The low limit of detection (LOD) was achieved as 2 ppb (0.01 μM). The probe worked efficiently in real water samples like sea, river with good recovery of spiked Hg2+ and in some Indian ayurvedic medicines as well. Furthermore, solid-phase detection with sodium alginate beads demonstrated the ability of this cost-effective sensing assembly for onsite detection of Hg2+ ions.
Collapse
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Akhil A Bhosle
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Sharanabasava D Hiremath
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India.
| | - Amrita Chatterjee
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India.
| |
Collapse
|
2
|
Huang W, Zhang W, Chen G, Chen Y, Ma J, Huang D, Zhao Q, Wu B. Visible light-driven oxidation of non-native substrate by laccase attached on Ru-based metal-organic frameworks. J Environ Sci (China) 2024; 137:741-753. [PMID: 37980056 DOI: 10.1016/j.jes.2023.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 11/20/2023]
Abstract
Light-induced electron transfer can broaden the substrate range of metalloenzyme. However, the efficiency of photo-enzyme coupling is limited by the poor combination of photosensitizer or photocatalyst with enzyme. Herein, we prepared the nano-photocatalyst MIL-125-NH2@Ru(bpy) by in site embedding ruthenium pyridine-diimine complex [Ru(bpy)3]2+ into metal organic frameworks MIL-125-NH2 and associated it with multicopper oxidase (MCO) laccase. Compared to [Ru(bpy)3]2+, the coupling efficiency of MIL-125-NH2@Ru(bpy)3 for enzymatic oxygen reduction increased by 35.7%. A series of characterizations confirmed that the amino group of laccase formed chemical bonds with the surface defects or hydrophobic groups of MIL-125-NH2@Ru(bpy)3. Consequently, the tight binding accelerated the quenching process and electron transfer between laccase and the immobilized ruthenium pyridine-diimine complex. This work would open an avenue for the synthesis of MOFs photocatalyst towards photo-enzyme coupling.
Collapse
Affiliation(s)
- Wenguang Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guantongyi Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Jun Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Dawei Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Qinzheng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| |
Collapse
|
3
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Nong L, Li Z, Cheng J, Huang P, Lin W. A fluorescent probe for the detection of N 2H 4 in solution, steam, and the biological system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4531-4536. [PMID: 36310524 DOI: 10.1039/d2ay01602h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Improper use of N2H4 will cause serious harm to the environment. Inhalation or skin contact with N2H4 will also cause a variety of diseases for humans and animals. Herein, a fluorescent probe (HFOAc) for the detection of N2H4 in solution, steam and the biological environment has been designed and synthesized.
Collapse
Affiliation(s)
- Li Nong
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Zihong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Jie Cheng
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Ping Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
5
|
Olla C, Porcu S, Secci F, Ricci PC, Carbonaro CM. Towards N-N-Doped Carbon Dots: A Combined Computational and Experimental Investigation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1468. [PMID: 35208012 PMCID: PMC8880414 DOI: 10.3390/ma15041468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
The introduction of N doping atoms in the carbon network of Carbon Dots is known to increase their quantum yield and broaden the emission spectrum, depending on the kind of N bonding introduced. N doping is usually achieved by exploiting amine molecules in the synthesis. In this work, we studied the possibility of introducing a N-N bonding in the carbon network by means of hydrothermal synthesis of citric acid and hydrazine molecules, including hydrated hydrazine, di-methylhydrazine and phenylhydrazine. The experimental optical features show the typical fingerprints of Carbon Dots formation, such as nanometric size, excitation dependent emission, non-single exponential decay of photoluminescence and G and D vibrational bands in the Raman spectra. To explain the reported data, we performed a detailed computational investigation of the possible products of the synthesis, comparing the simulated absorbance spectra with the experimental optical excitation pattern. The computed Raman spectra corroborate the hypothesis of the formation of pyridinone derivatives, among which the formation of small polymeric chains allowed the broad excitation spectra to be experimentally observed.
Collapse
Affiliation(s)
- Chiara Olla
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| | - Stefania Porcu
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| | - Francesco Secci
- Department of Chemistry and Geological Science, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy;
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy; (S.P.); (P.C.R.)
| |
Collapse
|
6
|
Laghari SH, Memon N, Yar Khuhawer M, Jahangir TM. Fluorescent Carbon Dots and their Applications in Sensing of Small
Organic Molecules. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999210120180236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Fluorescence-based sensing is considered highly sensitive and fluorescent probes with improved
properties are always desired. Fluorescent carbon dots (CDs) are newly emerging quasi-spherical nanoparticles of less than
10 nm in size and belong to the carbon nano-material’s family. CDs have great potential as fluorescent probes and currently
are under open deliberation by the researchers due to their striking properties such as low environmental hazard, high
selectivity, greater sensitivity, good biocompatibility, tunable fluorescent properties and excitation dependent multicolor
emission behavior.
Introduction:
This review demonstrates various available methods for fabrication of fluorescent CDs, capping of CDs and
characterization with various techniques including UV-visible, FT-IR, and TEM. Analytical applications using CDs for the
sensing of small organic molecules, specifically nitroaromatic compounds in the environmental samples are complied.
Methods:
The review covers literature related to synthesis and characterization of carbon dots. It includes around 171
research articles in this field.
Results:
Carbon dots can be synthesized using numerous routes. In all cases CDs possess spectral properties with little
variation in wavelength maxima. Optical properties of CDs can be tuned by compositing these with metallic quantum dots
or by modifying their surface with desired functionalities. HR-TEM is needed to see the morphology and size of particles
whereas UV-Visible and FTIR are indispensable tools for this kind of research. These particles are successfully applied to
sense small molecules in some matrices.
Conclusion:
Carbon dots are bright stars in fluorescent sensing of small molecules. However, more research is needed to
determine small organic molecules in diversified areas of analysis.
Collapse
Affiliation(s)
- Sakib Hussain Laghari
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Muhammad Yar Khuhawer
- Institute of
Advance Research in Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Taj Muhammad Jahangir
- Institute of
Advance Research in Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| |
Collapse
|
7
|
Hussain A, Rafeeq H, Qasim M, Jabeen Z, Bilal M, Franco M, Iqbal HMN. Engineered tyrosinases with broadened bio-catalysis scope: immobilization using nanocarriers and applications. 3 Biotech 2021; 11:365. [PMID: 34290948 PMCID: PMC8257883 DOI: 10.1007/s13205-021-02913-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Enzyme immobilization is a widely used technology for creating more stable, active, and reusable biocatalysts. The immobilization process also improves the enzyme's operating efficiency in industrial applications. Various support matrices have been designed and developed to enhance the biocatalytic efficiency of immobilized enzymes. Given their unique physicochemical attributes, including substantial surface area, rigidity, semi-conductivity, high enzyme loading, hyper catalytic activity, and size-assisted optical properties, nanomaterials have emerged as fascinating matrices for enzyme immobilization. Tyrosinase is a copper-containing monooxygenase that catalyzes the o-hydroxylation of monophenols to catechols and o-quinones. This enzyme possesses a wide range of uses in the medical, biotechnological, and food sectors. This article summarizes an array of nanostructured materials as carrier matrices for tyrosinase immobilization. Following a detailed background overview, various nanomaterials, as immobilization support matrices, including carbon nanotubes (CNTs), carbon dots (CDs), carbon black (CB), nanofibers, Graphene nanocomposite, platinum nanoparticles, nano-sized magnetic particles, lignin nanoparticles, layered double hydroxide (LDH) nanomaterials, gold nanoparticles (AuNPs), and zinc oxide nanoparticles have been discussed. Next, applied perspectives have been spotlights with particular reference to environmental pollutant sensing, phenolic compounds detection, pharmaceutical, and food industry (e.g., cereal processing, dairy processing, and meat processing), along with other miscellaneous applications.
Collapse
Affiliation(s)
- Asim Hussain
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Hamza Rafeeq
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Qasim
- grid.411727.60000 0001 2201 6036International Islamic University Islamabad, Islamabad, Pakistan
| | - Zara Jabeen
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- grid.417678.b0000 0004 1800 1941School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Marcelo Franco
- grid.412324.20000 0001 2205 1915Departament of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | - Hafiz M. N. Iqbal
- grid.419886.a0000 0001 2203 4701Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|
8
|
Hiremath SD, Gawas RU, Das D, Naik VG, Bhosle AA, Murali VP, Maiti KK, Acharya R, Banerjee M, Chatterjee A. Phthalimide conjugation turns the AIE-active tetraphenylethylene unit non-emissive: its use in turn-on sensing of hydrazine in solution and the solid- and vapour-phase. RSC Adv 2021; 11:21269-21278. [PMID: 35478840 PMCID: PMC9034109 DOI: 10.1039/d1ra03563k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Hydrazine is a vital precursor used in several pharmaceuticals and pesticide industries and upon exposure can cause severe health hazards. Herein, a new AIEgen, tetraphenylethylene phthalimide (TPE-PMI), is synthesized in a one-step solvent-free mechanochemical approach exploiting the simple condensation between TPE-NH2 and phthalic anhydride and used for the selective and sensitive detection of hydrazine. TPE-PMI with an AIE-active TPE-moiety is non-emissive in the solid phase by design. Hydrazine performs the cleavage of TPE-PMI in a typical "Gabriel synthesis" pathway to release AIE-active TPE-NH2 in an aqueous solution to emit blue fluorescence. A gradual rise in fluorescence intensity at 462 nm was due to the increasing hydrazine concentration and TPE-PMI showed a linear relationship with hydrazine in the concentration range from 0.2 to 3 μM. The selectivity study confirmed that the probe is inert to amines, amino acids, metal anions, anions and even common oxidants and reductants. The detection limit is 6.4 ppb which is lower than the US Environmental Protection Agency standard (10 ppb). The practical utilities of TPE-PMI were successfully demonstrated through quantitative detection of hydrazine vapour on solid platforms like paper strips and TLC plates. Furthermore, on-site detection of hydrazine in the solid phase was demonstrated by spiking the soil samples with measured quantities of hydrazine and quantitation through image analysis. This cost-effective sensing tool was successfully utilized in in vitro detection of hydrazine in live HeLa cells.
Collapse
Affiliation(s)
- Sharanabasava D Hiremath
- Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus NH 17B Bypass Road Zuarinagar Goa 403726 India
| | - Ram U Gawas
- Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus NH 17B Bypass Road Zuarinagar Goa 403726 India
| | - Dharmendra Das
- Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus NH 17B Bypass Road Zuarinagar Goa 403726 India
| | - Viraj G Naik
- Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus NH 17B Bypass Road Zuarinagar Goa 403726 India
| | - Akhil A Bhosle
- Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus NH 17B Bypass Road Zuarinagar Goa 403726 India
| | - Vishnu Priya Murali
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Kaustabh Kumar Maiti
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Raghunath Acharya
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Department of Atomic Energy, Homi Bhabha National Institute Mumbai 400094 India
| | - Mainak Banerjee
- Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus NH 17B Bypass Road Zuarinagar Goa 403726 India
| | - Amrita Chatterjee
- Department of Chemistry, BITS, Pilani - K. K. Birla Goa Campus NH 17B Bypass Road Zuarinagar Goa 403726 India
| |
Collapse
|
9
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
10
|
Baluta S, Lesiak A, Cabaj J. Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. SENSORS 2020; 20:s20164567. [PMID: 32823962 PMCID: PMC7472078 DOI: 10.3390/s20164567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022]
Abstract
Although neurotransmitters are present in human serum at the nM level, any dysfunction of the catecholamines concentration may lead to numerous serious health problems. Due to this fact, rapid and sensitive catecholamines detection is extremely important in modern medicine. However, there is no device that would measure the concentration of these compounds in body fluids. The main goal of the present study is to design a simple as possible, cost-effective new biosensor-based system for the detection of neurotransmitters, using nontoxic reagents. The miniature Au-E biosensor was designed and constructed through the immobilization of tyrosinase on an electroactive layer of cysteamine and carbon nanoparticles covering the gold electrode. This sensing arrangement utilized the catalytic oxidation of norepinephrine (NE) to NE quinone, measured with voltammetric techniques: cyclic voltammetry and differential pulse voltammetry. The prepared bio-system exhibited good parameters: a broad linear range (1–200 μM), limit of detection equal to 196 nM, limit of quantification equal to 312 nM, and high selectivity and sensitivity. It is noteworthy that described method was successfully applied for NE determination in real samples.
Collapse
Affiliation(s)
- Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
- Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.B.); (A.L.)
- Correspondence: ; Tel.: +48-71-320-4641
| |
Collapse
|