1
|
Meena PL, Surela AK. Review on polyaniline-based nanocomposite heterogeneous catalysts for catalytic reduction of hazardous water pollutants. RSC Adv 2024; 14:26801-26819. [PMID: 39184004 PMCID: PMC11342828 DOI: 10.1039/d4ra02550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Water contamination by highly toxic substances has generated serious ecological disturbances and health problems for humans. Hence, decontamination of toxic pollutants using advanced, inexpensive, and eco-friendly approaches is the current demand. Heterogeneous catalyst-based catalytic reduction processes have offered the opportunity to transform hazardous water pollutants into non-hazardous products via sustainable, eco-friendly, and efficient routes and might be a competitive substitute for existing traditional water purification techniques. However, the key challenges linked with pure heterogeneous catalysts include agglomeration and poor dispersion, stability, recovery, and reusability, which result in poor activity and efficiency. Thus, it is essential to produce multipurpose polymer-based composite catalysts using conducting polymers, which are exceptionally good supportive and matrix materials. The blending of metal-based nanomaterials with polyaniline conducting polymers produces highly stable and efficient heterogeneous nanocomposite catalysts with amazing catalytic activity against a wide range of water pollutants. The heterogeneous catalytic reductive degradation of immensely toxic pollutant water has gained substantial curiosity because of its excellent physicochemical and surface characteristics, porous structure, recoverability, and recyclability. Therefore, this review presents the latest efforts to generate various polyaniline-based nanocomposite catalysts using a polyaniline matrix and various nanofiller materials and their potential applications in heterogeneous catalytic reduction degradation of water pollutants.
Collapse
Affiliation(s)
| | - Ajay Kumar Surela
- Department of Chemistry, University of Rajasthan Jaipur 302004 India
| |
Collapse
|
2
|
Synergetic photodegradation via inorganic–organic hybridization strategies: a review on preparations and applications of nanoparticle-hybridized polyaniline photocatalysts. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
3
|
Ahmad I, Aalam G, Amir M, Chakravarty A, Ali SW, Ikram S. Development of highly efficient magnetically recyclable Cu 2+/Cu 0 nano-photocatalyst and its enhanced catalytic performance for the degradation of organic contaminations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157154. [PMID: 35803433 DOI: 10.1016/j.scitotenv.2022.157154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
This work reports the successful functionalization of l-proline on the surface of superparamagnetic iron oxide nanoparticles (SPION) synthesized via a simple, cost-effective hydrothermal method. Moreover, the chemical attachment of Cu2+/Cu0 nanoparticles on the surface of SPION@l-proline was done by an in-situ deposition method. The developed nano-photocatalyst was characterized in detail by XRD, FT-IR, XPS, FE-SEM, TEM, EDX, BET, TGA, and VSM. XRD of SPION@l-proline-Cu reveals peaks of both SPION and copper nanoparticles which confirms the formation of nanophotocatalyst. TGA demonstrates a major weight loss between 250 and 310 °C due to l-proline which ensures the successful immobilization of SPION on the surface of l-proline. The band energy at 932 eV suggests a complete reduction of Cu2+ ion to Cu0 metal on the surface of SPION@l-proline nanocomposite as confirmed by the XPS technique. Under UV light irradiation, the photocatalytic reduction performance of the developed Cu2+ metal ion-based and Cu0 nanoparticle-based magnetic nano-photocatalysts was demonstrated and compared for the first time for the photocatalytic reduction of 4-NP, 4-NA, NB, MO, MB, and CR. The results show that Cu0-based magnetic nanophotocatalyst has slightly enhanced catalytic activity. Furthermore, solar-driven photocatalytic degradation of CR azo dye by synthesized nano-photocatalyst was also investigated, with a 95 % degradation efficiency in just 40 min. The developed magnetic nano-photocatalyst can easily be separated by using an external magnet due to the superparamagnetic nature of core material (SPION) at room temperature as confirmed from VSM and can be reused for multiple cycles without losing considerable catalytic activity. Because of its high photocatalytic efficiency, cost-effectiveness, good magnetic separation performance, non-toxicity, and strong thermal and chemical stabilities, Cu2+/Cu0-based magnetic nano-photocatalyst has potential application in wastewater treatment.
Collapse
Affiliation(s)
- Iftkhar Ahmad
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi 110025, India
| | - Gulshitab Aalam
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Md Amir
- Centre for Sensors, Instrumentation, and Cyber-physical System Engineering (SeNSE), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Archana Chakravarty
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi 110025, India
| | - Syed Wazed Ali
- Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Saiqa Ikram
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi 110025, India.
| |
Collapse
|
4
|
Synthesis of Nanosilica for the Removal of Multicomponent Cd2+ and Cu2+ from Synthetic Water: An Experimental and Theoretical Study. Molecules 2022; 27:molecules27217536. [PMID: 36364357 PMCID: PMC9658150 DOI: 10.3390/molecules27217536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Copper and cadmium ions are among the top 120 hazardous chemicals listed by the Agency for Toxic Substances and Disease Registry (ATSDR) that can bind to organic and inorganic chemicals. Silica is one of the most abundant oxides that can limit the transport of these chemicals into water resources. Limited work has focused on assessing the applicability of nanosilica for the removal of multicomponent metal ions and studying their interaction on the surface of this adsorbent. Therefore, this study focuses on utilizing a nanosilica for the adsorption of Cd2+ and Cu2+ from water. Experimental work on the single- and multi-component adsorption of these ions was conducted and supported with theoretical interpretations. The nanosilica was characterized by its surface area, morphology, crystallinity, and functional groups. The BET surface area was 307.64 m2/g with a total pore volume of 4.95×10−3 cm3/g. The SEM showed an irregular amorphous shape with slits and cavities. Several Si–O–Si and hydroxyl groups were noticed on the surface of the silica. The single isotherm experiment showed that Cd2+ has a higher uptake (72.13 mg/g) than Cu2+ (29.28 mg/g). The multicomponent adsorption equilibrium shows an affinity for Cd2+ on the surface. This affinity decreases with increasing Cu2+ equilibrium concentration due to the higher isosteric heat from the interaction between Cd and the surface. The experimental data were modeled using isotherms for the single adsorption, with the Freundlich and the non-modified competitive Langmuir models showing the best fit. The molecular dynamics simulations support the experimental data where Cd2+ shows a multilayer surface coverage. This study provides insight into utilizing nanosilica for removing heavy metals from water.
Collapse
|
5
|
Facile Synthesis of L-Tryptophan Functionalized Magnetic Nanophotocatalyst Supported by Copper Nanoparticles for Selective Reduction of Organic Pollutants and Degradation of Azo Dyes. Catal Letters 2022. [DOI: 10.1007/s10562-022-04182-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Lashanizadegan M, Mirzazadeh H, Ahmadi M. Fe-Mn-Si-O and Fe-Mn-Si-O/multi walled carbon nanotubes: synthesis, characteristics, adsorption and catalytic behavior. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Maryam Lashanizadegan
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Hoda Mirzazadeh
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Maryam Ahmadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
7
|
Ahmed HM, Ghali M, Zahra W, Ayad MM. Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119967. [PMID: 34082352 DOI: 10.1016/j.saa.2021.119967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Carbon quantum dots/polyaniline (CQDs/PANI) nanocomposite was successfully prepared by in-situ polymerization of aniline. CQDs were synthesized hydrothermally from gelatin with a diameter size of 4.2 nm and a 17% quantum yield. FTIR, UV-vis absorption, fluorescence spectrophotometer, XRD, TEM, XPS and lifetime decay were used to characterize the obtained nanocomposite. The formation of PANI revealed a high quenching effect on CQDs where the TEM images showed that the formed CQDs were greatly embedded in PANI matrix. In this study, CQDs/PANI nanocomposite was used for the detection of picric acid (PA) in the range 0.37-1.42 μM with a low detection limit (LOD) of 0.056 μM. The prepared sensor showed good enhancement and sensitivity towards PA in comparison to pristine CQDs and other nanostructured materials. The mechanism of PA detection has been studied where it was observed that PA is electrostatically interacted to the nanocomposite through - OH group of PA and the protonated PANI salt formed in CQDs/PANI nanocomposite by fluorescence resonance energy transfer applications. The proposed CQDs/PANI sensor was then utilized in real water samples and successfully determined the different amounts of PA spiked into tap water.
Collapse
Affiliation(s)
- Heba M Ahmed
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Mohsen Ghali
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Department of Physics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Waheed Zahra
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta 31527, Egypt
| | - Mohamad M Ayad
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
8
|
Lin S, Zhang T, Fu D, Zhou X. Utilization of magnesium resources in salt lake brine and catalytic degradation of dye wastewater by doping cobalt and nickel. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Rajendran S, Pachaiappan R, Hoang TKA, Karthikeyan S, Gnanasekaran L, Vadivel S, Soto-Moscoso M, Gracia-Pinilla MA. CuO-ZnO-PANI a lethal p-n-p combination in degradation of 4-chlorophenol under visible light. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125989. [PMID: 34492886 DOI: 10.1016/j.jhazmat.2021.125989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Recent interest and responsibility to retain the water resources rose among people. Scientists have been engaged to develop the mechanism that involves the freely available sunlight - a sustainable resource - to remove the pollutants from water to make it again suitable for life. Ample research was reported in the removal of dye pollutants present in water. For this they have utilized p type and n type semiconductors or combination of both (p-n type) under the excitation of a wide range of electromagnetic band energy. Most of the interest lies in emerging out of the mechanism with hybrid semiconductors to remove the previously reported flaws. Toward this regard, this manuscript aims to develop unique material using the underlying p-n-p model for harnessing visible light in catalysis. Initially, p-n structure was developed with copper oxide (p-type) and zinc oxide (n-type), then polyaniline (p-type) conjugated at different concentrations (0.5 M, 0.7 M & 1.0 M), to yield p-n-p models, using precipitation followed by sonication techniques. Detailed physicochemical investigations were conducted on the resultant p-n-p material to elucidate its characteristics. Furthermore, the mechanism was advocated for the best photocatalytic activity under visible light excitation for the degradation of 4-chlorophenol and compared with the performance of a standard p-n (CuO/ZnO) combination.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile.
| | - Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai 600086, Tamilnadu, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | - Sekar Karthikeyan
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Lalitha Gnanasekaran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile
| | - S Vadivel
- Department of Chemistry, PSG College of Technology, Coimbatore 641004, India
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| | - M A Gracia-Pinilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL, Mexico; Universidad Autónoma de Nuevo León, Centro de Investigación en Innovación y Desarrollo en Ingeniería y Tecnología, PIIT, Apodaca, NL, Mexico
| |
Collapse
|
10
|
Amir M, Ali W, Baykal A, Khan GS. Development of highly active, chemically stable and recyclable magnetic nanophotocatalyst based on plasmonic silver nanoparticles and photosensitive trans‐3‐(trans‐4‐imidazolyl) acrylic acid molecules. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md Amir
- Centre for Sensors, Instrumentation, and Cyber‐physical System Engineering (SeNSE) New Delhi India
| | - Wazed Ali
- Department of Textiles and Fibre Engineering Indian Institute of Technology Delhi New Delhi India
| | - Abdulhadi Baykal
- Department of Nano‐Medicine Research, Institute for Research & Medical Consultation (IRMC) Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Gufran Sayeed Khan
- Centre for Sensors, Instrumentation, and Cyber‐physical System Engineering (SeNSE) New Delhi India
| |
Collapse
|
11
|
Wei W, Yu D, Huang Q. Preparation of Ag/TiO 2 nanocomposites with controlled crystallization and properties as a multifunctional material for SERS and photocatalytic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118793. [PMID: 32805508 DOI: 10.1016/j.saa.2020.118793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Ag/TiO2 nanocomposites with controlled crystallization and properties were prepared by a simple solvothermal method. By using the same raw materials with different ratio and reaction conditions, the morphologies and crystallization of nanocomposites can be tuned. The components of the products were analyzed by TEM and XRD methods respectively. The as-prepared Ag/TiO2 nanocomposites were used as surface-enhanced Raman spectroscopy (SERS) substrate to be evolved for detection of environmental organic dyes pollutants (CV and RhB) with excellent recyclability. Furthermore, it also showed enhanced catalytic performance of nitrophenol compounds (4-NP). After that, the Ag/TiO2 nanocomposites were also used as an active substrate and a superior catalyst for reduction of 4-NTP monitored by Raman spectroscopy.
Collapse
Affiliation(s)
- Wenxian Wei
- Testing Center, Yangzhou University, Yangzhou City, Jiangsu 225009, China
| | - Dan Yu
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Qingli Huang
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China.
| |
Collapse
|