1
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
2
|
Zhou F, Zhang GD, Tan Y, Hu SA, Tang Q, Pei G. NOD-like receptors mediate homeostatic intestinal epithelial barrier function: promising therapeutic targets for inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231176889. [PMID: 37701792 PMCID: PMC10493068 DOI: 10.1177/17562848231176889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/01/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | | | - Yang Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center/State Key Laboratory Breeding Base of Chinese Medicine Powder and Innovative Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shi An Hu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Prevention and Treatment of Depression Diseases, Changsha, China
| | - Qun Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Gang Pei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| |
Collapse
|
3
|
Yu W, Gao Y, Zhao Z, Long X, Yi Y, Ai S. Fumigaclavine C ameliorates liver steatosis by attenuating hepatic de novo lipogenesis via modulation of the RhoA/ROCK signaling pathway. BMC Complement Med Ther 2023; 23:288. [PMID: 37587459 PMCID: PMC10428638 DOI: 10.1186/s12906-023-04110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has been well defined as a common chronic liver metabolism disorder. Statins as a first-line therapeutic treatment had some side effects. Here, we found that Fumigaclavine C (FC) was collected from endophytic Aspergillus terreus via the root of Rhizophora stylosa (Rhizophoraceae), had potential anti-adipogenic and hepatoprotective effects both in vitro and in vivo without obvious adverse side effects. However, the mechanisms of the prevention and management of FC for hepatic steatosis are incompletely delineated. METHODS The pharmacodynamic effects of FC were measured in high-fat diet (HFD)-induced obese mice. Liver index and blood biochemical were examined. Histopathological examination in the liver was performed by hematoxylin & eosin or oil red O. The levels of serum TG, TC, LDL-c, HDL-c, FFA, T-bili, ALT, AST, creatinine, and creatine kinase were estimated via diagnostic assay kits. The levels of hepatic lipid metabolism-related genes were detected via qRT-PCR. The expression levels of hepatic de novo lipogenesis were quantitated with Western blot analysis. RESULTS: FC-treatment markedly reduced hepatic lipid accumulation in HFD-induced obese mice. FC significantly attenuated the hepatic lipid metabolism and ameliorated liver injury without obvious adverse side effects. Moreover, FC also could dose-dependently modulate the expressions of lipid metabolism-related transcription genes. Mechanically, FC notably suppressed sterol response element binding protein-1c mediated de novo lipogenesis via interfering with the RhoA/ROCK signaling pathway by decreasing the levels of geranylgeranyl diphosphate and farnesyl diphosphate. CONCLUSIONS These findings suggested that FC could improve hepatic steatosis through inhibiting de novo lipogenesis via modulating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Wanguo Yu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
| | - Yaxin Gao
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Zaoya Zhao
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Xiufeng Long
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Yi Yi
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China
| | - Shuo Ai
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, 268 Donghuan Road, Liuzhou, 545006, People's Republic of China.
| |
Collapse
|
4
|
Gu Q, Zou J, Zhou Y, Deng Q. Mechanism of inflammasomes in cancer and targeted therapies. Front Oncol 2023; 13:1133013. [PMID: 37020871 PMCID: PMC10067570 DOI: 10.3389/fonc.2023.1133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Inflammasomes, composed of the nucleotide-binding oligomerization domain(NOD)-like receptors (NLRs), are immune-functional protein multimers that are closely linked to the host defense mechanism. When NLRs sense pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), they assemble into inflammasomes. Inflammasomes can activate various inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, and produce a large number of proinflammatory cytokines, which are closely associated with multiple cancers. They can also accelerate the occurrence and development of cancer by providing suitable tumor microenvironments, promoting tumor cell proliferation, and inhibiting tumor cell apoptosis. Therefore, the exploitation of novel targeted drugs against various inflammasomes and proinflammatory cytokines is a new idea for the treatment of cancer. In recent years, more than 50 natural extracts and synthetic small molecule targeted drugs have been reported to be in the research stage or have been applied to the clinic. Herein, we will overview the mechanisms of inflammasomes in common cancers and discuss the therapeutic prospects of natural extracts and synthetic targeted agents.
Collapse
Affiliation(s)
- Qingdan Gu
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Jiazhen Zou
- Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated 5 Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Ying Zhou
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Qiuchan Deng
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
- *Correspondence: Qiuchan Deng,
| |
Collapse
|
5
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
6
|
Linghu KG, Ma Q, Xiong SH, Zhao M, Chen Q, Xu W, Chen M, Zhang JY, Hu Y, Xu W, Yu H. The “whole ingredients extract” of Astragali Radix improves the symptoms of dextran sulfate sodium-induced ulcerative colitis in mice through systemic immunomodulation. Chin Med 2022; 17:109. [PMID: 36109750 PMCID: PMC9479389 DOI: 10.1186/s13020-022-00661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ulcerative colitis (UC) is a common inflammatory intestinal disease. Astragali Radix (AR) is one of the traditional Chinese medicines used in clinic for UC treatment. In our previous study, the whole ingredient extract (WIE) from AR have been proved to possess better immunomodulatory effects on immunosuppressed mice compared with the conventional water extraction (WAE). In the present study, we further evaluated the therapeutic effects of WIE against dextran sodium sulfate (DSS)-induced UC in mice through systemic immune regulation. Methods Gradient solvent extraction has been used to prepare the WIE of AR. The HPLC–MS analysis approach has been employed to analyze and compare the chemical differences between WAE and WIE. UC model was reproduced in 3% DSS-induced C57BL/6 mice for 6 days. Flow cytometric analysis for splenic lymphocyte subset. ELISA kits were used to determine the cytokines in the serum and colon tissues. The histopathological characteristics of colon were evaluated by hematoxylin–eosin staining and immunohistochemistry. Results The chemical compositions and the contents of main active ingredients were more abundant and higher in WIE than those in WAE. The WIE treatment altered a better action on reducing colitis disease activity index (DAI) and histological scores, as well as the recovered body weight and increased colon length in mice compared to the WAE group. Additionally, WIE showed better effects in recovering the levels of peripheral white blood cells in blood and cytokines (IL-2, IL-6 and MCP-1) in serum or colon tissues, improving the percentage of CD3+ and the ratio of CD4+/CD8+ in the spleen, and inhibiting the spleen enlargement in DSS-induced UC mice. Conclusions WIE has a more complete chemical composition than WAE. Meanwhile, WIE possesses better therapeutic effects on UC through resuming dysfunctional immunity in mice.
Collapse
|
7
|
Li Q, Hua X, Li L, Zhou X, Tian Y, Deng Y, Zhang M, Yuan X, Chi W. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model. Cell Commun Signal 2022; 20:59. [PMID: 35524333 PMCID: PMC9074213 DOI: 10.1186/s12964-022-00877-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Apoptosis signal-regulating kinase 1-interacting protein 1 (AIP1) participates in inflammatory neovascularization induction. NADPH oxidase 4 (NOX4) produces reactive oxygen species (ROS), leading to an imbalance in nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) and NLR family pyrin domain containing 6 (NLRP6) expression. The mechanisms of AIP1, NOX4, ROS and inflammasomes in corneal neovascularization were studied herein. Methods C57BL/6 and AIP1-knockout mice were used in this study. The alkali burn procedure was performed on the right eye. Adenovirus encoding AIP1 plus green fluorescence protein (GFP) (Ad-AIP1-GFP) or GFP alone was injected into the right anterior chamber, GLX351322 was applied as a NOX4 inhibitor, and then corneal neovascularization was scored. The expression of related genes was measured by quantitative real-time polymerase chain reaction, western blotting and immunofluorescence staining. 2′,7′-Dichlorofluorescin diacetate staining was used to determine the ROS levels. Results The expression of AIP1 was decreased, while that of cleaved interleukin-1β (clv-IL-1β) and vascular endothelial growth factor A (VEGFa) was increased after alkali burn injury. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. NLRP3/NLRP6 expression was imbalanced after alkali burns. GLX351322 reversed the imbalance in NLRP3/NLRP6 by reducing the ROS levels. This treatment also reduced the expression of clv-IL-1β and VEGFa, suppressing neovascularization. Conclusions AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burn injury. Based on the pathogenesis of corneal neovascularization, these findings are expected to provide new therapeutic strategies for patients. Plain English summary Corneal alkali burn injury is a common type of ocular injury that is difficult to treat in the clinic. The cornea is a clear and avascular tissue. Corneal neovascularization after alkali burn injury is a serious complication; it not only seriously affects the patient’s vision but also is the main reason for failed corneal transplantation. Corneal neovascularization affects approximately 1.4 million patients a year. We show for the first time that AIP1 and NOX4 can regulate corneal inflammation and neovascularization after alkali burns. The expression of AIP1 was decreased, while that of clv-IL-1β and VEGFa was increased after alkali burns. We tried to elucidate the specific molecular mechanisms by which AIP1 regulates corneal neovascularization. NOX4 activation was due to decreased AIP1 expression in murine corneas with alkali burns. NOX4 expression was increased, the imbalance in NLRP3/NLRP6 was exacerbated, and corneal neovascularization was increased significantly in AIP1-knockout mice compared with those in C57BL/6 mice after alkali burns. These effects were reversed by AIP1 overexpression. Additionally, NLRP3/NLRP6 expression was unbalanced, with NLRP3 activation and NLRP6 suppression in the corneal alkali burn murine model. Eye drops containing GLX351322, a NOX4 inhibitor, reversed the imbalance in NLRP3/NLRP6 by reducing ROS expression. This treatment also reduced the expression of clv-IL-1β and VEGFa, reducing neovascularization. Therefore, we provide new gene therapeutic strategies for patients. With the development of neovascularization therapy, we believe that in addition to corneal transplantation, new drug or gene therapies can achieve better results. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00877-5.
Collapse
Affiliation(s)
- Qingyu Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin University, Tianjin, China
| | - Liangpin Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Xueyan Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Ye Tian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Yang Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China. .,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China.
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Isolation and Characterization of Antibacterial Compounds from Aspergillus fumigatus: An Endophytic Fungus from a Mangrove Plant of the Sundarbans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9600079. [PMID: 35497914 PMCID: PMC9054444 DOI: 10.1155/2022/9600079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
Abstract
The Sundarbans, a UNESCO world heritage site, is one of the largest mangrove forests in one stretch. Mangrove plants from this forest are little studied for their endophytic fungi. In this study, we isolated fourteen endophytic fungi from the plants Ceriops decandra and Avicennia officinalis collected from the Sundarbans. Five of them were identified as Aspergillus sp. and one as Penicillium sp. by macroscopic and microscopic observation. Antibacterial activity of the crude extracts obtained from these endophytes was determined against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using resazurin-based microtiter assay. The isolated endophytes showed varying degrees of antibacterial activity with MICs ranging between 5 and 0.078 mg/mL. Molecular identification of the most active endophyte revealed its identity as Aspergillus fumigatus obtained from the leaves of C. decandra. Acute toxicity study of the ethyl acetate extract of A. fumigatus in mice revealed no mortality even at the highest dose of 2000 mg/kg bodyweight, though some opposing results are found in the subacute toxicity study. The extract was subjected to silica gel and Sephadex column chromatography resulting in the isolation of three pure compounds. LC-MS analysis of these pure compounds revealed their identity as fumigaclavine C, azaspirofuran B, and fraxetin. This is the first report of fraxetin from A. fumigatus. All three identified compounds were previously reported for their antibacterial activity against different strains of both Gram-positive and Gram-negative bacteria. Therefore, the observed antibacterial activity of the ethyl acetate (EtOAc) extract of A. fumigatus could be due to the presence of these compounds. These results support the notion of investigating fungal endophytes from the Sundarbans for new antimicrobial compounds.
Collapse
|
9
|
Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev 2021; 60:61-75. [PMID: 33773897 DOI: 10.1016/j.cytogfr.2021.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cases of inflammatory bowel disease (IBD), a debilitating intestinal disorder with complex pathological mechanisms, have been increasing in recent years, straining the capacity of healthcare systems. Thus, novel therapeutic targets and innovative agents must be developed. Notably, the NLRP3 inflammasome is upregulated in patients with IBD and/or in animal experimental models. As an innate immune supramolecular assembly, the NLRP3 inflammasome is persistently activated during the pathogenesis of IBD by multiple stimuli. Moreover, this protein complex regulates pro-inflammatory cytokines. Thus, targeting this multiprotein oligomer may offer a feasible way to relieve IBD symptoms and improve clinical outcomes. The mechanisms by which the NLRP3 inflammasome is activated, its role in IBD pathogenesis, and the drugs administered to target this protein complex are reviewed herein. This review establishes that the use of inflammasome-targeting drugs are effective for IBD treatment. Moreover, this review suggests that the value and potential of naturally sourced or derived medicines for IBD treatment must be recognized and appreciated.
Collapse
|
10
|
Gastrointestinal disorders-induced pain. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting out the Fire of Inflammation. Inflammation 2020; 42:1147-1159. [PMID: 30937839 DOI: 10.1007/s10753-019-01008-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, comprised of ulcerative colitis and Crohn's disease. Among the complicated pathogenic factors of IBD, the overaction of inflammatory and immune reaction serves as an important factor. Inflammasome is a form of innate immunity as well as inflammation. Among all kinds of inflammasomes, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the most studied one, and has been revealed to be involved in the pathogenesis and progression of IBD. Here, in this review, the association between the NLRP3 inflammasome and IBD will be discussed. Furthermore, several NLRP3 inflammasome inhibitors which have been demonstrated to be effective in the alleviation of IBD will be described in this review.
Collapse
|
12
|
Liu P, Lu Z, Liu L, Li R, Liang Z, Shen M, Xu H, Ren D, Ji M, Yuan S, Shang D, Zhang Y, Liu H, Tu Z. NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152925. [PMID: 31465982 DOI: 10.1016/j.phymed.2019.152925] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Recently, many studies have reported that some botanicals and natural products were able to regulate NOD-like receptor signaling. NOD-like receptors (NLRs) have been established as crucial regulators in inflammation-associated tumorigenesis, angiogenesis, cancer cell stemness and chemoresistance. NLRs specifically sense pathogen-associated molecular patterns and respond by activating other signaling regulators, including Rip2 kinase, NF-κB, MAPK and ASC/caspase-1, leading to the secretion of various cytokines. PURPOSE The aim of this article is to review the molecular mechanisms of NOD-like receptor signaling in inflammation-associated cancers and the NLRs-targeted botanicals and synthetic small molecules in cancer intervention. RESULTS Aberrant activation of NLRs occurs in various cancers, orchestrating the tissue microenvironment and potentiating neoplastic risk. Blocking NLR inflammasome activation by botanicals or synthetic small molecules may be a valuable way to prevent cancer progression. Moreover, due to the roles of NLRs in regulating cytokine production, NLR signaling may be correlated with senescence-associated secretory phenotype. CONCLUSION In this review, we discuss how NLR signaling is involved in inflammation-associated cancers, and highlight the NLR-targeted botanicals and synthetic small molecules in cancer intervention.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Zhiquan Liang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Mingxiang Shen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Han Xu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Dewan Ren
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Mengchen Ji
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Sirui Yuan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China.
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
13
|
Jia L, Chen H, Yang J, Fang X, Niu W, Zhang M, Li J, Pan X, Ren Z, Sun J, Pan LL. Combinatory antibiotic treatment protects against experimental acute pancreatitis by suppressing gut bacterial translocation to pancreas and inhibiting NLRP3 inflammasome pathway. Innate Immun 2019; 26:48-61. [PMID: 31615312 PMCID: PMC6974879 DOI: 10.1177/1753425919881502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gut bacterial translocation following impaired gut barrier is a critical
determinant of initiating and aggravating acute pancreatitis (AP). Antibiotic
combination (ABX; vancomycin, neomycin and polymyxin b) is capable of reducing
gut bacteria, but its efficacy in AP prevention and the underlying mechanism
have not been investigated yet. AP was induced in BALB/c mice by caerulein (CAE)
hyperstimulation. We found that ABX supplementation attenuated the severity of
AP as evidenced by reduced pancreatic oedema and myeloperoxidase activity. The
protective effect was also confirmed by improved histological morphology of the
pancreas and decreased pro-inflammatory markers (IL-1β, TNF-α, MCP-1) in
pancreas. ABX administration inhibits the activation of colonic TLR4/NLRP3
inflammasome pathway. Subsequently, down-regulated NLRP3 resulted in decreased
colonic pro-inflammation (IL-1β, IL-6, MCP-1) and enhanced gut physical barrier
as evidenced by up-regulation of tight junction proteins including occludin,
claudin-1 and ZO-1, as well as improved histological morphology of the colon.
Together, combinatory ABX therapy inhibited the translocation of gut bacteria to
pancreas and its amplification effects on pancreatic inflammation by inhibiting
the pancreatic NLRP3 pathway, and inhibiting intestinal-pancreatic inflammatory
responses. The current study provides the basis for potential clinical
application of ABX in AP.
Collapse
Affiliation(s)
- Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Hao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Yang
- Public Health Research Center and Department of General Surgery, Affiliated Hospital of Jiangnan University
| | - Xin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
14
|
Yu WG, He Y, Chen YF, Gao XY, Ning WE, Liu CY, Tang TF, Liu Q, Huang XC. Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:161-169. [PMID: 31080347 PMCID: PMC6488706 DOI: 10.4196/kjpp.2019.23.3.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/05/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023]
Abstract
Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.
Collapse
Affiliation(s)
- Wan-Guo Yu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Yun He
- Gastroenterology Department, Liuzhou General Hospital, Liuzhou 545006, Guangxi, China
| | - Yun-Fang Chen
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Xiao-Yao Gao
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Wan-E Ning
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Chun-You Liu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Ting-Fan Tang
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Quan Liu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Xiao-Cheng Huang
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| |
Collapse
|
15
|
Pellegrini C, Fornai M, Colucci R, Benvenuti L, D’Antongiovanni V, Natale G, Fulceri F, Giorgis M, Marini E, Gastaldi S, Bertinaria M, Blandizzi C, Antonioli L. A Comparative Study on the Efficacy of NLRP3 Inflammasome Signaling Inhibitors in a Pre-clinical Model of Bowel Inflammation. Front Pharmacol 2018; 9:1405. [PMID: 30559669 PMCID: PMC6287041 DOI: 10.3389/fphar.2018.01405] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is pivotal in maintaining intestinal homeostasis and sustaining enteric immune responses in the setting of inflammatory bowel diseases. Drugs acting as NLRP3 blockers could represent innovative strategies for treatment of bowel inflammation. This study was performed in rats with dinitrobenzenesulfonic acid (DNBS)-induced colitis, to investigate how the direct blockade of NLRP3 inflammasome with an irreversible inhibitor (INF39) compares with Ac-YVAD-cmk (YVAD, caspase-1 inhibitor) and anakinra (IL-1β receptor antagonist), acting downstream on NLRP3 signaling. Animals with DNBS-colitis received YVAD (3 mg/kg) or anakinra (100 mg/Kg) intraperitoneally, and INF39 (25 mg/kg) or dexamethasone (DEX, 1 mg/kg) orally for 6 days, starting on the same day of colitis induction. Under colitis, there was a body weight decrease, which was attenuated by YVAD, anakinra or INF39, but not DEX. All test drugs counteracted the increase in spleen weight. The colonic shortening and morphological colonic alterations associated with colitis were counteracted by INF39, anakinra and DEX, while YVAD was without effects. Tissue increments of myeloperoxidase, tumor necrosis factor and interleukin-1β were more effectively counteracted by INF39 and DEX, than YVAD and anakinra. These findings indicate that: (1) direct inhibition of NLRP3 inflammasome with INF39 is more effective than caspase-1 inhibition or IL-1β receptor blockade in reducing systemic and bowel inflammatory alterations; (2) direct NLRP3 inhibition can be a suitable strategy for treatment of bowel inflammation.
Collapse
Affiliation(s)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federica Fulceri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Simone Gastaldi
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Bertinaria
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Bai Y, Liu Y, Jin S, Su K, Zhang H, Ma S. Expression of microRNA‑27a in a rat model of osteonecrosis of the femoral head and its association with TGF‑β/Smad7 signalling in osteoblasts. Int J Mol Med 2018; 43:850-860. [PMID: 30535438 PMCID: PMC6317694 DOI: 10.3892/ijmm.2018.4007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
The present study assessed whether microRNA (miR)-27a is an influential factor in steroid-induced osteonecrosis of the femoral head (ONFH) and investigated the underlying mechanism of action. The results indicated that serum miR-27a was decreased in a rat model of ONFH compared with that in control rats. It was also observed that increased miR-27a expression promoted osteogenic differentiation and cell proliferation, inhibited caspase-3/9 and B-cell lymphoma-2-associated X protein expression and induced alkaline phosphatase (ALP) activity and bone morphogenetic protein (BMP)-2, runt-related transcription factor (Runx)2 and osteonectin mRNA expression in osteoblastic MC3T3-E1 cells. miR-27a mimics also induced transforming growth factor (TGF)-β and Smad7 protein expression in MC3T3-E1 cells. Furthermore, transfection with TGF-β expression plasmid was able to enhance the effects of miR-27a mimics on osteoblastic differentiation, cell proliferation, ALP activity, BMP-2, Runx2 and osteonectin mRNA expression, and Smad7 protein expression in the MC3T3-E1 cells. Transfection with a TGF-β or Smad7 expression plasmid also enhanced the effects of miR-27a mimics on osteoblastic differentiation, cell proliferation, ALP activity and osteonectin mRNA expression in the MC3T3-E1 cells. Taken together, the results of the present study suggested that the induction of TGF-β/Smad7 signaling in osteoblasts may be a potential mechanism by which miR-27a regulates steroid-induced ONFH.
Collapse
Affiliation(s)
- Yuming Bai
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ying Liu
- Department of Surgery, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shengli Jin
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ke Su
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Haisen Zhang
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shiyun Ma
- Second Department of Orthopaedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
17
|
Palazon-Riquelme P, Lopez-Castejon G. The inflammasomes, immune guardians at defence barriers. Immunology 2018; 155:320-330. [PMID: 30098204 PMCID: PMC6187212 DOI: 10.1111/imm.12989] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
As a result of its strategic location, the epithelium is constantly exposed to a wide variety of pathogen and danger signals. Traditionally, the epithelium has been perceived as a defensive but passive barrier; however, it has now become evident that the epithelium senses and actively responds to these signals in order to maintain barrier homeostasis and contributes to the inflammatory response. One way it does this is by producing pro-inflammatory cytokines including interleukin-1β (IL-1β) and IL-18. These two cytokines are synthesized as inactive precursors, the maturation of which is mediated by pro-inflammatory caspases after the activation and assembly of macromolecular complexes called inflammasomes. Epithelial cells express a large panel of inflammasome components, and although the molecular mechanisms underlying the activation of these complexes in haematopoietic cells are well understood, how epithelial cells react to danger signals to activate the inflammasome remains unclear. We review and discuss how different inflammasomes contribute to barrier homeostasis and inflammation at several barrier sites, their mechanisms and how their aberrant regulation contributes to disease at the different epithelia.
Collapse
Affiliation(s)
- Pablo Palazon-Riquelme
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Manchester Collaborative Centre of Inflammation Research, The University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Manchester Collaborative Centre of Inflammation Research, The University of Manchester, Manchester, UK.,The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev 2018; 17:694-702. [PMID: 29729449 DOI: 10.1016/j.autrev.2018.01.020] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
Abstract
NLRP3, a member of nucleotide-binding domain-(NOD) like receptor family, can be found in large varieties of immune and non-immune cells. Upon activation, the NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1 would assemble into a multimeric protein, called the NLRP3 inflammasome. Then the inflammasome promotes inflammation (through specific cleavage and production of bioactive IL-1β and IL-18) and pyroptotic cell death. Previous studies have indicated the importance of NLRP3 in regulating innate immunity. Recently, numerous studies have revealed their significance in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc) and inflammatory bowel disease (IBD). In this review, we will briefly discuss the biological features of NLRP3 and summarize the recent progression of the involvement of NLRP3 in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
|
19
|
Fan D, Guo Q, Shen J, Zheng K, Lu C, Zhang G, Lu A, He X. The Effect of Triptolide in Rheumatoid Arthritis: From Basic Research towards Clinical Translation. Int J Mol Sci 2018; 19:ijms19020376. [PMID: 29373547 PMCID: PMC5855598 DOI: 10.3390/ijms19020376] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Triptolide (TP), a major extract of the herb Tripterygium wilfordii Hook F (TWHF), has been shown to exert potent pharmacological effects, especially an immunosuppressive effect in the treatment of rheumatoid arthritis (RA). However, its multiorgan toxicity prevents it from being widely used in clinical practice. Recently, several attempts are being performed to reduce TP toxicity. In this review, recent progress in the use of TP for RA, including its pharmacological effects and toxicity, is summarized. Meanwhile, strategies relying on chemical structural modifications, innovative delivery systems, and drug combinations to alleviate the disadvantages of TP are also reviewed. Furthermore, we also discuss the challenges and perspectives in their clinical translation.
Collapse
Affiliation(s)
- Danping Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingqing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Jiawen Shen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Kang Zheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
20
|
Choera T, Zelante T, Romani L, Keller NP. A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host Interactions. Front Immunol 2018; 8:1996. [PMID: 29403477 PMCID: PMC5786828 DOI: 10.3389/fimmu.2017.01996] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent filamentous fungal pathogen of humans, causing either severe allergic bronchopulmonary aspergillosis or often fatal invasive pulmonary aspergillosis (IPA) in individuals with hyper- or hypo-immune deficiencies, respectively. Disease is primarily initiated upon the inhalation of the ubiquitous airborne conidia—the initial inoculum produced by A. fumigatus—which are complete developmental units with an ability to exploit diverse environments, ranging from agricultural composts to animal lungs. Upon infection, conidia initially rely on their own metabolic processes for survival in the host’s lungs, a nutritionally limiting environment. One such nutritional limitation is the availability of aromatic amino acids (AAAs) as animals lack the enzymes to synthesize tryptophan (Trp) and phenylalanine and only produce tyrosine from dietary phenylalanine. However, A. fumigatus produces all three AAAs through the shikimate–chorismate pathway, where they play a critical role in fungal growth and development and in yielding many downstream metabolites. The downstream metabolites of Trp in A. fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3-dioxygenase (IDO) and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins. Host IDO activity and/or host/microbe-derived kynurenines are increasingly correlated with many Aspergillus diseases including IPA and infections of chronic granulomatous disease patients. In this review, we will describe the potential metabolic cross talk between the host and the pathogen, specifically focusing on Trp metabolism, the implications for therapeutics, and the recent studies on the coevolution of host and microbe IDO activation in regulating inflammation, while controlling infection.
Collapse
Affiliation(s)
- Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
21
|
Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci Rep 2017; 7:16374. [PMID: 29180692 PMCID: PMC5703971 DOI: 10.1038/s41598-017-12562-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Baicalein (5,6,7-trihydroxyflavone), a predominant bioactive component isolated from the root of Scutellaria baicalensis Georgi, has established potent anti-inflammatory activity via multi-targeted mechanisms. However, little is known about the effect of baicalein on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, which shares pathology related to human Crohn’s disease (CD). The present study demonstrated that baicalein alleviated the severity of TNBS-induced colitis in mice by decreasing the activity of myeloperoxidase (MPO) and the expression of pro-inflammatory mediators. The decline in the activation of nuclear factor-kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) correlated with a decrease in the expression of mucosal toll-like receptor 4 (TLR4) and its adaptor myeloid differentiation factor 88 (MyD88). In vitro, baicalein down-regulated the TLR4/MyD88 signaling cascades (NF-κB and MAPKs) in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, baicalein bound to the hydrophobic region of the myeloid differentiation protein-2 (MD-2) pocket and inhibited the formation of the LPS-induced MD-2/TLR4 complex. Furthermore, baicalein reduced NOD-like receptor 3 (NLRP3) inflammasome activation and downstream interleukin-1β expression in a dose-dependent manner. Our study provided evidence for the first time that baicalein attenuated TNBS-induced colitis, at least in part, via inhibition of TLR4/MyD88 signaling cascade as well as inactivation of NLRP3 inflammasome.
Collapse
|
22
|
Inflammasomes and intestinal inflammation. Mucosal Immunol 2017; 10:865-883. [PMID: 28401932 DOI: 10.1038/mi.2017.19] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
The inflammasome is a cytosolic multi-protein innate immune rheostat, sensing a variety of endogenous and environmental stimuli, and regulating homeostasis or damage control. In the gastrointestinal tract, inflammasomes orchestrate immune tolerance to microbial and potentially food-related signals or drive the initiation of inflammatory responses to invading pathogens. When inadequately regulated, intestinal inflammasome activation leads to a perpetuated inflammatory response leading to immune pathology and tissue damage. In this review, we present the main features of the predominant types of inflammasomes participating in intestinal homeostasis and inflammation. We then discuss current controversies and open questions related to their functions and implications in disease, highlighting how pathological inflammasome over-activation or impaired function impact gut homeostasis, the microbiome ecosystem, and the propensity to develop gut-associated diseases. Collectively, understanding of the molecular basis of intestinal inflammasome signaling may be translated into clinical manipulation of this fundamental pathway as a potential immune modulatory therapeutic intervention.
Collapse
|
23
|
Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Front Immunol 2017; 8:36. [PMID: 28179906 PMCID: PMC5263152 DOI: 10.3389/fimmu.2017.00036] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022] Open
Abstract
Several lines of evidence point out the relevance of nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome as a pivotal player in regulating the integrity of intestinal homeostasis and shaping innate immune responses during bowel inflammation. Intensive research efforts are being made to achieve an integrated view about the protective/detrimental role of canonical and non-canonical NLRP3 inflammasome activation in the maintenance of intestinal microenvironment integrity. Evidence is also emerging that the pharmacological modulation of NLRP3 inflammasome could represent a promising molecular target for the therapeutic management of inflammatory immune-mediated gut diseases. The present review has been intended to provide a critical appraisal of the available knowledge about the role of canonical and non-canonical NLRP3 inflammasome activation in the dynamic interplay between microbiota, intestinal epithelium, and innate immune system, taken together as a whole integrated network regulating the maintenance/breakdown of intestinal homeostasis. Moreover, special attention has been paid to the pharmacological modulation of NLRP3 inflammasome, emphasizing the concept that this multiprotein complex could represent a suitable target for the management of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - Gloria Lopez-Castejon
- Manchester Collaborative Centre for Inflammation Research, University of Manchester , Manchester , UK
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| |
Collapse
|
24
|
Abstract
Ergot alkaloids are a class of indole derivatives produced by the genera of Ascomycota includingClaviceps,Aspergillus,Penicillium, andEpichloë.
Collapse
Affiliation(s)
- Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Meng-Yao Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission
- Institute of Materia Medica
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing 100050
| |
Collapse
|
25
|
Zong SY, Pu YQ, Xu BL, Zhang T, Wang B. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis. Int Immunopharmacol 2016; 42:32-38. [PMID: 27863299 DOI: 10.1016/j.intimp.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022]
Abstract
Paeonol, an active component from Paeonia suffruticosa Andr., has a variety of biological activities, such as vascular endothelial cell protection, anti-oxidation, and anti-inflammation. The aim of this study was to investigate the basic physicochemical properties of paeonol, including solubility, oil-water partition coefficient, and permeability. Then evaluated the anti-inflammatory effects of paeonol were evaluated on 2,4,6-trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. The rats were divided randomly into 6 groups, namely, normal, model, paeonol-treated (100, 200, and 400mg/kg), and positive. Each group had 10 rats. Inhibition effects were evaluated by the disease activity index (DAI), colon weight/length ratio, as well as macroscopical and histological evaluations. Serum interleukin (IL)-17, IL-6 and transforming growth factor beta 1 (TGF-β1) levels were determined by enzyme-linked immunosorbent assay. The solubility and oil-water partition coefficient of paeonol in different phosphate buffer solutions were 284.06-598.23 and 461.97-981.17μg/mL, respectively. The effective passive permeability value Pe was 23.49×10-6cm/s. In terms of anti-inflammatory results, compared with the model group, treatment with 200 and 400mg/kg doses of paeonol had significantly decreased DAI, colon weight/length ratio, and macroscopic and histopathological scores. Furthermore, the serum levels of IL-17 and IL-6 were significantly reduced, whereas the TGF-β1 level was increased in the two paeonol-treated groups (medium- and high-dose group). Therefore, paeonol had poor water solubility, but oral absorption was good. In addition, paeonol had therapeutic effects on ulcerative colitis, and the therapeutic efficacy was dose dependent. The results presented in this study provide evidence for the development of a novel therapeutic agent in the treatment of UC. However, whether this agent could have therapeutic benefit or adverse effects in human IBD remains to be fully explored.
Collapse
Affiliation(s)
- Shi-Yu Zong
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Yi-Qiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Ben-Liang Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai 201203, China.
| |
Collapse
|