1
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
2
|
Li T, Wang H, Lv C, Huang L, Zhang C, Zhou C, Zou S, Duan P. Intermittent parathyroid hormone promotes cementogenesis via ephrinB2-EPHB4 forward signaling. J Cell Physiol 2021; 236:2070-2086. [PMID: 32740946 DOI: 10.1002/jcp.29994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Intermittent parathyroid hormone (PTH) promotes periodontal repair, but the underlying mechanisms remained unclear. Recent studies found that ephrinB2-EPHB4 forward signaling mediated the anabolic effect of PTH in bone homeostasis. Considering the similarities between cementum and bone, we aimed to examine the therapeutic effect of PTH on resorbed roots and explore the role of forward signaling in this process. In vivo experiments showed that intermittent PTH significantly accelerated the regeneration of root resorption and promoted expression of EPHB4 and ephrinB2. When the signaling was blocked, the resorption repair was also delayed. In vitro studies showed that intermittent PTH promoted the expression of EPHB4 and ephrinB2 in OCCM-30 cells. The effects of PTH on the mineralization capacity of OCCM-30 cells was mediated through the ephrinB2-EPHB4 forward signaling. These results support the premise that the anabolic effects of intermittent PTH on the regeneration of root resorption is via the ephrinB2-EPHB4 forward signaling pathway.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunxiao Lv
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Neuber C, Tröster A, Löser R, Belter B, Schwalbe H, Pietzsch J. The Pyrazolo[3,4- d]pyrimidine-Based Kinase Inhibitor NVP-BHG712: Effects of Regioisomers on Tumor Growth, Perfusion, and Hypoxia in EphB4-Positive A375 Melanoma Xenografts. Molecules 2020; 25:molecules25215115. [PMID: 33153234 PMCID: PMC7662635 DOI: 10.3390/molecules25215115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/02/2022] Open
Abstract
In a previous study, EphB4 was demonstrated to be a positive regulator of A375-melanoma growth but a negative regulator of tumor vascularization and perfusion. To distinguish between EphB4 forward and ephrinB2 reverse signaling, we used the commercially available EphB4 kinase inhibitor NVP-BHG712 (NVP), which was later identified as its regioisomer NVPiso. Since there have been reported significant differences between the inhibition profiles of NVP and NVPiso, we compared the influence of NVP and NVPiso on tumor characteristics under the same experimental conditions. Despite the different inhibitory profiles of NVP and NVPiso, the comparative study conducted here showed the same EphB4-induced effects in vivo as in the previous investigation. This confirmed the conclusion that EphB4-ephrinB2 reverse signaling is responsible for increased tumor growth as well as decreased tumor vascularization and perfusion. These results are further substantiated by microarrays showing differences between mock-transfected and EphB4-transfected (A375-EphB4) cells with respect to at least 9 angiogenesis-related proteins. Decreased expression of vascular endothelial growth factor (VEGF), angiotensin 1 (Ang-1), and protein kinase B (Akt/PKB), together with the increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and transforming growth factor beta-2 (TGF-β2), is consistent with the impaired vascularization of A375-EphB4 xenografts. Functional overexpression of EphB4 in A375-EphB4 cells was confirmed by activation of a variety of signaling pathways, including the Janus kinase/signal transducers and activators of transcription (JAK/STAT), rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen activated protein kinase kinase (Ras/Raf/MEK), and nuclear factor kappa-B (NFkB) pathways.
Collapse
Affiliation(s)
- Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (C.N.); (R.L.); (B.B.)
| | - Alix Tröster
- Centre for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt a. M., Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany; (A.T.); (H.S.)
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (C.N.); (R.L.); (B.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (C.N.); (R.L.); (B.B.)
| | - Harald Schwalbe
- Centre for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt a. M., Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany; (A.T.); (H.S.)
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; (C.N.); (R.L.); (B.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
4
|
Pretze M, Neuber C, Kinski E, Belter B, Köckerling M, Caflisch A, Steinbach J, Pietzsch J, Mamat C. Synthesis, radiolabelling and initial biological characterisation of 18F-labelled xanthine derivatives for PET imaging of Eph receptors. Org Biomol Chem 2020; 18:3104-3116. [PMID: 32253415 DOI: 10.1039/d0ob00391c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eph receptor tyrosine kinases, particularly EphA2 and EphB4, represent promising candidates for molecular imaging due to their essential role in cancer progression and therapy resistance. Xanthine derivatives were identified to be potent Eph receptor inhibitors with IC50 values in the low nanomolar range (1-40 nm). These compounds occupy the hydrophobic pocket of the ATP-binding site in the kinase domain. Based on lead compound 1, we designed two fluorine-18-labelled receptor tyrosine kinase inhibitors ([18F]2/3) as potential tracers for positron emission tomography (PET). Docking into the ATP-binding site allowed us to find the best position for radiolabelling. The replacement of the methyl group at the uracil residue ([18F]3) rather than the methyl group of the phenoxy moiety ([18F]2) by a fluoropropyl group was predicted to preserve the affinity of the lead compound 1. Herein, we point out a synthesis route to [18F]2 and [18F]3 and the respective tosylate precursors as well as a labelling procedure to insert fluorine-18. After radiolabelling, both radiotracers were obtained in approximately 5% radiochemical yield with high radiochemical purity (>98%) and a molar activity of >10 GBq μmol-1. In line with the docking studies, first cell experiments revealed specific, time-dependent binding and uptake of [18F]3 to EphA2 and EphB4-overexpressing A375 human melanoma cells, whereas [18F]2 did not accumulate at these cells. Since both tracers [18F]3 and [18F]2 are stable in rat blood, the novel radiotracers might be suitable for in vivo molecular imaging of Eph receptors with PET.
Collapse
Affiliation(s)
- Marc Pretze
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany. and Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, D-01062 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | - Elisa Kinski
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | - Birgit Belter
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | - Martin Köckerling
- Universität Rostock, Institut für Chemie - Anorganische Festkörperchemie, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany. and Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, D-01062 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany. and Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, D-01062 Dresden, Germany
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Radiopharmazeutische Krebsforschung, Bautzner Landstraße 400, D-01328 Dresden, Germany. and Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, D-01062 Dresden, Germany
| |
Collapse
|
5
|
Wan X, Saban DV, Kim SN, Weng Y, Dammann P, Keyvani K, Sure U, Zhu Y. PDCD10-Deficiency Promotes Malignant Behaviors and Tumor Growth via Triggering EphB4 Kinase Activity in Glioblastoma. Front Oncol 2020; 10:1377. [PMID: 32850441 PMCID: PMC7427606 DOI: 10.3389/fonc.2020.01377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
We previously reported an angiogenic and tumor-suppressor-like function of programmed cell death 10 (PDCD10) in glioblastoma (GBM). However, the underlying mechanism remains to be elucidated. We hypothesized that loss of PDCD10 activates GBM cells and tumor progression via EphB4. To this end, PDCD10 was knocked down in U87 and T98g by lentiviral mediated shRNA transduction (shPDCD10). GBM cell phenotype in vitro and tumor growth in a mouse xenograft model were investigated in presence or absence of the treatment with a specific EphB4 kinase inhibitor NVP-BHG712 (NVP). We demonstrated that knockdown of PDCD10 in GBM cells significantly upregulated the mRNA and protein expression of EphB4 accompanied by the activation of Erk1/2. EphB4 kinase activity, reflected by phospho-EphB4, significantly increased in shPDCD10 GBM cells, and in tumors derived from shPDCD10 GBM xenografts, which was abolished by the treatment with NVP. Furthermore, NVP treatment significantly suppressed PDCD10-knockdown mediated aggressive GBM cell phenotype in vitro and extensive tumor cell proliferation, the tumor neo-angiogenesis, and a quick progression of tumor formation in vivo. In summary, loss of PDCD10 activates GBM cells and promotes tumor growth via triggering EphB4. Targeting EphB4 might be an effective strategy particularly for the personalized therapy in GBM patients with PDCD10-deficiency.
Collapse
Affiliation(s)
- Xueyan Wan
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dino Vitali Saban
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yinlun Weng
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Cheon SH, Seo BY, Lee YJ, Sim D, Lee SB, Guruprasath P, Singh TD, Lee BH, Sarangthem V, Park RW. Targeting of Cisplatin-Resistant Melanoma Using a Multivalent Ligand Presenting an Elastin-like Polypeptide. ACS Biomater Sci Eng 2020; 6:5024-5031. [PMID: 33455295 DOI: 10.1021/acsbiomaterials.0c00599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acquired drug resistance is a common occurrence and the main cause of melanoma treatment failure. Melanoma cells frequently developed resistance against cisplatin during chemotherapy, and thus, targeting delivery systems have been devised to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. We genetically engineered a macromolecular carrier using the recursive directional ligation method that specifically targets cisplatin-resistant (Cis-R) melanoma. This carrier is composed of an elastin-like polypeptide (ELP) and multiple copies of Cis-R melanoma-targeting ligands (M-peptide). The designed M16E108 contains 16 targeting ligands incorporated within an ELP and has an ideal thermal phase transition at 39 °C. When treated to melanoma cells, M16E108 specifically accumulated in Cis-R B16F10 melanoma cells and accumulated to a lesser extent in parental B16F10 cells. Consistently, M16E108 exhibited efficient homing and longer retention in tumor tissues in Cis-R melanoma-bearing mice than in parental B16F10 melanoma-bearing mice. Thus, M16E108 was found to display considerable potential as a novel agent that specifically targets cisplatin-resistant melanoma.
Collapse
Affiliation(s)
- Sun-Ha Cheon
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Bo-Yeon Seo
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Jin Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dahye Sim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seon-Boon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Padmanaban Guruprasath
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.,Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
7
|
Wahiduzzaman M, Ota A, Karnan S, Hanamura I, Mizuno S, Kanasugi J, Rahman ML, Hyodo T, Konishi H, Tsuzuki S, Takami A, Hosokawa Y. Novel combined Ato-C treatment synergistically suppresses proliferation of Bcr-Abl-positive leukemic cells in vitro and in vivo. Cancer Lett 2018; 433:117-130. [PMID: 29944906 DOI: 10.1016/j.canlet.2018.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
Abstract
Chronic myelogenous leukemia (CML) accounts for 15-20% of all leukemias affecting adults. Despite recent advances in the development of specific Bcr-Abl tyrosine kinase inhibitors (TKIs), some CML patients suffer from relapse due to TKI resistance. Here, we assessed the efficacy of a novel combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment (Ato-C) in human Bcr-Abl-positive leukemic cells. Combination index analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in K562, KU-812, MEG-A2, and KCL-22 cells. Notably, Ato-C synergistically enhanced apoptosis and decreased the survival of both acquired TKI-resistant CML cells and the cells expressing mutant Bcr-AblT315I. In addition, Ato-C dramatically decreased the phosphorylation level of forkhead transcription factor FOXO1/3a and STAT5 as well as c-Myc protein level. Interestingly, results of gene set enrichment analysis showed that Ato-C significantly downregulates the expression of MYC- and/or E2F1-target genes. Furthermore, Ato-C significantly suppressed the proliferation of MEG-A2-derived tumor when compared with that following monotherapy in vivo. Collectively, these results suggest that combined Ato-C treatment could be a promising alternative to the current therapeutic regime in CML.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan.
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Jo Kanasugi
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
8
|
Neuber C, Belter B, Meister S, Hofheinz F, Bergmann R, Pietzsch HJ, Pietzsch J. Overexpression of Receptor Tyrosine Kinase EphB4 Triggers Tumor Growth and Hypoxia in A375 Melanoma Xenografts: Insights from Multitracer Small Animal Imaging Experiments. Molecules 2018; 23:E444. [PMID: 29462967 PMCID: PMC6017846 DOI: 10.3390/molecules23020444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Experimental evidence has associated receptor tyrosine kinase EphB4 with tumor angiogenesis also in malignant melanoma. Considering the limited in vivo data available, we have conducted a systematic multitracer and multimodal imaging investigation in EphB4-overexpressing and mock-transfected A375 melanoma xenografts. Tumor growth, perfusion, and hypoxia were investigated by positron emission tomography. Vascularization was investigated by fluorescence imaging in vivo and ex vivo. The approach was completed by magnetic resonance imaging, radioluminography ex vivo, and immunohistochemical staining for blood and lymph vessel markers. Results revealed EphB4 to be a positive regulator of A375 melanoma growth, but a negative regulator of tumor vascularization. Resulting in increased hypoxia, this physiological characteristic is considered as highly unfavorable for melanoma prognosis and therapy outcome. Lymphangiogenesis, by contrast, was not influenced by EphB4 overexpression. In order to distinguish between EphB4 forward and EphrinB2, the natural EphB4 ligand, reverse signaling a specific EphB4 kinase inhibitor was applied. Blocking experiments show EphrinB2 reverse signaling rather than EphB4 forward signaling to be responsible for the observed effects. In conclusion, functional expression of EphB4 is considered a promising differentiating characteristic, preferentially determined by non-invasive in vivo imaging, which may improve personalized theranostics of malignant melanoma.
Collapse
Affiliation(s)
- Christin Neuber
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Birgit Belter
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Sebastian Meister
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Frank Hofheinz
- Department Positron Emission Tomography, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Ralf Bergmann
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Hans-Jürgen Pietzsch
- Department Radionuclide Theragnostics, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Jens Pietzsch
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
9
|
Wu Y, He J, An Y, Wang X, Liu Y, Yan S, Ye X, Qi J, Zhu S, Yu Q, Yin J, Li D, Wang W. Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy. J Pharmacol Sci 2016; 132:24-30. [PMID: 27174862 DOI: 10.1016/j.jphs.2016.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/12/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022] Open
Abstract
Newcastle disease virus (NDV) have shown oncolytic therapeutic efficacy in preclinical study and are currently approved for clinical trials. NDV Anhinga strain which is a mesogenic strain should be classified as lytic strain and has a therapeutic efficacy in hepatocellular cancer. In this study, we evaluated the capacity of NDV Anhinga strain to elicit immune reaction in vivo and the possibility for using as a vaccine vector for expressing tumor therapeutic factors. Interleukin-2 (IL-2) could boost the immune response against the tumor cells. Therefore, we use NDV Anhinga strain as backbone to construct a recombinant virus (NDV/Anh-IL-2) expressing IL-2. The virus growth curve showed that the production of recombinant NDV/Anh-IL-2 was slightly delayed compared to the wild type. The NDV/Anh-IL-2 strain could express soluble IL-2 and effectively inhibit the growth of hepatocellular carcinoma in vivo. 60 days post-treatment, mice which were completely cured by previous treatment were well protected when rechallenged with the same tumor cell. From the H&E-stained sections, intense infiltration of lymphocyte was observed in the NDV Anhinga strain treated group, especially in NDV/Anh-IL-2 group. The NDV Anhinga strain could not only kill the tumor directly, but could also elicit immune reaction and a potent immunological memory when killing tumor in vivo. In conclusion, the Anhinga strain could be an effective vector for tumor therapy; the recombinant NDV/Anh-IL-2 strain expressing soluble IL-2 is a promising candidate for hepatoma therapy.
Collapse
Affiliation(s)
- Yunzhou Wu
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China
| | - Jinjiao He
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China
| | - Ying An
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China
| | - Xi Wang
- Department of Stomach, Spleen and Portal Hypertension, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str, Nangang District, Harbin, PR China
| | - Yunye Liu
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China
| | - Shijun Yan
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China
| | - Xianlong Ye
- School of Life Science, Henan Normal University, 46 Jianshe Road E., Xinxiang, PR China
| | - Jianying Qi
- School of Life Science, Henan Normal University, 46 Jianshe Road E., Xinxiang, PR China
| | - Shenglong Zhu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Jiechao Yin
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China
| | - Deshan Li
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China.
| | - Wenfei Wang
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, PR China.
| |
Collapse
|