1
|
Thi Nhu Bui Q, Kim T, Kim HS, Ki JS. Defensive responses of most antioxidant genes in the freshwater dinoflagellate Palatinus apiculatus to cadmium stress and their implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117380. [PMID: 39622126 DOI: 10.1016/j.ecoenv.2024.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025]
Abstract
Photosynthetic dinoflagellates are one of the major microalgal taxa, playing essential roles in biogeochemical cycles and food webs in aquatic environments. Some freshwater dinoflagellates are known to be sensitive to environmental conditions, like water quality and contaminants; however, their molecular toxicological responses are insufficiently discovered. In the present study, we evaluated the physiological and transcriptomic responses of the freshwater dinoflagellate Palatinus apiculatus exposed to cadmium (Cd), focusing on stress-responsive genes. The cell number of P. apiculatus decreased significantly at Cd concentrations above 0.25 mg/L after 72 h, with an estimated EC50 value of 1.35 mg/L. In addition, we constructed 87,207 transcriptomic contigs from the P. apiculatus cells exposed to the Cd. Differential expression gene analysis showed that 21.0 % of total contigs were statistically significant, including 8647 up-regulated and 4195 down-regulated genes. Gene Ontology enrichment results revealed that genes responsive to stress and external stimuli were highly expressed in Cd-treated cells. Moreover, Cd significantly induced reactive oxygen species (ROS) production in P. apiculatus cells, and their patterns were similar to the expressions of certain antioxidant genes. Among the selected genes, GR expression levels were down-regulated, which may lead to the failure of cell defense against heavy metals. These results showed molecular defense pathways of the freshwater dinoflagellate P. apiculatus against the heavy metal that could be served as potential sensitive biomarkers for evaluating molecular toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
2
|
Zhe Z, Hongjiao Z, Tongtong Y, Kexin W, Jingjing X, Hongrui Z, Siyue Q, Hong A, Bo Q, Huihui Z. The homeostasis of ions and reactive oxygen species in root and shoot play crucial roles in the tolerance of alfalfa to salt alkali stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109175. [PMID: 39362124 DOI: 10.1016/j.plaphy.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
High pH saline-alkali stress, mainly NaHCO3, limited the development of animal husbandry in Songnen Plain. Ion imbalance and reactive oxygen species (ROS) metabolism disorder caused by saline-alkali stress inhibited plant growth. In this study, we compared the differences in ion absorption, transport and ROS metabolism between saline-tolerant alfalfa (ZD) and saline-sensitive alfalfa (ZM) under NaHCO3 stress using physiology and transcripomics techniques. WGCNA analysis identified key genes associated with NaHCO3 stress-induced changes. NaHCO3 stress inhibited the absorption of K+ and Mg2+, but activated Ca2+ signal. Furthermore, ZD maintained higher K+, Mg2+ and Ca2+ contents and the K+/Na+ ratio than ZM, this is mainly related to the higher expression of proteins or channel-encoding genes involved in ion absorption and transport in ZD. Antioxidant enzyme systems can be activated in response to NaHCO3 stress. Peroxidase (EC 1.11.1.6), catalase (EC 1.11.1.7) and glutathione transferase (EC 2.5.1.18) activities were higher in ZD than ZM, and most genes encoding the relevant enzymes also demonstrated a stronger up-regulation trend in ZD. Although NaHCO3 stress inhibited Trx-Prx pathway, ZD related enzymes and their genes were also inhibited less than ZM. WGCNA results identified many genes involved in ion absorption, transport and antioxidant systems that play an important role in NaHCO3 stress adaptation. Collectively, ZD has the stronger ion homeostasis regulation and ROS scavenging ability, so it's more resistant to NaHCO3. The results provide theoretical guidance for further understanding of the molecular mechanism of NaHCO3 resistance and provide potential genes for research to improve saline-alkali tolerance in alfalfa.
Collapse
Affiliation(s)
- Zhang Zhe
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhang Hongjiao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Yao Tongtong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Wang Kexin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xu Jingjing
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhang Hongrui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qi Siyue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ao Hong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Qin Bo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Zhang Huihui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Lin Z, Yi X, Ali MM, Zhang L, Wang S, Tian S, Chen F. RNAi-Mediated Suppression of OsBBTI5 Promotes Salt Stress Tolerance in Rice. Int J Mol Sci 2024; 25:1284. [PMID: 38279284 PMCID: PMC10816146 DOI: 10.3390/ijms25021284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
This study explores the impact of RNAi in terms of selectively inhibiting the expression of the OsBBTI5 gene, with the primary objective of uncovering its involvement in the molecular mechanisms associated with salt tolerance in rice. OsBBTI5, belonging to the Bowman-Birk inhibitor (BBI) family gene, is known for its involvement in plant stress responses. The gene was successfully cloned from rice, exhibiting transcriptional self-activation in yeast. A yeast two-hybrid assay confirmed its specific binding to OsAPX2 (an ascorbate peroxidase gene). Transgenic OsBBTI5-RNAi plants displayed insensitivity to varying concentrations of 24-epibrassinolide in the brassinosteroid sensitivity assay. However, they showed reduced root and plant height at high concentrations (10 and 100 µM) of GA3 immersion. Enzyme activity assays revealed increased peroxidase (POD) and superoxide dismutase (SOD) activities and decreased malondialdehyde (MDA) content under 40-60 mM NaCl. Transcriptomic analysis indicated a significant upregulation of photosynthesis-related genes in transgenic plants under salt stress compared to the wild type. Notably, this study provides novel insights, suggesting that the BBI gene is part of the BR signaling pathway, and that OsBBTI5 potentially enhances stress tolerance in transgenic plants through interaction with the salt stress-related gene OsAPX2.
Collapse
Affiliation(s)
- Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China
| | - Xiaoyan Yi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Lijuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Shengnan Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| |
Collapse
|
4
|
Roy UK, Bhattacharjee S. Exploring the parameters of central redox hub for screening salinity tolerant rice landraces of coastal Bangladesh. Sci Rep 2022; 12:12989. [PMID: 35906294 PMCID: PMC9338030 DOI: 10.1038/s41598-022-17078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Regulation of oxidative stress towards origin of favorable internal redox cue plays a decisive role in salinity stress acclimation and least studied in rice and hence is the subject of present investigation. Redox landscaping of seedlings of ten experimental land races of rice of coastal Bangladesh grown under post imbibitional salinity stress (PISS) has been done through characterization of ROS-antioxidant interaction dynamics at metabolic interface, transcriptional reprogramming of redox-regulatory genes along with the assessment of biomarkers of oxidative threat for standardizing redox strategies and quality parameters for screening. The results exhibited a strong correlation between salinity induced redox status (pro-oxidant/antioxidant ratio, efficacy of H2O2 turnover through integrated RboH-Ascorbate–Glutathione/Catalase pathway and estimation of sensitive redox biomarkers of oxidative deterioration) and germination phenotypes of all landraces of rice. Transcript abundance of the marker genes of the enzymes associated with central antioxidant hub for H2O2 processing (CatA, OsAPx2, SodCc2, GRase and RboH) of all experimental landraces of the rice advocate the central role of H2O2 turnover dynamics in regulating redox status and salinity tolerance. Landraces suffering greater loss of abilities of decisive regulation of H2O2 turnover dynamics exhibited threat on the oxidative windows of the germinating seeds under salinity.
Collapse
Affiliation(s)
- Uthpal Krishna Roy
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, UGC Centre for Advanced Study, The University of Burdwan, Burdwan, West Bengal, 713104, India.,Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, UGC Centre for Advanced Study, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
5
|
Yuan K, He J, Hu Y, Feng C, Wang Z. The variation of reactive oxygen species scavenging enzymes and related gene expressions during occurrence and recovery of rubber tree tapping panel dryness. J RUBBER RES 2021. [DOI: 10.1007/s42464-021-00106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kazerooni EA, Maharachchikumbura SSN, Al-Sadi AM, Kang SM, Yun BW, Lee IJ. Biocontrol Potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J Fungi (Basel) 2021; 7:jof7060472. [PMID: 34200967 PMCID: PMC8230671 DOI: 10.3390/jof7060472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the ability of Bacillus amyloliquefaciens, to augment plant growth and suppress gray mold and leaf spot in pepper plants. Morphological modifications in fungal pathogen hyphae that expanded toward the PGPR colonies were detected via scanning electron microscope. Furthermore, preliminary screening showed that PGPR could produce various hydrolytic enzymes in its media. Treatments with B. amyloliquefaciens suppressed Botrytis gray mold and Alternaria leaf spot diseases on pepper caused by Botrytis pelargonii and Alternaria alternata, respectively. The PGPR strain modulated plant physio-biochemical processes. The inoculation of pepper with PGPR decreased protein, amino acid, antioxidant, hydrogen peroxide, lipid peroxidation, and abscisic acid levels but increased salicylic acid and sugar levels compared to those of uninoculated plants, indicating a mitigation of the adverse effects of biotic stress. Moreover, gene expression studies confirmed physio-biochemical findings. PGPR inoculation led to increased expression of the CaXTH genes and decreased expression of CaAMP1, CaPR1, CaDEF1, CaWRKY2, CaBI-1, CaASRF1, CaSBP11, and CaBiP genes. Considering its beneficial effects, the inoculation of B. amyloliquefaciens can be proposed as an eco-friendly alternative to synthetic chemical fungicides.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| | | | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| |
Collapse
|
7
|
Kazerooni EA, Maharachchikumbura SSN, Adhikari A, Al-Sadi AM, Kang SM, Kim LR, Lee IJ. Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan From Multiple Abiotic Stresses via Multifarious Plant Growth-Promoting Attributes. FRONTIERS IN PLANT SCIENCE 2021; 12:669693. [PMID: 34113368 PMCID: PMC8185346 DOI: 10.3389/fpls.2021.669693] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 05/08/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that can be utilized to improve plant responses against biotic and abiotic stresses. In this study, we investigated whether PGPR (Bacillus amyloliquefaciens) isolated from the endorhizosphere of Sasamorpha borealis have the potential to sustain pepper growth under drought, salinity, and heavy metal stresses. The bacterial strain was determined based on 16S rDNA and gyrB gene sequencing and characterized based on the following biochemical traits: nitrogen fixation; 1-aminocyclopropane-1-carboxylate deaminase activity; indole acetic acid production; inorganic phosphate, potassium, zinc, and silicon solubilization; and siderophore production. Various abiotic stresses were applied to 28-day-old pepper seedlings, and the influence of the PGPR strain on pepper seedling growth under these stress conditions was evaluated. The application of PGPR improved survival of the inoculated pepper plants under stress conditions, which was reflected by higher seedling growth rate and improved physiochemical traits. The PGPR-treated plants maintained high chlorophyll, salicylic acid, sugar, amino acid, and proline contents and showed low lipid metabolism, abscisic acid, protein, hydrogen peroxide contents, and antioxidant activities under stress conditions. Gene expression studies confirmed our physiological and biochemical findings. PGPR inoculation led to enhanced expression of XTH genes and reduced expression of WRKY2, BI-1, PTI1, and binding immunoglobulin protein (BiP) genes. We conclude that the PGPR strain described in this study has great potential for use in the phytoremediation of heavy metals and for enhancing pepper plant productivity under stress conditions, particularly those involving salinity and drought.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | | | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Lee-Rang Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Park HS, Kazerooni EA, Kang SM, Al-Sadi AM, Lee IJ. Melatonin Enhances the Tolerance and Recovery Mechanisms in Brassica juncea (L.) Czern. Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:593717. [PMID: 33868325 PMCID: PMC8048884 DOI: 10.3389/fpls.2021.593717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/03/2021] [Indexed: 05/23/2023]
Abstract
Melatonin has been recently known to stimulate plant growth and induce protective responses against different abiotic stresses. However, the mechanisms behind exogenous melatonin pretreatment and restoration of plant vigor from salinity stress remain poorly understood. The present study aimed to understand the effects of exogenous melatonin pretreatment on salinity-damaged green mustard (Brassica juncea L. Czern.) seedlings in terms of oxidative stress regulation and endogenous phytohormone production. Screening of several melatonin concentrations (0, 0.1, 1, 5, and 10 μM) on mustard growth showed that the 1 μM concentration revealed an ameliorative increase of plant height, leaf length, and leaf width. The second study aimed at determining how melatonin application can recover salinity-damaged plants and studying its effects on physiological and biochemical parameters. Under controlled environmental conditions, mustard seedlings were irrigated with distilled water or 150 mM of NaCl for 7 days. This was followed by 1 μM of melatonin application to determine its recovery impact on the damaged plants. Furthermore, several physiological and biochemical parameters were examined in stressed and unstressed seedlings with or without melatonin application. Our results showed that plant height, leaf length/width, and stem diameter were enhanced in 38-day-old salinity-stressed plants under melatonin treatment. Melatonin application obviously attenuated salinity-induced reduction in gas exchange parameters, relative water content, and amino acid and protein levels, as well as antioxidant enzymes, such as superoxide dismutase and catalase. H2O2 accumulation in salinity-damaged plants was reduced by melatonin treatment. A decline in abscisic acid content and an increase in salicylic acid content were observed in salinity-damaged seedlings supplemented with melatonin. Additionally, chlorophyll content decreased during the recovery period in salinity-damaged plants by melatonin treatment. This study highlighted, for the first time, the recovery impact of melatonin on salinity-damaged green mustard seedlings. It demonstrated that exogenous melatonin supplementation significantly improved the physiologic and biochemical parameters in salinity-damaged green mustard seedlings.
Collapse
Affiliation(s)
- Hee-Soon Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | | | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Ponce KS, Guo L, Leng Y, Meng L, Ye G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22052254. [PMID: 33668247 PMCID: PMC7956267 DOI: 10.3390/ijms22052254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023] Open
Abstract
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
Collapse
Affiliation(s)
- Kimberly S. Ponce
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
- Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
| |
Collapse
|
10
|
Ambastha V, Sopory SK, Tripathy BC, Tiwari BS. Salt induced programmed cell death in rice: evidence from chloroplast proteome signature. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:8-27. [PMID: 32702286 DOI: 10.1071/fp19356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity, depending on its intensity, drives a challenged plant either to death, or survival with compromised productivity. On exposure to moderate salinity, plants can often survive by sacrificing some of their cells 'in target' following a route called programmed cell death (PCD). In animals, PCD has been well characterised, and involvement of mitochondria in the execution of PCD events has been unequivocally proven. In plants, mechanistic details of the process are still in grey area. Previously, we have shown that in green tissues of rice, for salt induced PCD to occur, the presence of active chloroplasts and light are equally important. In the present work, we have characterised the chloroplast proteome in rice seedlings at 12 and 24 h after salt exposure and before the time point where the signature of PCD was observed. We identified almost 100 proteins from chloroplasts, which were divided in to 11 categories based on the biological functions in which they were involved. Our results concerning the differential expression of chloroplastic proteins revealed involvement of some novel candidates. Moreover, we observed maximum phosphorylation pattern of chloroplastic proteins at an early time point (12 h) of salt exposure.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudhir K Sopory
- Plant Molecular Biology, International Centre of Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; and Corresponding author. ; ;
| | - Budhi Sagar Tiwari
- Institute of Advanced Research, Gandhinagar, Gujrat 482007, India; and Corresponding author. ; ;
| |
Collapse
|
11
|
Zhang Z, Zhang Z, Han X, Wu J, Zhang L, Wang J, Wang-Pruski G. Specific response mechanism to autotoxicity in melon (Cucumis melo L.) root revealed by physiological analyses combined with transcriptome profiling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110779. [PMID: 32460045 DOI: 10.1016/j.ecoenv.2020.110779] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 05/13/2023]
Abstract
Melon is of great value in food, medicine and industry. In recent years, the continuous cropping obstacles of melon is increasingly prominent, which seriously affects the cultivation. Autotoxicity is the key factor for the obstacles. Root is the first line against autotoxicity and main organs for autotoxins secretion. Some physiological responses and differentially expressed genes (DEGs) related to autotoxicity are only limited to root system. Considering the lack of relevant research, physiological researches combined with transcriptome sequencing of melon seedling after autotoxicity stress mediated by root exudates (RE) was performed to help characterize the response mechanism to autotoxicity in melon roots. The results showed that autotoxicity inhibited root morphogenesis of melon seedlings, induced the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation in roots, and activated most antioxidant enzymes. Compared with the control group, the osmoregulation substance content was always at a high level. DEGs response to autotoxicity in roots were distinguished from that in leaves. Functional annotation of these DEGs suggested that autotoxicity affected biological regulation in a negative manner. DEGs were mainly involved in the synthesis of antioxidants, DNA damage and metabolism, and stress response. These setbacks were associated with the deterioration of root morphogenesis, generation of dwarf and slender roots, and ultimately leading to plant death. The results may provide important information for revealing the response mechanism of root to autotoxicity, and provide theoretical basis for solving the continuous cropping obstacles in melon.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhengda Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, China; Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyun Han
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinghua Wu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhen Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingrong Wang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada; Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
12
|
VuThi H, Jang SH, Lee C. Cloning and characterization of a thermostable glutathione reductase from a psychrophilic Arctic bacterium Sphingomonas sp. FEMS Microbiol Lett 2020; 366:5593954. [PMID: 31626298 DOI: 10.1093/femsle/fnz218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Glutathione reductase is an important oxidoreductase that helps maintain redox homeostasis by catalyzing the conversion of glutathione disulfide to glutathione using NADPH as a cofactor. In this study, we cloned and characterized a glutathione reductase (hereafter referred to as SpGR) from Sphingomonas sp. PAMC 26621, an Arctic bacterium. SpGR comprises 449 amino acids, and functions as a dimer. Surprisingly, SpGR exhibits characteristics of thermophilic enzymes, showing optimum activity at 60°C and thermal stability up to 70°C with ∼50% residual activity at 70°C for 2 h. The amino acid composition analysis of SpGR showed a 1.9-fold higher Arg content (6%) and a 2.7-fold lower Lys/Arg ratio (0.75) compared to the Arg content (3.15%) and the Lys/Arg ratio (2.01) of known psychrophilic glutathione reductases. SpGR also exhibits its activity at 4°C, and circular dichroism and fluorescence spectroscopy results indicate that SpGR maintains its secondary and tertiary structures within the temperature range of 4-70°C. Taken together, the results of this study indicate that despite its origin from a psychrophilic bacterium, SpGR has high thermal stability. Our study provides an insight into the role of glutathione reductase in maintaining the reducing power of an Arctic bacterium in a broad range of temperatures.
Collapse
Affiliation(s)
- Hai VuThi
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| |
Collapse
|
13
|
Sannasimuthu A, Kumaresan V, Anilkumar S, Pasupuleti M, Ganesh MR, Mala K, Paray BA, Al-Sadoon MK, Albeshr MF, Arockiaraj J. Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radic Biol Med 2019; 135:198-209. [PMID: 30862544 DOI: 10.1016/j.freeradbiomed.2019.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Glutathione oxido-reductase (GR) is a primary antioxidant enzyme of most living forms which protects the cells from oxidative metabolism by reducing glutathione (GSH) from its oxidized form (GSSG). Although the antioxidant role of the enzyme is well characterized, the specific role of conserved N' peptide sequence in antioxidant mechanism remains unclear. In this study, we have identified an RNA sequence encoding GR enzyme from spirulina, Arthrospira platensis (Ap) and the changes in its gene expression profile was analysed during H2O2 stress. Results showed that H2O2 (10 mM) stimulated the expression of ApGR throughout the timeline of study (0, 5, 10, 15 and 20 days) with highest expression at 5th day post-exposure which confirmed the antioxidant role of ApGR in spirulina during H2O2 induced oxidative stress. A dithiol containing short antioxidant peptide, 39GGTCVIRGCVPKKLM53 (GM15) from ApGR was predicted and its radicals (superoxide and hydroxyl radical) scavenging potential was confirmed by in vitro cell-free assays. GM15 (12.5 μM) reduced the intracellular generalized oxidative stress level, as measured using DCFDA assay in H2O2 exposed leucocytes without affecting any of the cellular population. Further, the biomedical application of the radical scavenging property of GM15 was validated in oral carcinoma (KB) cells where GM15 exhibited significant cytotoxicity. Also, GM15 exhibited heterogenous effects on intracellular oxidative stress level in KB cells: at lower concentration (6.25 μM), the peptide reduced oxidative stress whereas, at higher concentration (25 μM) it increased the intensity of oxidative stress. GM15 (25 μM) induced caspase-9 mediated apoptosis in KB cells along with membrane disruption and DNA degradation which are confirmed by propidium iodide (PI) internalization and comet assays, respectively. Overall, the study shows that GM15 peptide i) scavenges superoxide, hydroxyl radicals, and influences intracellular oxidative stress, and ii) has anti-cancer effect in oral cancer cells.
Collapse
Affiliation(s)
- Anbazahan Sannasimuthu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Shreya Anilkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Kanchana Mala
- Department of Medical Research, Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Fahad Albeshr
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
14
|
Mekawy AMM, Abdelaziz MN, Ueda A. Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:94-104. [PMID: 29980098 DOI: 10.1016/j.plaphy.2018.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/10/2018] [Accepted: 06/25/2018] [Indexed: 05/20/2023]
Abstract
Soil salinity is a limiting factor in rice production. Since flavonoids present in most plant tissues play multiple roles in plant-environment interactions, in this study, we focused on the contribution of flavone aglycone (Apigenin) to the adaptation of salinity-sensitive rice cultivar 'Koshihikari,' to salinity stress, for the first time. Rice seeds were soaked in Apigenin solution (10 ppm) for 24 h, then air-dried and grown hydroponically under 50 mM NaCl for 14 days. Apigenin pretreatment improved the growth of rice seedlings by enhancing shoot elongation and dry mass accumulation under both unstressed and NaCl-stress conditions, compared with that in the non-pretreated seedlings. Apigenin pretreatment significantly reduced Na+ accumulation in the salinity-stressed seedlings, and helped to maintain a lower Na+/K+ ratio in all plant organs, compared with that in the non-pretreated seedlings, possibly by regulating the expression of some important Na+ transporter-encoding genes (OsHKT2;1, OsCNGC1, OsSOS1). Higher levels of lipid peroxidation and hydrogen peroxide (H2O2) concentrations were observed in the shoots of the salinity-stressed seedlings; however, lower levels of lipid peroxidation and H2O2 concentration were detected in the Apigenin-treated seedlings. Apigenin pretreatment was associated with the induction of the rice antioxidant defense system represented by the induced activities of the antioxidant enzymes Catalase (CAT) and Ascorbate peroxidase (APX) in the roots, as well as by increased accumulation of the non-enzymatic antioxidants carotenoids and flavonoids in the shoots, relative to that in the untreated seedlings, under salinity stress conditions. Together, these results suggest that Apigenin pretreatment can alleviate the damaging effects of salinity on rice seedlings, presumably by regulating selective ion uptake by the roots and translocation to the shoots, thereby maintaining higher K+/Na+ ratios critical for normal plant growth under salinity stress, and by triggering the induction of the antioxidant defense system.
Collapse
Affiliation(s)
- Ahmad Mohammad M Mekawy
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan; Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Maha Nagy Abdelaziz
- Graduate School for International Development and Cooperation, Hiroshima University, Higashi-Hiroshima, 739-8529, Japan
| | - Akihiro Ueda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
15
|
Zhang H, Liu XL, Zhang RX, Yuan HY, Wang MM, Yang HY, Ma HY, Liu D, Jiang CJ, Liang ZW. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1580. [PMID: 28943882 PMCID: PMC5596797 DOI: 10.3389/fpls.2017.01580] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/29/2017] [Indexed: 05/19/2023]
Abstract
Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants.
Collapse
Affiliation(s)
- Hui Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- Da’an Sodic Land Experiment Station, Chinese Academy of Sciences, Da’anJilin, China
| | - Xiao-Long Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Rui-Xue Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- Da’an Sodic Land Experiment Station, Chinese Academy of Sciences, Da’anJilin, China
| | - Hai-Yan Yuan
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- Da’an Sodic Land Experiment Station, Chinese Academy of Sciences, Da’anJilin, China
| | - Ming-Ming Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- Da’an Sodic Land Experiment Station, Chinese Academy of Sciences, Da’anJilin, China
| | - Hao-Yu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- Da’an Sodic Land Experiment Station, Chinese Academy of Sciences, Da’anJilin, China
| | - Hong-Yuan Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- Da’an Sodic Land Experiment Station, Chinese Academy of Sciences, Da’anJilin, China
| | - Duo Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Chang-Jie Jiang
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Zheng-Wei Liang
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
- Da’an Sodic Land Experiment Station, Chinese Academy of Sciences, Da’anJilin, China
| |
Collapse
|
16
|
The important functionality of 14-3-3 isoforms in rice roots revealed by affinity chromatography. J Proteomics 2017; 158:20-30. [DOI: 10.1016/j.jprot.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/24/2023]
|
17
|
Hossain MS, Dietz KJ. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:548. [PMID: 27242807 PMCID: PMC4861717 DOI: 10.3389/fpls.2016.00548] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/08/2016] [Indexed: 05/17/2023]
Abstract
Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.
Collapse
Affiliation(s)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of BielefeldBielefeld, Germany
| |
Collapse
|
18
|
Li Z, Su D, Lei B, Wang F, Geng W, Pan G, Cheng F. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:1-15. [PMID: 25546583 DOI: 10.1016/j.jplph.2014.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/29/2014] [Accepted: 09/30/2014] [Indexed: 05/25/2023]
Abstract
To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed between AsA level and APX activity in the ongoing senescence of rice leaves. The GSH supply in rice leaves was not the limiting factor for the efficient maintenance of AsA-GSH cycle, despite the senescence-related change in GR activity between the two rice genotypes.
Collapse
Affiliation(s)
- Zhaowei Li
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Da Su
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bingting Lei
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fubiao Wang
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Geng
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Gang Pan
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
19
|
Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savouré A, Abdelly C. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:5-15. [PMID: 25462961 DOI: 10.1016/j.jplph.2014.08.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 05/18/2023]
Abstract
The involvement of hydrogen peroxide (H2O2) generated by nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) in the antioxidant defense system was assessed in salt-challenged Arabidopsis thaliana seedlings. In the wild-type, short-term salt exposure led to a transient and significant increase of H2O2 concentration, followed by a marked increase in catalase (CAT, EC 1.11.16), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) activities. Pre-treatment with either a chemical trap for H2O2 (dimethylthiourea) or two widely used NADPH oxidase inhibitors (imidazol and diphenylene iodonium) significantly decreased the above-mentioned enzyme activities under salinity. Double mutant atrbohd/f plants failed to induce the antioxidant response under the culture conditions. Under long-term salinity, the wild-type was more salt-tolerant than the mutant based on the plant biomass production. The better performance of the wild-type was related to a significantly higher photosynthetic activity, a more efficient K(+) selective uptake, and to the plants' ability to deal with the salt-induced oxidative stress as compared to atrbohd/f. Altogether, these data suggest that the early H2O2 generation by NADPH oxidase under salt stress could be the beginning of a reaction cascade that triggers the antioxidant response in A. thaliana in order to overcome the subsequent reactive oxygen species (ROS) production, thereby mitigating the salt stress-derived injuries.
Collapse
Affiliation(s)
- Kilani Ben Rejeb
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia; Adaptation des plantes aux contraintes environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France.
| | - Maâli Benzarti
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia
| | - Ahmed Debez
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia
| | - Christophe Bailly
- UMR 7622, UPMC Univ. Paris 06, CNRS, Bat C 2ème étage, 4, place Jussieu, 75005 Paris, France
| | - Arnould Savouré
- Adaptation des plantes aux contraintes environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
20
|
Venkatesh J, Park SW. Role of L-ascorbate in alleviating abiotic stresses in crop plants. BOTANICAL STUDIES 2014; 55:38. [PMID: 28510969 PMCID: PMC5432849 DOI: 10.1186/1999-3110-55-38] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/16/2013] [Indexed: 05/21/2023]
Abstract
L-ascorbic acid (vitamin C) is a major antioxidant in plants and plays a significant role in mitigation of excessive cellular reactive oxygen species activities caused by number of abiotic stresses. Plant ascorbate levels change differentially in response to varying environmental stress conditions, depending on the degree of stress and species sensitivity. Successful modulation of ascorbate biosynthesis through genetic manipulation of genes involved in biosynthesis, catabolism and recycling of ascorbate has been achieved. Recently, role of ascorbate in alleviating number of abiotic stresses has been highlighted in crop plants. In this article, we discuss the current understanding of ascorbate biosynthesis and its antioxidant role in order to increase our comprehension of how ascorbate helps plants to counteract or cope with various abiotic stresses.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| | - Se Won Park
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| |
Collapse
|
21
|
Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C4 plant, Pennisetum glaucum (L.) R. Br. Mol Biol Rep 2014; 42:947-62. [PMID: 25403332 DOI: 10.1007/s11033-014-3832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
The generation of excess reactive oxygen species (ROS) is one of the most common consequences of abiotic stress on plants. Glutathione reductase (GR, E.C. 1.6.4.2) and allied enzymes of the ascorbate-glutathione cycle play a crucial role to maintain the homeostatic redox balance in the cellular environment. GR plays an essential role in upholding the reduced glutathione pool under stress conditions. In the present study, a full-length GR cDNA and corresponding genomic clone was isolated from Pennisetum glaucum (L.) R. Br. The PgGR cDNA, encodes a 497-amino acid peptide with an estimated molecular mass of ~53.5 kDa. The PgGR peptide exhibits 54-89% sequence homology with GR from other plants and is cytoplasmic in nature. The PgGR enzyme was purified to near homogeneity, the recombinant protein being relatively thermostable and displaying activity in a broad range of temperature, pH and substrate concentrations. The PgGR transcript level was differentially regulated by heat, cold, salinity and methyl viologen-induced oxidative stress. The heterologously expressed PgGR protein in E. coli showed an improved protection against metal- and methyl viologen-induced oxidative stress. Our overall finding underscores the role of PgGR gene that responds to multiple abiotic stresses and provides stress tolerance in the experimental model (E. coli) which can be potentially used for the improvement of crops under abiotic stress conditions.
Collapse
|
22
|
Pandey P, Srivastava RK, Dubey RS. Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings. PROTOPLASMA 2014; 251:147-60. [PMID: 23996324 DOI: 10.1007/s00709-013-0533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/18/2013] [Indexed: 05/12/2023]
Abstract
Plant growth and productivity are greatly affected due to changes in the environmental conditions. In the present investigation, the interactive effects of two important abiotic stresses, i.e., water deficit and Al toxicity, were examined in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (water deficit/Al sensitive) and Vandana (water deficit/Al tolerant). When 15 days grown seedlings were exposed to water deficit (created with 15 % polyethylene glycol 6000) or Al (1 mM AlCl3) treatment or both the treatments together for 48 h, the lengths of root/shoot, relative water content, and chlorophyll greatly declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Seedlings subjected to water deficit or Al treatment alone or in combination showed increased intensity of the isoenzyme activity bands of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) in in-gel activity staining studies. Water deficit caused decrease in intensity of catalase (CAT) activity bands; however, when seedlings were exposed to AlCl3 alone or in combination with water deficit, the intensity of the CAT isoforms increased in both the rice cultivars. The level of expression of the activity bands of SOD, CAT, GPX, and APX was always higher in the seedlings of tolerant cv. Vandana compared to the sensitive cv. Malviya-36 under both controls as well as stress treatments. Higher intensity of isozymes representing higher activity levels of antioxidative enzymes in the rice seedlings and their further increase under water deficit, Al exposure, or in combination of both the stresses appears to serve as useful marker for specifying a combination of water deficit and Al tolerance in rice.
Collapse
Affiliation(s)
- Poonam Pandey
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
23
|
Wu TM, Lin WR, Kao YT, Hsu YT, Yeh CH, Hong CY, Kao CH. Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. PLANT MOLECULAR BIOLOGY 2013; 83:379-390. [PMID: 23783412 DOI: 10.1007/s11103-013-0095-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Glutathione reductases (GRs) are important components of the antioxidant machinery that plants use to respond against abiotic stresses. In rice, one cytosolic and two chloroplastic GR isoforms have been identified. In this work, we describe the cloning and characterization of the full-length cDNA encoding OsGR3, a chloroplast-localized GR that up to now was considered as a non-functional enzyme because of assumed lack of N-terminal conserved domains. The expression of OsGR3 in E. coli validated that it can be translated as a protein with GR activity. OsGR3 shows 76 and 53 % identity with OsGR1 (chloroplastic) and OsGR2 (cytosolic), respectively. Phylogenetic analysis revealed 2 chloroplastic GRs in Poaceae species, including rice, sorghum and brachypodium, but only one chloroplastic GR in dicots. A plastid transit peptide is located at the N terminus of OsGR3, and genetic transformation of rice with a GR3-GFP fusion construct further confirmed its localization in chloroplasts. Furthermore, OsGR1 and OsGR3 are also targeted to mitochondria, which suggest a combined antioxidant mechanism in both chloroplasts and mitochondria. However, both isoforms showed a distinct response to salinity: the expression of OsGR3 but not OsGR1 was induced by salt stress. In addition, the transcript level of OsGR3 was greatly increased with salicylic acid treatment but was not significantly affected by methyl jasmonate, dehydration or heat shock stress. Our results provide new clues about the possible roles of functional OsGR3 in salt stress and biotic stress tolerance.
Collapse
Affiliation(s)
- Tsung-Meng Wu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Lisko KA, Hubstenberger JF, Phillips GC, Belefant-Miller H, McClung A, Lorence A. Ontogenetic changes in vitamin C in selected rice varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:41-6. [PMID: 23466746 PMCID: PMC3741106 DOI: 10.1016/j.plaphy.2013.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/24/2013] [Indexed: 05/08/2023]
Abstract
Vitamin C (L-ascorbic acid) is a key antioxidant for both plants and animals. In plants, ascorbate is involved in several key physiological processes including photosynthesis, cell expansion and division, growth, flowering, and senescence. In addition, ascorbate is an enzyme cofactor and a regulator of gene expression. During exposure to abiotic stresses, ascorbate counteracts excessive reactive oxygen species within the cell and protects key molecules, including lipids, proteins, and nucleic acids, from irreversible damage. In this study we focus on understanding how ascorbate levels are controlled in rice (Oryza sativa) during plant development and in response to light intensity and photoperiod. Our results indicate that in rice ascorbate metabolism follows a different pattern compared to other species. In the rice accessions we analyzed, total foliar ascorbate content increases during development and peaks at the vegetative 2-4 and the reproductive 4 stages, whereas other research has shown that in Arabidopsis thaliana and other dicots, ascorbate content declines with plant age. The pattern in rice does not seem to change when plants were grown under increasing light intensity: 150, 400 or 1200-1500 μmol m(-2) s(-1). We observed little diurnal variation in AsA content in rice and did not see a steady decline during the dark period as has been reported in other species such as Arabidopsis and tomato. The total foliar ascorbate content of twenty-three rice accessions from four major rice subgroups was compared. These genotypes differed as much as eight-fold in ascorbate content at the V2 stage indicating the potential to enhance vitamin C levels in genotypes of global interest via breeding approaches.
Collapse
Affiliation(s)
- Katherine A. Lisko
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - John F. Hubstenberger
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- College of Agriculture and Technology, Arkansas State University, P.O. Box 1080, State University, AR 72467, USA
| | - Helen Belefant-Miller
- USDA-ARS, Dale Bumpers National Rice Research Center, 2890 Hwy 130 East, Stuttgart, AR 72160, USA
| | - Anna McClung
- USDA-ARS, Dale Bumpers National Rice Research Center, 2890 Hwy 130 East, Stuttgart, AR 72160, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA
- Corresponding author. Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA. Tel.: +1 870 680 4322; fax: +1 870 972 2026. (A. Lorence)
| |
Collapse
|
25
|
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 2013; 82:230-53. [PMID: 23385356 DOI: 10.1016/j.jprot.2013.01.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.
Collapse
Affiliation(s)
- Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
26
|
Mishra P, Bhoomika K, Dubey RS. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. PROTOPLASMA 2013; 250:3-19. [PMID: 22194018 DOI: 10.1007/s00709-011-0365-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/08/2011] [Indexed: 05/07/2023]
Abstract
The present investigation evaluated the ability of an antioxidative defense system in terms of the tolerance against salinity-induced oxidative stress and also explored a possible relationship between the status of the components of an antioxidative defense system and the salt tolerance in Indica rice (Oryza sativa L.) genotypes. When the seedlings of a salt-sensitive cultivar was grown in sand cultures containing different NaCl concentrations (7 and 14 dS m(-1)) for 5-20 days, a substantial increase was observed in the rate of superoxide anion (O (2) (·-) ) production, elevated levels of H(2)O(2) and thiobarbituric acid reactive substances (TBARS) which indicated an enhancement in lipid peroxidation. A declination in the level of thiol clearly indicated an increase in the protein oxidation as well as a decline in the reduced forms of ascorbate (AsA) and glutathione (GSH) and the ratios of their reduced to oxidized forms occurred in the salt-sensitive seedlings. Similar treatment caused a very little alteration or no change in the levels of these components in the seedlings of salt-tolerant cultivar. The activity of antioxidative enzymes superoxide dismutase (SOD), its isoform Cu/Zn-SOD and ascorbate peroxidase (APX) increased in both the cultivars against salinity. In salt-sensitive seedlings, the activity of the various enzymes, guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) increased at moderate salinity treatment of 7 dS m(-1) NaCl while the activities of these enzymes declined with higher salinity level of 14 dS m(-1) NaCl. However, a consistent increase was observed in the activities of these enzymes of salt-tolerant seedlings with an increase in the duration and the level of the salinity treatment. The results suggest that a higher status of antioxidants (AsA and GSH) and a coordinated higher activity of the enzymes (SOD, CAT, GPX, APX, and GR) can serve as the major determinants in the model for depicting salt tolerance in Indica rice seedlings.
Collapse
Affiliation(s)
- Pallavi Mishra
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
27
|
Turan S, Tripathy BC. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. PROTOPLASMA 2013; 250:209-222. [PMID: 22434153 DOI: 10.1007/s00709-012-0395-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent + incandescent light (100 μmol photons m(-2) s(-1)). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment.
Collapse
Affiliation(s)
- Satpal Turan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
28
|
Zhao FY, Han MM, Zhang SY, Wang K, Zhang CR, Liu T, Liu W. Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:991-1006. [PMID: 23013333 DOI: 10.1111/j.1744-7909.2012.01170.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The link between root growth, H₂O₂, auxin signaling, and the cell cycle in cadmium (Cd)-stressed rice (Oryza sativa L. cv. Zhonghua No. 11) was analyzed in this study. Exposure to Cd induced a significant accumulation of Cd, but caused a decrease in zinc (Zn) content which resulted from the decreased expression of OsHMA9 and OsZIP. Analysis using a Cd-specific probe showed that Cd was mainly localized in the meristematic zone and vascular tissues. Formation and elongation of the root system were significantly promoted by 3-amino-1,2,4-triazole (AT), but were markedly inhibited by N,N'-dimethylthiourea (DMTU) under Cd stress. The effect of H₂O₂ on Cd-stressed root growth was further confirmed by examining a gain-of-function rice mutant (carrying catalase1 and glutathione-S-transferase) in the presence or absence of diphenylene iodonium. DR5-GUS staining revealed close associations between H₂O₂ and the concentration and distribution of auxin. H₂O₂ affected the expression of key genes, including OsYUCCA, OsPIN, OsARF, and OsIAA, in the auxin signaling pathway in Cd-treated plants. These results suggest that H₂O₂ functions upstream of the auxin signaling pathway. Furthermore, H₂O₂ modified the expression of cell-cycle genes in Cd-treated roots. The effects of H₂O₂ on root system growth are therefore linked to auxin signal modification and to variations in the expression of cell-cycle genes in Cd-stressed rice. A working model for the effects of H₂O₂ on Cd-stressed root system growth is thus proposed and discussed in this paper.
Collapse
Affiliation(s)
- Feng-Yun Zhao
- College of Life Sciences, Shandong University of Technology, Zibo 255049, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS. Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 2012; 10:25. [PMID: 22462395 PMCID: PMC3364906 DOI: 10.1186/1477-5956-10-25] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 03/31/2012] [Indexed: 01/14/2023] Open
Abstract
Background The rice roots are highly salt-sensitive organ and primary root growth is rapidly suppressed by salt stress. Sucrose nonfermenting 1-related protein kinase2 (SnRK2) family is one of the key regulator of hyper-osmotic stress signalling in various plant cells. To understand early salt response of rice roots and identify SnRK2 signaling components, proteome changes of transgenic rice roots over-expressing OSRK1, a rice SnRK2 kinase were investigated. Results Proteomes were analyzed by two-dimensional electrophoresis and protein spots were identified by LC-MS/MS from wild type and OSRK1 transgenic rice roots exposed to 150 mM NaCl for either 3 h or 7 h. Fifty two early salt -responsive protein spots were identified from wild type rice roots. The major up-regulated proteins were enzymes related to energy regulation, amino acid metabolism, methylglyoxal detoxification, redox regulation and protein turnover. It is noted that enzymes known to be involved in GA-induced root growth such as fructose bisphosphate aldolase and methylmalonate semialdehyde dehydrogenase were clearly down-regulated. In contrast to wild type rice roots, only a few proteins were changed by salt stress in OSRK1 transgenic rice roots. A comparative quantitative analysis of the proteome level indicated that forty three early salt-responsive proteins were magnified in transgenic rice roots at unstressed condition. These proteins contain single or multiple potential SnRK2 recognition motives. In vitro kinase assay revealed that one of the identified proteome, calreticulin is a good substrate of OSRK1. Conclusions Our present data implicate that rice roots rapidly changed broad spectrum of energy metabolism upon challenging salt stress, and suppression of GA signaling by salt stress may be responsible for the rapid arrest of root growth and development. The broad spectrum of functional categories of proteins affected by over-expression of OSRK1 indicates that OSRK1 is an upstream regulator of stress signaling in rice roots. Enzymes involved in glycolysis, branched amino acid catabolism, dnaK-type molecular chaperone, calcium binding protein, Sal T and glyoxalase are potential targets of OSRK1 in rice roots under salt stress that need to be further investigated.
Collapse
Affiliation(s)
- Myung Hee Nam
- Bio-Crops Development Division, National Academy of Agricultural Sciences, Suwon 441-857, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chou TS, Chao YY, Kao CH. Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:478-86. [PMID: 22196946 DOI: 10.1016/j.jplph.2011.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 05/20/2023]
Abstract
Hydrogen peroxide (H2O2) is considered a signal molecule inducing cellular stress. Both heat shock (HS) and Cd can increase H2O2 content. We investigated the involvement of H2O2 in HS- and Cd-mediated changes in the expression of ascorbate peroxidase (APX) and glutathione reductase (GR) in leaves of rice seedlings. HS treatment increased the content of H2O2 before it increased activities of APX and GR in rice leaves. Moreover, HS-induced H2O2 production and APX and GR activities could be counteracted by the NADPH oxidase inhibitors dipehenylene iodonium (DPI) and imidazole (IMD). HS-induced OsAPX2 gene expression was associated with HS-induced APX activity but was not regulated by H2O2. Cd-increased H2O2 content and APX and GR activities were lower with than without HS. Cd did not increase the expression of OsAPX and OsGR without HS treatment. Cd increased H2O2 content by Cd before it increased APX and GR activities without HS. Treatment with DPI and IMD effectively inhibited Cd-induced H2O2 production and APX and GR activities. Moreover, the effects of DPI and IMD could be rescued with H2O2 treatment. H2O2 may be involved in the regulation of HS- and Cd-increased APX and GR activities in leaves of rice seedlings.
Collapse
Affiliation(s)
- Ting-Shao Chou
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
31
|
Molecular cloning and expression analysis of glutathione reductase gene in Chlamydomonas sp. ICE-L from Antarctica. Mar Genomics 2011; 5:59-64. [PMID: 22325723 DOI: 10.1016/j.margen.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
Abstract
A cDNA (GenBank ID: GU395492) encoding cytosolic glutathione reductase (named ICE-LGR) in Antarctic microalgae Chlamydomonas sp. ICE-L was successfully cloned by RT-PCR and rapid amplification of cDNA ends technique (RACE). The expression patterns of ICE-LGR under different salinity stresses were determined by real-time PCR. ICE-LGR cDNA has 1913 bp nucleotides with an open reading frame (ORF) of 1458 bp, encoding 485 amino acid residues. The deduced amino acid sequence shows 79% homology with glutathione reductase (GR) of Chlamydomonas reinhardtii. Activity assessment and mRNA expression analysis results showed that activity and expression level of GR in ICE-L cells were up-regulated under either high or low salinity. Together, our results revealed that ICE-LGR might play an important role in Antarctic ice algae Chlamydomonas sp. ICE-L acclimatizing to polar high salinity environment as well as low salinity. These results provide us valuable information on further investigating the molecular mechanism of ICE-LGR.
Collapse
|
32
|
Boughalleb F, Mhamdi M. Possible Involvement of Proline and the Antioxidant Defense Systems in the Drought Tolerance of Three Olive Cultivars Grown under Increasing Water Deficit Regimes. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/aj.2011.378.391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Abogadallah GM. Antioxidative defense under salt stress. PLANT SIGNALING & BEHAVIOR 2010; 5:369-74. [PMID: 20118663 PMCID: PMC2958586 DOI: 10.4161/psb.5.4.10873] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
Salt tolerance is a complex trait involving the coordinated action of many gene families that perform a variety of functions such as control of water loss through stomata, ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defense. In spite of the large number of publications on the role of antioxidative defense under salt stress, the relative importance of this process to overall plant salt tolerance is still a matter of controversy. In this article, the generation and scavenging of reactive oxygen species (ROS) under normal and salt stress conditions in relation to the type of photosynthesis is discussed. The CO(2) concentrating mechanism in C4 and CAM plants is expected to contribute to decreasing ROS generation. However, the available data supports this hypothesis in CAM but not in C4 plants. We discuss the specific roles of enzymatic and non enzymatic antioxidants in relation to the oxidative load in the context of whole plant salt tolerance. The possible preventive antioxidative mechanisms are also discussed.
Collapse
Affiliation(s)
- Gaber M Abogadallah
- Department of Botany, Faculty of Science at New Damietta, New Damietta, Egypt.
| |
Collapse
|
34
|
Tissue and Induction Expression Profiles of Rice Phospholipid Hydroperoxide Glutathione Peroxidase at Protein Level *. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Hong CY, Chao YY, Yang MY, Cho SC, Huei Kao C. Na(+) but not Cl(-) or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1598-1606. [PMID: 19423186 DOI: 10.1016/j.jplph.2009.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 05/27/2023]
Abstract
Glutathione reductase (GR, EC 1,6.4.2) is an important reactive oxygen species-scavenging enzyme. The present study examined the relative importance of Na(+), Cl(-), and the osmotic component in NaCl-induced expression of Oryza sativa glutathione reductase (OsGR) genes in rice roots. Semi-quantitative RT-PCR was used to quantify the mRNA levels for one cytosolic (OsGR2) and two chloroplastic (OsGR1 and OsGR3) isoforms of GR identified in the rice genome. The expression of OsGR2 and OsGR3 but not OsGR1 was increased in rice roots treated with NaCl. Treatment with 150 mM NaCl and 150 mM NaNO(3) affected OsGR2 and OsGR3 induction similarly, which suggests that Na(+) but not Cl(-) is required for the NaCl-induced expression of OsGR2 and OsGR3. We also show that Na(+) but not Cl(-) is required for NaCl-enhanced GR activity and hydrogen peroxide (H(2)O(2)) production in rice roots. In addition to its component of ion toxicity, salt concentration in soil results in an osmotic effect. Here, we show that OsGR2 and OsGR3 expression, GR activity, and H(2)O(2) content were not affected at a concentration of mannitol iso-osmotic with 150 mM NaCl. NaCl-induced OsGR2 and OsGR3 in rice roots could be associated with Na(+) but not an osmotic component.
Collapse
Affiliation(s)
- Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
36
|
Azooz M. Foliar Application with Riboflavin (Vitamin B2) Enhancing the Resistance of Hibiscus sabdariffa L. (Deep Red Sepals Variety) to Salinity Stress. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/jbs.2009.109.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Hong CY, Kao CH. NaCl-induced expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings is not associated with osmotic component. PLANT SIGNALING & BEHAVIOR 2008; 3:199-201. [PMID: 19704658 PMCID: PMC2634116 DOI: 10.4161/psb.3.3.5541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/08/2008] [Indexed: 05/16/2023]
Abstract
Ascorbate peroxidase (APx; EC 1.11.1.11) plays an important role in scavenging the toxic effects of H(2)O(2) in higher plants. Eight types of APx have been described for Oryza sativa: two cytosolic (OsAPx1 and OsAPx2), two putative peroxisomal (OsAPx3 and OsAPx4), and four chloroplastic isoforms (OsAPx5, OsAPx6, OsAPx7 and OsAPx8). We have recently demonstrated that Na(+) but not Cl(-) is required for the NaCl-induced expression of OsAPx8 in rice roots. Evidence is also provided to show that Na(+)-induced expression of OsAPx8 is mediated through an accumulation of ABA. In addition to its known component of ion toxicity, there is an osmotic effect resulting from salt concentration in the soil. Here we show that ABA level but not OsAPx8 expression was enhanced at a concentration of mannitol iso-osmotic with 150 mM NaCl suggests that NaCl-enhanced OsAPx8 expression is not associated with osmotic component.
Collapse
Affiliation(s)
- Chwan Yang Hong
- Department of Agricultural Chemistry and Institute of Biotechnology
| | - Ching Huei Kao
- Department of Agronomy; National Taiwan University; Taipei Taiwan, Republic of China
| |
Collapse
|
38
|
Lu Z, Liu D, Liu S. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2007; 26:1909-17. [PMID: 17571267 DOI: 10.1007/s00299-007-0395-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/20/2007] [Accepted: 05/26/2007] [Indexed: 05/15/2023]
Abstract
In order to determine the different roles of rice (Oryza sativa L.) cytosolic ascorbate peroxidases (OsAPXa and OsAPXb, GenBank accession nos. D45423 and AB053297, respectively) under salt stress, transgenic Arabidopsis plants over-expressing OsAPXa or OsAPXb were generated, and they all exhibited increased tolerance to salt stress compared to wild-type plants. Moreover, transgenic lines over-expressing OsAPXb showed higher salt tolerance than OsAPXa transgenic lines as indicated by root length and total chlorophyll content. In addition to ascorbate peroxidase (APX) activity, antioxidant enzyme activities of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR), which are also involved in the salt tolerance process, and the content of H2O2 were also assayed in both transgenic and wild-type plants. The results showed that the overproduction of OsAPXb enhanced and maintained APX activity to a much higher degree than OsAPXa in transgenic Arabidopsis during treatment with different concentrations of NaCl, enhanced the active oxygen scavenging system, and protected plants from salt stress by equilibrating H2O2 metabolism. Our findings suggest that the rice cytosolic OsAPXb gene has a more functional role than OsAPXa in the improvement of salt tolerance in transgenic plants.
Collapse
Affiliation(s)
- Zhenqiang Lu
- Biochemistry and Molecular Biology Lab, College of Life Sciences, Heilongjiang University, Harbin 150080, People's Republic China
| | | | | |
Collapse
|