1
|
Degen GE, Johnson MP. Photosynthetic control at the cytochrome b6f complex. THE PLANT CELL 2024; 36:4065-4079. [PMID: 38668079 PMCID: PMC11449013 DOI: 10.1093/plcell/koae133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 10/05/2024]
Abstract
Photosynthetic control (PCON) is a protective mechanism that prevents light-induced damage to PSI by ensuring the rate of NADPH and ATP production via linear electron transfer (LET) is balanced by their consumption in the CO2 fixation reactions. Protection of PSI is a priority for plants since they lack a dedicated rapid-repair cycle for this complex, meaning that any damage leads to prolonged photoinhibition and decreased growth. The imbalance between LET and the CO2 fixation reactions is sensed at the level of the transthylakoid ΔpH, which increases when light is in excess. The canonical mechanism of PCON involves feedback control by ΔpH on the plastoquinol oxidation step of LET at cytochrome b6f. PCON thereby maintains the PSI special pair chlorophylls (P700) in an oxidized state, which allows excess electrons unused in the CO2 fixation reactions to be safely quenched via charge recombination. In this review we focus on angiosperms, consider how photo-oxidative damage to PSI comes about, explore the consequences of PSI photoinhibition on photosynthesis and growth, discuss recent progress in understanding PCON regulation, and finally consider the prospects for its future manipulation in crop plants to improve photosynthetic efficiency.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
2
|
Agarwal P, Chittora A, Baraiya BM, Fatnani D, Patel K, Akhyani DD, Parida AK, Agarwal PK. Rab7 GTPase-Mediated stress signaling enhances salinity tolerance in AlRabring7 tobacco transgenics by modulating physio-biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108928. [PMID: 39033652 DOI: 10.1016/j.plaphy.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The RING-type E3 ligases play a significant role in stress signaling, primarily through post-translational regulation. Ubiquitination is a crucial post-translational modification that regulates the turnover and activity of proteins. The overexpression of AlRabring7, RING-HC E3 Ub ligase in tobacco provides insights into the regulation of salinity and ABA signaling in transgenic tobacco. The seed germination potential of AlRabring7 transgenics was higher than WT, with NaCl and ABA treatments. The transgenics showed improved morpho-physio-biochemical parameters in response to salinity and ABA treatments. The photosynthetic pigments, soluble sugars, reducing sugars and proline increased in transgenics in response to NaCl and ABA treatments. The decreased ROS accumulation in transgenics on NaCl and ABA treatments can be co-related to improved activity of enzymatic and non-enzymatic antioxidants. The potential of transgenics to maintain ABA levels with ABA treatment, highlights the active participation of ABA feedback loop mechanism. Interestingly, the ability of AlRabring7 transgenics to upregulate Rab7 protein, suggests its role in facilitating vacuolar transport. Furthermore, the improved potassium accumulation and reduced sodium content indicate an efficient ion regulation mechanism in transgenic plants facilitating higher stomatal opening. The expression of downstream ion transporter (NbNHX1 and NbVHA1), ABA signaling (NbABI2 and NbABI5) and vesicle trafficking (NbMON1) responsive genes were upregulated with stress. The present study, reports that AlRabring7 participates in maintaining vacuolar transport, ion balance, ROS homeostasis, stomatal regulation through activation of Rab7 protein and regulation of downstream stress-responsive during stress. This emphasizes the potential of AlRabring7 gene for improved performance and resilience in challenging environments.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Anjali Chittora
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khantika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhanvi D Akhyani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Messant M, Hani U, Lai TL, Wilson A, Shimakawa G, Krieger-Liszkay A. Plastid terminal oxidase (PTOX) protects photosystem I and not photosystem II against photoinhibition in Arabidopsis thaliana and Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:669-678. [PMID: 37921075 DOI: 10.1111/tpj.16520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
The plastid terminal oxidase PTOX controls the oxidation level of the plastoquinone pool in the thylakoid membrane and acts as a safety valve upon abiotic stress, but detailed characterization of its role in protecting the photosynthetic apparatus is limited. Here we used PTOX mutants in two model plants Arabidopsis thaliana and Marchantia polymorpha. In Arabidopsis, lack of PTOX leads to a severe defect in pigmentation, a so-called variegated phenotype, when plants are grown at standard light intensities. We created a green Arabidopsis PTOX mutant expressing the bacterial carotenoid desaturase CRTI and a double mutant in Marchantia lacking both PTOX isoforms, the plant-type and the alga-type PTOX. In both species, lack of PTOX affected the redox state of the plastoquinone pool. Exposure of plants to high light intensity showed in the absence of PTOX higher susceptibility of photosystem I to light-induced damage while photosystem II was more stable compared with the wild type demonstrating that PTOX plays both, a pro-oxidant and an anti-oxidant role in vivo. Our results shed new light on the function of PTOX in the protection of photosystem I and II.
Collapse
Affiliation(s)
- Marine Messant
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Umama Hani
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Thanh-Lan Lai
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Ginga Shimakawa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
4
|
Patel M, Parida AK. Salinity alleviates arsenic stress-induced oxidative damage via antioxidative defense and metabolic adjustment in the root of the halophyte Salvadora persica. PLANTA 2023; 258:109. [PMID: 37907764 DOI: 10.1007/s00425-023-04263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
MAIN CONCLUSION Arsenic tolerance in the halophyte Salvadora persica is achieved by enhancing antioxidative defense and modulations of various groups of metabolites like amino acids, organic acids, sugars, sugar alcohols, and phytohormones. Salvadora persica is a facultative halophyte that thrives under high saline and arid regions of the world. In present study, we examine root metabolic responses of S. persica exposed to individual effects of high salinity (750 mM NaCl), arsenic (600 µM As), and combined treatment of salinity and arsenic (250 mM NaCl + 600 µM As) to decipher its As and salinity resistance mechanism. Our results demonstrated that NaCl supplementation reduced the levels of reactive oxygen species (ROS) under As stress. The increased activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR) maintained appropriate levels of ROS [superoxide (O2•-) and hydrogen peroxide (H2O2)] under salinity and/or As stress. The metabolites like sugars, amino acids, polyphenols, and organic acids exhibited higher accumulations when salt was supplied with As. Furthermore, comparatively higher accumulations of glycine, glutamate, and cystine under combined stress of salt and As may indicate its role in glutathione and phytochelatins (PCs) synthesis in root. The levels of phytohormones such as salicylate, jasmonate, abscisic acid, and auxins were significantly increased under high As with and without salinity stress. The amino acid metabolism, glutathione metabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA cycle), phenylpropanoid biosynthesis, and phenylalanine metabolism are the most significantly altered metabolic pathways in response to NaCl and/or As stress. Our study decoded the important metabolites and metabolic pathways involved in As and/or salinity tolerance in root of the halophyte S. persica providing clues for development of salinity and As resistance crops.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India.
| |
Collapse
|
5
|
An D, Zhao B, Liu Y, Xu Z, Kong R, Yan C, Su J. Simulation of Photosynthetic Quantum Efficiency and Energy Distribution Analysis Reveals Differential Drought Response Strategies in Two (Drought-Resistant and -Susceptible) Sugarcane Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:1042. [PMID: 36903903 PMCID: PMC10005361 DOI: 10.3390/plants12051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Selections of drought-tolerant cultivars and drought-stress diagnosis are important for sugarcane production under seasonal drought, which becomes a crucial factor causing sugarcane yield reduction. The main objective of this study was to investigate the differential drought-response strategies of drought-resistant ('ROC22') and -susceptible ('ROC16') sugarcane cultivars via photosynthetic quantum efficiency (Φ) simulation and analyze photosystem energy distribution. Five experiments were conducted to measure chlorophyll fluorescence parameters under different photothermal and natural drought conditions. The response model of Φ to photosynthetically active radiation (PAR), temperature (T), and the relative water content of the substrate (rSWC) was established for both cultivars. The results showed that the decreasing rate of Φ was higher at lower temperatures than at higher temperatures, with increasing PAR under well-watered conditions. The drought-stress indexes (εD) of both cultivars increased after rSWC decreased to the critical values of 40% and 29% for 'ROC22' and 'ROC16', respectively, indicating that the photosystem of 'ROC22' reacted more quickly than that of 'ROC16' to water deficit. An earlier response and higher capability of nonphotochemical quenching (NPQ) accompanied the slower and slighter increments of the yield for other energy losses (ΦNO) for 'ROC22' (at day5, with a rSWC of 40%) compared with 'ROC16' (at day3, with a rSWC of 56%), indicating that a rapid decrease in water consumption and an increase in energy dissipation involved in delaying the photosystem injury could contribute to drought tolerance for sugarcane. In addition, the rSWC of 'ROC16' was lower than that of 'ROC22' throughout the drought treatment, suggesting that high water consumption might be adverse to drought tolerance of sugarcane. This model could be applied for drought-tolerance assessment or drought-stress diagnosis for sugarcane cultivars.
Collapse
Affiliation(s)
- Dongsheng An
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Baoshan Zhao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Yang Liu
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Jiaxing Vocational and Technical College, Jiaxing 314036, China
| | - Zhijun Xu
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Ran Kong
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
| | - Chengming Yan
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
| | - Junbo Su
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
| |
Collapse
|
6
|
Patel M, Fatnani D, Parida AK. Potassium deficiency stress tolerance in peanut (Arachis hypogaea) through ion homeostasis, activation of antioxidant defense, and metabolic dynamics: Alleviatory role of silicon supplementation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:55-75. [PMID: 35468526 DOI: 10.1016/j.plaphy.2022.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 05/10/2023]
Abstract
Potassium (K) scarcity of arable land is one of the important factors that hamper the growth of the plants and reduce yield worldwide. In the current study, we examine the physiological, biochemical, and metabolome response of Arachis hypogaea (GG7 genotype: fast-growing, tall, early maturing, and high yielding) under low K either solitary or in combination with Si to elucidate the ameliorative role of Si. The reduced fresh and dry biomass of peanut and photosynthetic pigments content was significantly alleviated by Si. Si application did not affect the leaf and stem K+, although it enhanced root K+ in K-limitation, which is probably due to up-regulated expression of genes responsible for K uptake. Si improves the potassium use efficiency in K-limitation as compared to control. K-deficiency increased MDA, O2•-, and H2O2 levels in leaf and root of peanut. Si improved/maintained the activity of antioxidative enzymes, which significantly lowered the ROS accumulation in K-limitation. The AsA/DHA and GSH/GSSG ratio was approximately unaffected in both leaf and root, suggesting the maintained cellular redox potential in K-starved peanut. Si promotes accumulation of sugars and sugar alcohols, phytohormones indicating their probable involvement in signal transduction, osmotic regulation, and improvement of stress tolerance. Down-regulation of aspartic acid and glutamic acid while up-regulation of lysine, histidine, and arginine could maintain charge balance in K-deprived peanut. The significant accumulation of polyphenols under K limitation supplemented with Si suggests the role of polyphenols for ROS scavenging. Our results demonstrated that Si as a beneficial element can mitigate K-nutrient toxicity and improve KUE of peanut under K-limitation conditions. Moreover, our results demonstrate that Si application can improve crop yield, quality, and nutrient use efficiency under nutrient limitation conditions.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Saini N, Nikalje GC, Zargar SM, Suprasanna P. Molecular insights into sensing, regulation and improving of heat tolerance in plants. PLANT CELL REPORTS 2022; 41:799-813. [PMID: 34676458 DOI: 10.1007/s00299-021-02793-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Climate-change-mediated increase in temperature extremes has become a threat to plant productivity. Heat stress-induced changes in growth pattern, sensitivity to pests, plant phonologies, flowering, shrinkage of maturity period, grain filling, and increased senescence result in significant yield losses. Heat stress triggers multitude of cellular, physiological and molecular responses in plants beginning from the early sensing followed by signal transduction, osmolyte synthesis, antioxidant defense, and heat stress-associated gene expression. Several genes and metabolites involved in heat perception and in the adaptation response have been isolated and characterized in plants. Heat stress responses are also regulated by the heat stress transcription factors (HSFs), miRNAs and transcriptional factors which together form another layer of regulatory circuit. With the availability of functionally validated candidate genes, transgenic approaches have been applied for developing heat-tolerant transgenic maize, tobacco and sweet potato. In this review, we present an account of molecular mechanisms of heat tolerance and discuss the current developments in genetic manipulation for heat tolerant crops for future sustainable agriculture.
Collapse
Affiliation(s)
- Nupur Saini
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vidyalaya, Raipur, 492012, India
| | - Ganesh Chandrakant Nikalje
- PG Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Ulhasnagar, 421003, India.
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190019, India
| | - Penna Suprasanna
- Ex-Scientist, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, 400085, India.
| |
Collapse
|
8
|
Patel M, Fatnani D, Parida AK. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:290-313. [PMID: 34146784 DOI: 10.1016/j.plaphy.2021.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Drought stress considered as a major environmental constraint that frequently limits crop production globally. In the current investigation, drought stress-induced alterations in growth, ion homeostasis, photosynthetic pigments, organic osmolytes, reactive oxygen species (ROS) generation, antioxidative components, and metabolic profile were examined in order to assess the role of silicon (Si) in mitigation of drought effects and to understand the drought adaptive mechanism in two contrasting peanut genotypes (GG7: fast growing and tall, TG26: slow growing and semi-dwarf). Si application significantly improved the leaf chlorophyll content, relative water content % (RWC %), growth and biomass in GG7 compared with TG26 genotype under water stress. Si supplementation considerably promotes the uptake and transport of mineral nutrients under drought condition in both the genotypes, which eventually promote plant growth. Exogenous application of Si protects the photosynthetic pigments from oxidative damage by reducing membrane lipid peroxidation and either maintained or reduced H2O2 accumulation in both the genotypes. The activity of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) and non-enzymatic antioxidants like ascorbate (AsA) and glutathione (GSH) were either maintained or increased in both the genotypes in response to Si under drought as compared to those without Si. Silicon-induced higher accumulation of metabolites mainly sugars and sugar alcohols (talose, mannose, fructose, sucrose, cellobiose, trehalose, pinitol, and myo-inositol), amino acids (glutamic acid, serine, histidine, threonine, tyrosine, valine, isoleucine, and leucine) in GG7 genotype as compared to TG26, provides osmo-protection. Moreover, Si application increased phytohormones levels such as indole-3-acetic acid (IAA), gibberellic acid (GA3), jasmonic acid (JA), and zeatin in GG7 genotype under drought stress compared to non-Si treated seedlings suggesting its involvement in signaling pathways for drought adaptation and tolerance. Noteworthy increment in polyphenols (chlorogenic acid, caffeic acid, ellagic acid, rosmarinic acid, quercetin, coumarin, naringenin, and kaempferol) in the Si treated seedlings of GG7 genotype as compared to TG26 under drought stress suggests an efficient mechanism of ROS sequestration in GG7 genotype. Our findings provide comprehensive information on physiological, biochemical, and metabolic dynamics associated with Si-mediated water stress tolerance in peanut. This study indicates that the drought tolerance efficacy of peanut genotypes can be improved by Si application.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Leverne L, Krieger-Liszkay A. Moderate drought stress stabilizes the primary quinone acceptor Q A and the secondary quinone acceptor Q B in photosystem II. PHYSIOLOGIA PLANTARUM 2021; 171:260-267. [PMID: 33215720 DOI: 10.1111/ppl.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
Drought induces stomata closure and lowers the CO2 concentration in the mesophyll, limiting CO2 assimilation and favoring photorespiration. The photosynthetic apparatus is protected under drought conditions by a number of downregulation mechanisms like photosynthetic control and activation of cyclic electron transport leading to the generation of a high proton gradient across the thylakoid membrane. Here, we studied photosynthetic electron transport by chlorophyll fluorescence, thermoluminescence (TL), and P700 absorption measurements in spinach exposed to moderate drought stress. Chlorophyll fluorescence induction and decay kinetics were slowed down. Under drought conditions, an increase of the TL AG-band and a downshift of the maximum temperatures of both, the B-band and the AG-band, were observed when leaves were illuminated under conditions that maintained the proton gradient. When leaves were frozen prior to the TL measurements, the maximum temperature of the B-band was upshifted in drought-stressed leaves. This shows a stabilization of the QB /QB •- redox couple in accordance with the slower fluorescence decay kinetics. We propose that during drought stress, photorespiration exerts a feedback control on photosystem II via the binding of a photorespiratory metabolite at the non-heme iron at the acceptor side of photosystem II. According to our hypothesis, an exchange of bicarbonate at the non-heme iron by a photorespiratory metabolite such as glycolate would not only affect the midpoint potential of the QA /QA •- couple, as shown previously, but also that of the QB /QB •- couple.
Collapse
Affiliation(s)
- Lucas Leverne
- Université Paris-Saclay, Institute for Integrative Cell Biology (I2BC), CEA, CNRS, Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- Université Paris-Saclay, Institute for Integrative Cell Biology (I2BC), CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Ortega JM, Roncel M. The afterglow photosynthetic luminescence. PHYSIOLOGIA PLANTARUM 2021; 171:268-276. [PMID: 33231323 DOI: 10.1111/ppl.13288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
The afterglow (AG) photosynthetic luminescence is a long-lived chlorophyll fluorescence emitted from PSII after the illumination of photosynthetic materials by FR or white light and placed in darkness. The AG emission corresponds to the fraction of PSII centers in the S2/3 QB non-radiative state immediately after pre-illumination, in which the arrival of an electron transferred from stroma along cyclic/chlororespiratory pathway(s) produces the S2/3 QB - radiative state that emits luminescence. This emission can be optimally recorded by a linear temperature gradient as sharp thermoluminescence (TL) band peaking at about 45°C. The AG emission recorded by TL technique has been proposed as a simple non-invasive tool to investigate the chloroplast energetic state and some of its metabolism processes as cyclic transport of electrons around PSI, chlororespiration or photorespiration. On the other hand, this emission has demonstrated to be a useful probe to study the effect of various stress conditions in photosynthetic materials.
Collapse
Affiliation(s)
- José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
11
|
Patel M, Parida AK. Salinity alleviates the arsenic toxicity in the facultative halophyte Salvadora persica L. by the modulations of physiological, biochemical, and ROS scavenging attributes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123368. [PMID: 32653791 DOI: 10.1016/j.jhazmat.2020.123368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal(loid)s contamination in soil is a major environmental concern that limits agricultural yield and threatens human health worldwide. Arsenic (As) is the most toxic non-essential metalloid found in soil which comes from various natural as well as human activities. S. persica is a facultative halophyte found abundantly in dry, semiarid and saline areas. In the present study, growth, mineral nutrient homeostasis, MDA content, phytochelatin levels, and ROS-scavenging attributes were examined in S. persica imposed to solitary treatments of salinity (250 mM and 750 mM NaCl), solitary treatments of arsenic (200 μM and 600 μM As), and combined treatments of As with 250 mM NaCl with an aim to elucidate salinity and As tolerance mechanisms. The results demonstrated that S. persica plants sustained under high levels of As (600 μM As) as well as NaCl (750 mM). The activity of superoxide dismutase, catalase, peroxidase, and glutathione reductase were either elevated or unaffected under salt or As stress. However, ascorbate peroxidase activity declined under both solitary and combination of As with NaCl. Furthermore, the cellular redox status measured in terms of reduced ascorbate/dehydroascorbate, and reduced glutathione/oxidized glutathione ratios also either increased or remained unaffected in seedlings treated with both solitary and combined treatments of As + NaCl. Significant accumulation of various oxidative stress indicators (H2O2 and O2-) were observed under high As stress condition. However, presence of salt with high As significantly reduced the levels of ROS. Furthermore, exogenous salt improved As tolerance index (Ti) under high As stress condition. The values of translocation factor (Tf) and As bioaccumulation factor (BF) were >1 in all the treatments. From this study, it can be concluded that the facultative halophyte S. persica is a potential As accumulator and may find application for phytoextraction of arsenic-contaminated saline soil.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India.
| |
Collapse
|
12
|
Ramadan AM. Light/heat effects on RNA editing in chloroplast NADH-plastoquinone oxidoreductase subunit 2 (ndhB) gene of Calotropis (Calotropis procera). J Genet Eng Biotechnol 2020; 18:49. [PMID: 32915330 PMCID: PMC7486354 DOI: 10.1186/s43141-020-00064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Background RNA editing is common in terrestrial plants, especially in mitochondria and chloroplast. In the photosynthesis process, NAD dehydrogenase plays a very important role. Subunit 2 of NADH-dehydrogenase is one of the major subunits in NAD dehydrogenase complex. Using desert plant Calotropis (Calotropis procera), this study focuses on the RNA editing activity of ndhB based on light time. Results NdhB (NADH-dehydrogenase subunit 2) gene accession no. MK144329 was isolated from Calotropis procera genomic data (PRJNA292713). Additionally, using RNA-seq data, the cDNA of the ndhB gene of C. procera was isolated at three daylight periods, i.e., dawn (accession no. MK165161), at midday (accession no. MK165160), and pre-dusk (accession no. MK165159). Seven RNA editing sites have been found in several different positions (nucleotide no. C467, C586, C611, C737, C746, C830, and C1481) within the ndhB coding region. The rate of these alterations was deferentially edited across the three daylight periods. RNA editing rate of ndhB gene was highest at dawn, (87.5, 79.6, 78.5, 76, 68.6, 39.3, and 96.9%, respectively), less in midday (74.8, 54.1, 62.6, 47.4, 45.5, 47.4, and 93.4%, respectively), and less at pre-dusk (67, 52.6, 56.9, 40.1, 40.7, 33.2, and 90%, respectively), also all these sites were validated by qRT-PCR. Conclusion The differential editing of chloroplast ndhB gene across light periods may be led to a somehow relations between the RNA editing and control of photosynthesis.
Collapse
Affiliation(s)
- Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, Jeddah, 21589, Saudi Arabia. .,Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| |
Collapse
|
13
|
Liu H, Able AJ, Able JA. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. Int J Mol Sci 2020; 21:ijms21176017. [PMID: 32825615 PMCID: PMC7504575 DOI: 10.3390/ijms21176017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Water-deficit and heat stress negatively impact crop production. Mechanisms underlying the response of durum wheat to such stresses are not well understood. With the new durum wheat genome assembly, we conducted the first multi-omics analysis with next-generation sequencing, providing a comprehensive description of the durum wheat small RNAome (sRNAome), mRNA transcriptome, and degradome. Single and combined water-deficit and heat stress were applied to stress-tolerant and -sensitive Australian genotypes to study their response at multiple time-points during reproduction. Analysis of 120 sRNA libraries identified 523 microRNAs (miRNAs), of which 55 were novel. Differentially expressed miRNAs (DEMs) were identified that had significantly altered expression subject to stress type, genotype, and time-point. Transcriptome sequencing identified 49,436 genes, with differentially expressed genes (DEGs) linked to processes associated with hormone homeostasis, photosynthesis, and signaling. With the first durum wheat degradome report, over 100,000 transcript target sites were characterized, and new miRNA-mRNA regulatory pairs were discovered. Integrated omics analysis identified key miRNA-mRNA modules (particularly, novel pairs of miRNAs and transcription factors) with antagonistic regulatory patterns subject to different stresses. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed significant roles in plant growth and stress adaptation. Our research provides novel and fundamental knowledge, at the whole-genome level, for transcriptional and post-transcriptional stress regulation in durum wheat.
Collapse
|
14
|
Essemine J, Lyu MJA, Qu M, Perveen S, Khan N, Song Q, Chen G, Zhu XG. Contrasting Responses of Plastid Terminal Oxidase Activity Under Salt Stress in Two C 4 Species With Different Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:1009. [PMID: 32733515 PMCID: PMC7359412 DOI: 10.3389/fpls.2020.01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 05/07/2023]
Abstract
The present study reveals contrasting responses of photosynthesis to salt stress in two C4 species: a glycophyte Setaria viridis (SV) and a halophyte Spartina alterniflora (SA). Specifically, the effect of short-term salt stress treatment on the photosynthetic CO2 uptake and electron transport were investigated in SV and its salt-tolerant close relative SA. In this experiment, at the beginning, plants were grown in soil then were exposed to salt stress under hydroponic conditions for two weeks. SV demonstrated a much higher susceptibility to salt stress than SA; while, SV was incapable to survive subjected to about 100 mM, SA can tolerate salt concentrations up to 550 mM with slight effect on photosynthetic CO2 uptake rates and electrons transport chain conductance (gETC ). Regardless the oxygen concentration used, our results show an enhancement in the P700 oxidation with increasing O2 concentration for SV following NaCl treatment and almost no change for SA. We also observed an activation of the cyclic NDH-dependent pathway in SV by about 2.36 times upon exposure to 50 mM NaCl for 12 days (d); however, its activity in SA drops by about 25% compared to the control without salt treatment. Using PTOX inhibitor (n-PG) and that of the Qo-binding site of Cytb6/f (DBMIB), at two O2 levels (2 and 21%), to restrict electrons flow towards PSI, we successfully revealed the presence of a possible PTOX activity under salt stress for SA but not for SV. However, by q-PCR and western-blot analysis, we showed an increase in PTOX amount by about 3-4 times for SA under salt stress but not or very less for SV. Overall, this study provides strong proof for the existence of PTOX as an alternative electron pathway in C4 species (SA), which might play more than a photoprotective role under salt stress.
Collapse
|
15
|
Ahmad N, Khan MO, Islam E, Wei ZY, McAusland L, Lawson T, Johnson GN, Nixon PJ. Contrasting Responses to Stress Displayed by Tobacco Overexpressing an Algal Plastid Terminal Oxidase in the Chloroplast. FRONTIERS IN PLANT SCIENCE 2020; 11:501. [PMID: 32411169 PMCID: PMC7199157 DOI: 10.3389/fpls.2020.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/03/2020] [Indexed: 05/10/2023]
Abstract
The plastid terminal oxidase (PTOX) - an interfacial diiron carboxylate protein found in the thylakoid membranes of chloroplasts - oxidizes plastoquinol and reduces molecular oxygen to water. It is believed to play a physiologically important role in the response of some plant species to light and salt (NaCl) stress by diverting excess electrons to oxygen thereby protecting photosystem II (PSII) from photodamage. PTOX is therefore a candidate for engineering stress tolerance in crop plants. Previously, we used chloroplast transformation technology to over express PTOX1 from the green alga Chlamydomonas reinhardtii in tobacco (generating line Nt-PTOX-OE). Contrary to expectation, growth of Nt-PTOX-OE plants was more sensitive to light stress. Here we have examined in detail the effects of PTOX1 on photosynthesis in Nt-PTOX-OE tobacco plants grown at two different light intensities. Under 'low light' (50 μmol photons m-2 s-1) conditions, Nt-PTOX-OE and WT plants showed similar photosynthetic activities. In contrast, under 'high light' (125 μmol photons m-2 s-1) conditions, Nt-PTOX-OE showed less PSII activity than WT while photosystem I (PSI) activity was unaffected. Nt-PTOX-OE grown under high light also failed to increase the chlorophyll a/b ratio and the maximum rate of CO2 assimilation compared to low-light grown plants, suggesting a defect in acclimation. In contrast, Nt-PTOX-OE plants showed much better germination, root length, and shoot biomass accumulation than WT when exposed to high levels of NaCl and showed better recovery and less chlorophyll bleaching after NaCl stress when grown hydroponically. Overall, our results strengthen the link between PTOX and the resistance of plants to salt stress.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Life Sciences, Sir Ernst Chain Building–Wolfson Laboratories, Imperial College London, London, United Kingdom
- *Correspondence: Niaz Ahmad, ;
| | - Muhammad Omar Khan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Ejazul Islam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Zheng-Yi Wei
- Department of Life Sciences, Sir Ernst Chain Building–Wolfson Laboratories, Imperial College London, London, United Kingdom
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Science, Changchun, China
| | - Lorna McAusland
- School of Life Sciences, University of Essex, Essex, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Essex, United Kingdom
| | - Giles N. Johnson
- School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Peter J. Nixon
- Department of Life Sciences, Sir Ernst Chain Building–Wolfson Laboratories, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Nama S, Madireddi SK, Yadav RM, Subramanyam R. Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. PHOTOSYNTHESIS RESEARCH 2019; 139:387-400. [PMID: 29982908 DOI: 10.1007/s11120-018-0551-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/30/2018] [Indexed: 05/19/2023]
Abstract
Light is essential for all photosynthetic organisms while an excess of it can lead to damage mainly the photosystems of the thylakoid membrane. In this study, we have grown Chlamydomonas reinhardtii cells in different intensities of high light to understand the photosynthetic process with reference to thylakoid membrane organization during its acclimation process. We observed, the cells acclimatized to long-term response to high light intensities of 500 and 1000 µmol m-2 s-1 with faster growth and more biomass production when compared to cells at 50 µmol m-2 s-1 light intensity. The ratio of Chl a/b was marginally decreased from the mid-log phase of growth at the high light intensity. Increased level of zeaxanthin and LHCSR3 expression was also found which is known to play a key role in non-photochemical quenching (NPQ) mechanism for photoprotection. Changes in photosynthetic parameters were observed such as increased levels of NPQ, marginal change in electron transport rate, and many other changes which demonstrate that cells were acclimatized to high light which is an adaptive mechanism. Surprisingly, PSII core protein contents have marginally reduced when compared to peripherally arranged LHCII in high light-grown cells. Further, we also observed alterations in stromal subunits of PSI and low levels of PsaG, probably due to disruption of PSI assembly and also its association with LHCI. During the process of acclimation, changes in thylakoid organization occurred in high light intensities with reduction of PSII supercomplex formation. This change may be attributed to alteration of protein-pigment complexes which are in agreement with circular dichoism spectra of high light-acclimatized cells, where decrease in the magnitude of psi-type bands indicates changes in ordered arrays of PSII-LHCII supercomplexes. These results specify that acclimation to high light stress through NPQ mechanism by expression of LHCSR3 and also observed changes in thylakoid protein profile/supercomplex formation lead to low photochemical yield and more biomass production in high light condition.
Collapse
Affiliation(s)
- Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
17
|
Zuo C, Tang Y, Fu H, Liu Y, Zhang X, Zhao B, Xu Y. Elucidation and analyses of the regulatory networks of upland and lowland ecotypes of switchgrass in response to drought and salt stresses. PLoS One 2018; 13:e0204426. [PMID: 30248119 PMCID: PMC6152977 DOI: 10.1371/journal.pone.0204426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/09/2018] [Indexed: 02/02/2023] Open
Abstract
Switchgrass is an important bioenergy crop typically grown in marginal lands, where the plants must often deal with abiotic stresses such as drought and salt. Alamo is known to be more tolerant to both stress types than Dacotah, two ecotypes of switchgrass. Understanding of their stress response and adaptation programs can have important implications to engineering more stress tolerant plants. We present here a computational study by analyzing time-course transcriptomic data of the two ecotypes to elucidate and compare their regulatory systems in response to drought and salt stresses. A total of 1,693 genes (target genes or TGs) are found to be differentially expressed and possibly regulated by 143 transcription factors (TFs) in response to drought stress together in the two ecotypes. Similarly, 1,535 TGs regulated by 110 TFs are identified to be involved in response to salt stress. Two regulatory networks are constructed to predict their regulatory relationships. In addition, a time-dependent hidden Markov model is derived for each ecotype responding to each stress type, to provide a dynamic view of how each regulatory network changes its behavior over time. A few new insights about the response mechanisms are predicted from the regulatory networks and the time-dependent models. Comparative analyses between the network models of the two ecotypes reveal key commonalities and main differences between the two regulatory systems. Overall, our results provide new information about the complex regulatory mechanisms of switchgrass responding to drought and salt stresses.
Collapse
Affiliation(s)
- Chunman Zuo
- College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Yuhong Tang
- Noble Research Institute, LLC., Ardmore, OK, United States of America
| | - Hao Fu
- North Automatic Control Technology Institute, Taiyuan, China
| | - Yiming Liu
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Bingyu Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ying Xu
- College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
18
|
Bragança I, Lemos PC, Barros P, Delerue-Matos C, Domingues VF. Phytotoxicity of pyrethroid pesticides and its metabolite towards Cucumis sativus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:685-691. [PMID: 29156286 DOI: 10.1016/j.scitotenv.2017.11.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Pyrethroid pesticides residues have been frequently detected in soils and have been recognized to contribute to soil toxicity. The phytotoxic impact of pesticides was evaluated in Cucumis sativus (C. sativus) seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of soil by the exposure to pyrethroid pesticides (cypermethrin, deltamethrin and cyhalothrin) and its metabolite phenoxybenzoic acid (3-PBA), in a concentration range between 50 and 500μgkg-1. For germination percentage, it was only observed a negative impact when seeds were exposed to the metabolite. Cypermethrin showed impact in the three studied endpoints of seed development, while deltamethrin merely affected the root length. Concerning pigments content, it can be said that chlorophylls and total carotenoids median values increased for cypermethrin and deltamethrin. This increase was more pronounced to deltamethrin in joint effect with the organic solvent dimethyl sulphoxide (DMSO). When exposed to cyhalothrin and 3-PBA, no statistically significant differences were observed for C. sativus seeds to all the assessed endpoints of seed development and the investigated pigments content. This research brings new data concerning the relative sensitivity of C. sativus seeds to pyrethroids pesticides commonly found in agricultural facilities, as well as critical understanding and development of using C. sativus for phytotoxicity assessments efforts for pesticide exposures.
Collapse
Affiliation(s)
- I Bragança
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Polytechnic Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Paulo C Lemos
- REQUIMTE/LAQV, Chemistry Dep., FCT/Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Piedade Barros
- Health and Environmental Research Center (CISA), School of Allied Health Sciences of Porto, Polytechnic Porto, Rua Valente Perfeito, 322, 4400-330 Vila Nova de Gaia, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Polytechnic Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Valentina F Domingues
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Polytechnic Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| |
Collapse
|
19
|
Ivanov AG, Velitchkova MY, Allakhverdiev SI, Huner NPA. Heat stress-induced effects of photosystem I: an overview of structural and functional responses. PHOTOSYNTHESIS RESEARCH 2017; 133:17-30. [PMID: 28391379 DOI: 10.1007/s11120-017-0383-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 05/24/2023]
Abstract
Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 21, 1113, Sofia, Bulgaria.
| | - Maya Y Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 21, 1113, Sofia, Bulgaria
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan
| | - Norman P A Huner
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, ON, N6A 5B7, Canada
| |
Collapse
|
20
|
Paredes M, Quiles MJ. Chilling stress and hydrogen peroxide accumulation in Chrysanthemum morifolium and Spathiphyllum lanceifolium. Involvement of chlororespiration. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:36-41. [PMID: 28142095 DOI: 10.1016/j.jplph.2016.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 05/11/2023]
Abstract
Plants of Chrysanthemum morifolium (sun species) and Spathiphyllum lanceifolium (shade species) were used to study the effects of chilling stems under high illumination. The stress conditions resulted in a greater accumulation of H2O2 in C. morifolium than in S. lanceifolium, and in the down-regulation of photosynthetic linear electron transport in both species. However, only a slight decrease in the maximal quantum yield of PSII was observed under unfavorable conditions in both species, suggesting that mechanisms exist in the chloroplasts that dissipate excess excitation energy and prevent damage to the photosynthetic apparatus. Additionally, changes were observed in the PGR5 polypeptide involved in cyclic electron flow around PSI and in chlororespiratory enzymes (plastidial NDH complex and PTOX). The level of PGR5 increased significantly only in chilled plants of C. morifolium, whereas the levels of the PTOX and NDH-H polypeptide of the plastidial NDH complex and the NDH activity increased significantly only in chilled plants of S. lanceifolium. These findings suggest that the cyclic electron flow involving PGR5 is more active in C. morifolium, while in S. lanceifolium, other mechanisms involving chlororespiratory enzymes are stimulated in response to chilling and high light, resulting in less H2O2 being accumulated in leaves.
Collapse
Affiliation(s)
- Miriam Paredes
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - María José Quiles
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
21
|
Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A, Nicola S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:141-8. [PMID: 27161580 DOI: 10.1016/j.plaphy.2016.04.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 05/24/2023]
Abstract
Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments.
Collapse
Affiliation(s)
- Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | | | | | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, VEGMAP, Univeristy of Turin, 10090, Italy
| |
Collapse
|
22
|
Li Q, Yao ZJ, Mi H. Alleviation of Photoinhibition by Co-ordination of Chlororespiration and Cyclic Electron Flow Mediated by NDH under Heat Stressed Condition in Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:285. [PMID: 27066014 PMCID: PMC4811903 DOI: 10.3389/fpls.2016.00285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/22/2016] [Indexed: 05/06/2023]
Abstract
With increase of temperature, F o gradually rose in both WT and the mutant inactivated in the type 1 NAD(P)H dehydrogenase (NDH), a double mutant disrupted the genes of ndhJ and ndhK (ΔndhJK) or a triple mutant disrupted the genes of ndhC, ndhJ, and ndhK (ΔndhCJK). The temperature threshold of Fo rise was about 3-5°C lower in the mutants than in WT, indicating ΔndhJK and ΔndhCJK were more sensitive to elevated temperature. The F o rise after the threshold was slower and the reached maximal level was lower in the mutants than in WT, implying the chlororespiratory pathway was suppressed when NDH was inactivated. Meanwhile, the maximum quantum efficiency of photosystem II (PS II) (F v /F m) decreased to a similar extent below 50°C in WT and mutants. However, the decline was sharper in WT when temperature rose above 55°C, indicating a down regulation of PS II photochemical activity by the chlororespiratory pathway in response to elevated temperature. On the other hand, in the presence of n-propyl gallate, an inhibitor of plastid terminal oxidase (PTOX), the less evident increase in F o while the more decrease in F v /F m in ΔndhCJK than in WT after incubation at 50°C for 6 h suggest the increased sensitivity to heat stress when both NDH and chlororespiratory pathways are suppressed. Moreover, the net photosynthetic rate and photo-efficiency decreased more significantly in ΔndhJK than in WT under the heat stressed conditions. Compared to the light-oxidation of P700, the difference in the dark-reduction of P700(+) between WT and ndhJK disruptant was much less under the heat stressed conditions, implying significantly enhanced cyclic electron flow in light and the competition for electron from PQ between PTOX and photosystem I in the dark at the elevated temperature. Heat-stimulated expression of both NdhK and PTOX significantly increased in WT, while the expression of PTOX was less in ΔndhJK than in WT. Meanwhile, the amount of active form of Rubisco activase decreased much more in the mutant. The results suggest that chlororespiration and cyclic electron flow mediated by NDH may coordinate to alleviate the over-reduction of stroma, thus to keep operation of CO2 assimilation at certain extent under heat stress condition.
Collapse
|
23
|
Feilke K, Streb P, Cornic G, Perreau F, Kruk J, Krieger-Liszkay A. Effect of Chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:219-28. [PMID: 26663146 DOI: 10.1111/tpj.13101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 05/07/2023]
Abstract
The plastid terminal oxidase PTOX is a plastohydroquinone:oxygen oxidoreductase that is important for carotenoid biosynthesis and plastid development. Its role in photosynthesis is controversially discussed. Under a number of abiotic stress conditions, the protein level of PTOX increases. PTOX is thought to act as a safety valve under high light protecting the photosynthetic apparatus against photodamage. However, transformants with high PTOX level were reported to suffer from photoinhibition. To analyze the effect of PTOX on the photosynthetic electron transport, tobacco expressing PTOX-1 from Chlamydomonas reinhardtii (Cr-PTOX1) was studied by chlorophyll fluorescence, thermoluminescence, P700 absorption kinetics and CO2 assimilation. Cr-PTOX1 was shown to compete very efficiently with the photosynthetic electron transport for PQH2 . High pressure liquid chromatography (HPLC) analysis confirmed that the PQ pool was highly oxidized in the transformant. Immunoblots showed that, in the wild-type, PTOX was associated with the thylakoid membrane only at a relatively alkaline pH value while it was detached from the membrane at neutral pH. We present a model proposing that PTOX associates with the membrane and oxidizes PQH2 only when the oxidation of PQH2 by the cytochrome b6 f complex is limiting forward electron transport due to a high proton gradient across the thylakoid membrane.
Collapse
Affiliation(s)
- Kathleen Feilke
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et de Technologie de Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91191, Gif-sur-Yvette Cedex, France
| | - Peter Streb
- Ecologie, Systématique et Evolution, Université Paris-Sud, Université Paris-Saclay, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay Cedex, France
| | - Gabriel Cornic
- Ecologie, Systématique et Evolution, Université Paris-Sud, Université Paris-Saclay, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay Cedex, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, INRA, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- Institut Jean-Pierre Bourgin, AgroParisTech, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et de Technologie de Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91191, Gif-sur-Yvette Cedex, France
| |
Collapse
|
24
|
Paredes M, Quiles MJ. The Effects of Cold Stress on Photosynthesis in Hibiscus Plants. PLoS One 2015; 10:e0137472. [PMID: 26360248 PMCID: PMC4567064 DOI: 10.1371/journal.pone.0137472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
The present work studies the effects of cold on photosynthesis, as well as the involvement in the chilling stress of chlororespiratory enzymes and ferredoxin-mediated cyclic electron flow, in illuminated plants of Hibiscus rosa-sinensis. Plants were sensitive to cold stress, as indicated by a reduction in the photochemistry efficiency of PSII and in the capacity for electron transport. However, the susceptibility of leaves to cold may be modified by root temperature. When the stem, but not roots, was chilled, the quantum yield of PSII and the relative electron transport rates were much lower than when the whole plant, root and stem, was chilled at 10°C. Additionally, when the whole plant was cooled, both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of the cyclic electron flow around PSI, increased, suggesting that in these conditions cyclic electron flow helps protect photosystems. However, when the stem, but not the root, was cooled cyclic electron flow did not increase and PSII was damaged as a result of insufficient dissipation of the excess light energy. In contrast, the chlororespiratory enzymes (NDH complex and PTOX) remained similar to control when the whole plant was cooled, but increased when only the stem was cooled, suggesting the involvement of chlororespiration in the response to chilling stress when other pathways, such as cyclic electron flow around PSI, are insufficient to protect PSII.
Collapse
Affiliation(s)
- Miriam Paredes
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María José Quiles
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
25
|
González-Naranjo V, Boltes K, de Bustamante I, Palacios-Diaz P. Environmental risk of combined emerging pollutants in terrestrial environments: chlorophyll a fluorescence analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6920-6931. [PMID: 25471719 DOI: 10.1007/s11356-014-3899-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The risk assessment in terrestrial environments has been scarcely studied for mixtures of organic contaminants. To estimate toxicity due to these compounds, an ecotoxicological test may be done with the appropriate organism and biomarker. Photosynthesis is principally performed at photosystem II, and its efficiency is affected by any environmental stress. Consequently, the measure of this efficiency may be a good indicator of toxicity if different parameters are employed, e.g., the quantum efficiency of photosystem II and the photochemical quenching coefficient. We did a series of assays to determine the toxicity of two organic contaminants, ibuprofen and perfluorooctanoic acid, using a higher plant (Sorghum bicolor). The results showed more toxicity for the perfluorinated compound and greater sensibility for the quantum efficiency of photosystem II. Regarding the binary combination, three methods were applied to calculate EC50: combination index, concentration addition, and independent action. Synergistic behavior is the principal toxicological profile for this mix. Therefore, the combination index, which considers interactions among chemicals, gave the best estimation to determine risk indices. We conclude that the inhibition of photosynthesis efficiency can be a useful tool to determine the toxicity of the mixtures of organic pollutants and to estimate ecological risks in terrestrial environments.
Collapse
Affiliation(s)
- Víctor González-Naranjo
- Department of Chemical Engineering, University of Alcalá, 28771, Alcalá de Henares, Madrid, Spain,
| | | | | | | |
Collapse
|
26
|
Segura MV, Quiles MJ. Involvement of chlororespiration in chilling stress in the tropical species Spathiphyllum wallisii. PLANT, CELL & ENVIRONMENT 2015; 38:525-33. [PMID: 25041194 DOI: 10.1111/pce.12406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/23/2014] [Accepted: 07/07/2014] [Indexed: 05/06/2023]
Abstract
Spathiphyllum wallisii plants were used to study the effect of chilling stress under high illumination on photosynthesis and chlororespiration. Leaves showed different responses that depended on root temperature. When stem, but not root, was chilled, photosystem II (PSII) was strongly photoinhibited. However, when the whole plant was chilled, the maximal quantum yield of PSII decreased only slightly below the normal values and cyclic electron transport was stimulated. Changes were also observed in the chlororespiration enzymes and PGR5. In whole plants chilled under high illumination, the amounts of NADH dehydrogenase (NDH) complex and plastid terminal oxidase (PTOX) remained similar to control and increased when only stem was chilled. In contrast, the amount of PGR5 polypeptide was higher in plants when both root and stem were chilled than in plants in which only stem was chilled. The results indicated that the contribution of chlororespiration to regulating photosynthetic electron flow is not relevant when the whole plant is chilled under high light, and that another pathway, such as cyclic electron flow involving PGR5 polypeptide, may be more important. However, when PSII activity is strongly photoinhibited in plants in which only stem is chilled, chlororespiration, together with other routes of electron input to the electron transfer chain, is probably essential.
Collapse
Affiliation(s)
- María V Segura
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, E-30100, Spain
| | | |
Collapse
|
27
|
Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:49-74. [PMID: 25580838 DOI: 10.1146/annurev-arplant-043014-114744] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plastids have retained from their cyanobacterial ancestor a fragment of the respiratory electron chain comprising an NADPH dehydrogenase and a diiron oxidase, which sustain the so-called chlororespiration pathway. Despite its very low turnover rates compared with photosynthetic electron flow, knocking out the plastid terminal oxidase (PTOX) in plants or microalgae leads to severe phenotypes that encompass developmental and growth defects together with increased photosensitivity. On the basis of a phylogenetic and structural analysis of the enzyme, we discuss its physiological contribution to chloroplast metabolism, with an emphasis on its critical function in setting the redox poise of the chloroplast stroma in darkness. The emerging picture of PTOX is that of an enzyme at the crossroads of a variety of metabolic processes, such as, among others, the regulation of cyclic electron transfer and carotenoid biosynthesis, which have in common their dependence on the redox state of the plastoquinone pool, set largely by the activity of PTOX in darkness.
Collapse
Affiliation(s)
- Wojciech J Nawrocki
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, UMR 7141, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie
| | | | | | | | | |
Collapse
|
28
|
Soto A, Hernández L, Quiles MJ. High root temperature affects the tolerance to high light intensity in Spathiphyllum plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:84-9. [PMID: 25219310 DOI: 10.1016/j.plantsci.2014.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 05/06/2023]
Abstract
Spathiphyllum wallisii plants were sensitive to temperature stress under high illumination, although the susceptibility of leaves to stress may be modified by root temperature. Leaves showed higher tolerance to high illumination, in both cold and heat conditions, when the roots were cooled, probably because the chloroplast were protected by excess excitation energy dissipation mechanisms such as cyclic electron transport. When the roots were cooled both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of cyclic electron flow around PSI, increased. However, when the stems were heated or cooled under high illumination, but the roots were heated, the quantum yield of PSII decreased considerably and neither the electron donation activity by NADPH and ferredoxin to plastoquinone nor the amount of PGR5 polypeptide increased. In such conditions, the cyclic electron flow cannot be enhanced by high light and PSII is damaged as a result of insufficient dissipation of excess light energy. Additionally, the damage to PSII induced the increase in both chlororespiratory enzymes, NDH complex and PTOX.
Collapse
Affiliation(s)
- Adriana Soto
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Laura Hernández
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - María José Quiles
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
29
|
Bürling K, Ducruet JM, Cornic G, Hunsche M, Cerovic ZG. Assessment of photosystem II thermoluminescence as a tool to investigate the effects of dehydration and rehydration on the cyclic/chlororespiratory electron pathways in wheat and barley leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:116-123. [PMID: 24767121 DOI: 10.1016/j.plantsci.2014.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Thermoluminescence emission from wheat leaves was recorded under various controlled drought stress conditions: (i) fast dehydration (few hours) of excised leaves in the dark (ii) slow dehydration (several days) obtained by withholding watering of plants under a day/night cycle (iii) overnight rehydration of the slowly dehydrated plants at a stage of severe dessication. In fast dehydrated leaves, the AG band intensity was unchanged but its position was shifted to lower temperatures, indicating an activation of cyclic and chlororespiratory pathways in darkness, without any increase of their overall electron transfer capacity. By contrast, after a slow dehydration the AG intensity was strongly increased whereas its position was almost unchanged, indicating respectively that the capacity of cyclic pathways was enhanced but that they remained inactivated in darkness. Under more severe dehydration, the AG band almost disappeared. Rewatering caused its rapid bounce significantly above the control level. No significant differences in AG emission could be found between the two drought-sensitive and drought-tolerant wheat cultivars. The afterglow thermoluminescence emission in leaves provides an additional tool to follow the increased capacity and activation of cyclic electron flow around PSI in leaves during mild, severe dehydration and after rehydration.
Collapse
Affiliation(s)
- Kathrin Bürling
- Chamber of Agriculture of the State of North Rhine-Westphalia, Siebengebirgsstraße 200, D-53229 Bonn, Germany; University of Bonn, Institute of Crop Science and Resource Conservation - Horticultural Science, Auf dem Huegel 6, D-53121 Bonn, Germany
| | - Jean-Marc Ducruet
- CNRS, Laboratoire Écologie, Systématique et Évolution, UMR 8079, Bât. 362, Orsay, Université Paris-Sud, 91405 Orsay, AgroParisTech, Paris 75231, France.
| | - Gabriel Cornic
- CNRS, Laboratoire Écologie, Systématique et Évolution, UMR 8079, Bât. 362, Orsay, Université Paris-Sud, 91405 Orsay, AgroParisTech, Paris 75231, France
| | - Mauricio Hunsche
- University of Bonn, Institute of Crop Science and Resource Conservation - Horticultural Science, Auf dem Huegel 6, D-53121 Bonn, Germany
| | - Zoran G Cerovic
- CNRS, Laboratoire Écologie, Systématique et Évolution, UMR 8079, Bât. 362, Orsay, Université Paris-Sud, 91405 Orsay, AgroParisTech, Paris 75231, France
| |
Collapse
|
30
|
Van Den Bekerom RJM, Dix PJ, Diekmann K, Barth S. Variations in efficiency of plastidial RNA editing within ndh transcripts of perennial ryegrass ( Lolium perenne) are not linked to differences in drought tolerance. AOB PLANTS 2013; 5:plt035. [PMCID: PMC4455615 DOI: 10.1093/aobpla/plt035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/30/2013] [Indexed: 05/30/2023]
Abstract
Projected climate change is likely to subject key temperate grassland species, such as perennial ryegrass (Lolium perenne) to drought stress. Previous studies have shown that the NADH dehydrogenase complex (NDH) is involved with countering oxidative stress during environmental stresses like drought. We studied RNA editing within plastidial transcripts of the NDH complex in relation to the drought response of several accessions of perennial ryegrass. We found dramatic and reproducible differences in RNA editing efficiency between accessions, but efficiency was not influenced by imposition of drought stress, and a direct relationship between editing behaviour and drought response was not detected. Maintenance of healthy grasslands is essential for efficient livestock production, yet projected climate change is likely to place a heavy drought stress burden on key grassland species, such as perennial ryegrass (Lolium perenne). It is therefore important to gather an in-depth knowledge of the underlying plant response to this stress. The present study is focused on RNA editing (post-transcriptional nucleotide modifications resulting in altered transcripts) within plastidial transcripts of the NADH:ubiquinone oxidoreductase (NDH) complex (NADH dehydrogenase complex) in relation to the drought response of several accessions of perennial ryegrass. Previous studies have shown that the NDH complex is involved in countering oxidative stress during environmental stresses like drought. Owing to the nature of RNA editing within this complex, the RNA editing machinery could play a potential role in regulating the activity of the NDH complex. The investigation revealed dramatic and reproducible differences in RNA editing efficiency between accessions, but efficiency was not influenced by imposition of drought stress, and a direct relationship between editing behaviour and drought response was not detected.
Collapse
Affiliation(s)
- Rob J. M. Van Den Bekerom
- Teagasc Crops, Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
- National University of Maynooth, Maynooth, Co. Kildare, Ireland
| | - Philip J. Dix
- National University of Maynooth, Maynooth, Co. Kildare, Ireland
| | - Kerstin Diekmann
- Teagasc Crops, Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| | - Susanne Barth
- Teagasc Crops, Environment and Land Use Programme, Oak Park Crops Research Centre, Carlow, Ireland
| |
Collapse
|
31
|
Laureau C, De Paepe R, Latouche G, Moreno-Chacón M, Finazzi G, Kuntz M, Cornic G, Streb P. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. PLANT, CELL & ENVIRONMENT 2013; 36:1296-310. [PMID: 23301628 DOI: 10.1111/pce.12059] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/18/2012] [Indexed: 05/03/2023]
Abstract
Ranunculus glacialis leaves were tested for their plastid terminal oxidase (PTOX) content and electron flow to photorespiration and to alternative acceptors. In shade-leaves, the PTOX and NAD(P)H dehydrogenase (NDH) content were markedly lower than in sun-leaves. Carbon assimilation/light and Ci response curves were not different in sun- and shade-leaves, but photosynthetic capacity was the highest in sun-leaves. Based on calculation of the apparent specificity factor of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), the magnitude of alternative electron flow unrelated to carboxylation and oxygenation of Rubisco correlated to the PTOX content in sun-, shade- and growth chamber-leaves. Similarly, fluorescence induction kinetics indicated more complete and more rapid reoxidation of the plastoquinone (PQ) pool in sun- than in shade-leaves. Blocking electron flow to assimilation, photorespiration and the Mehler reaction with appropriate inhibitors showed that sun-leaves were able to maintain higher electron flow and PQ oxidation. The results suggest that PTOX can act as a safety valve in R. glacialis leaves under conditions where incident photon flux density (PFD) exceeds the growth PFD and under conditions where the plastoquinone pool is highly reduced. Such conditions can occur frequently in alpine climates due to rapid light and temperature changes.
Collapse
Affiliation(s)
- Constance Laureau
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405 Orsay cedex, France
| | - Rosine De Paepe
- Institut de Biologie des Plantes, Université Paris-Sud 11, UMR-CNRS 8618, Bâtiment 630, 91405, Orsay cedex, France
| | - Gwendal Latouche
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Maria Moreno-Chacón
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Giovanni Finazzi
- Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, Centre National Recherche Scientifique, F-38054, Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France
- Université Grenoble 1, F-38041, Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054, Grenoble, France
| | - Marcel Kuntz
- Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, Centre National Recherche Scientifique, F-38054, Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France
- Université Grenoble 1, F-38041, Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054, Grenoble, France
| | - Gabriel Cornic
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Peter Streb
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| |
Collapse
|
32
|
Muñoz R, Quiles MJ. Water deficit and heat affect the tolerance to high illumination in hibiscus plants. Int J Mol Sci 2013; 14:5432-44. [PMID: 23470922 PMCID: PMC3634501 DOI: 10.3390/ijms14035432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/16/2022] Open
Abstract
This work studies the effects of water deficit and heat, as well as the involvement of chlororespiration and the ferredoxin-mediated cyclic pathway, on the tolerance of photosynthesis to high light intensity in Hibiscus rosa-sinensis plants. Drought and heat resulted in the down–regulation of photosynthetic linear electron transport in the leaves, although only a slight decrease in variable fluorescence (Fv)/maximal fluorescence (Fm) was observed, indicating that the chloroplast was protected by mechanisms that dissipate excess excitation energy to prevent damage to the photosynthetic apparatus. The incubation of leaves from unstressed plants under high light intensity resulted in an increase of the activity of electron donation by nicotinamide adenine dinucleotide phosphate (NADPH) and ferredoxin to plastoquinone, but no increase was observed in plants exposed to water deficit, suggesting that cyclic electron transport was stimulated by high light only in control plants. In contrast, the activities of the chlororespiration enzymes (NADH dehydrogenase (NDH) complex and plastid terminal oxidase (PTOX)) increased after incubation under high light intensity in leaves of the water deficit plants, but not in control plants, suggesting that chlororespiration was stimulated in stressed plants. The results indicate that the relative importance of chlororespiration and the cyclic electron pathway in the tolerance of photosynthesis to high illumination differs under stress conditions. When plants were not subjected to stress, the contribution of chlororespiration to photosynthetic electron flow regulation was not relevant, and another pathway, such as the ferredoxin-mediated cyclic pathway, was more important. However, when plants were subjected to water deficit and heat, chlororespiration was probably essential.
Collapse
Affiliation(s)
- Romualdo Muñoz
- Department of Plant Biology, University of Murcia, 30100 Espinardo Murcia, Spain.
| | | |
Collapse
|
33
|
Paredes M, Quiles MJ. Stimulation of chlororespiration by drought under heat and high illumination in Rosa meillandina. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:165-71. [PMID: 23122789 DOI: 10.1016/j.jplph.2012.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 05/06/2023]
Abstract
Rosa meillandina plants were used to study the effects of water deficit on photosynthesis and chlororespiration. Plants showed high tolerance to heat and high illumination in controlled conditions that ensured that there was no water deficit. However, when heat and high illumination were accompanied by low watering photosynthetic linear electron transport was down regulated, as indicated by the reduced photochemistry efficiency of PS II, which was associated with an increase in the non-photochemical quenching of fluorescence. In addition to the effects on the photosynthetic activity, changes were also observed in the plastidial NDH complex, PTOX and PGR5. In plants exposed to heat and high illumination without water deficit, the activities and amounts of the chlororespiration enzymes, NDH complex and PTOX, remained similar to the control and only increased in response to drought, high light and heat stress, applied together. In contrast, both the PS I activity and the amount of PGR5 polypeptide were higher in plants exposed to heat and high illumination without water deficit than in those with water deficit. The results indicated that in the conditions studied, the contribution of chlororespiration to regulating photosynthetic electron flow is not relevant when there is no water deficit, and another pathway, such as cyclic electron flow involving PGR5 polypeptide, may be more important. However, when PS II activity is inhibited by drought, chlororespiration, together with other routes of electron input to the electron transfer chain, is probably essential.
Collapse
Affiliation(s)
- Miriam Paredes
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | | |
Collapse
|
34
|
Einali A, Shariati M, Sato F, Endo T. Cyclic electron transport around photosystem I and its relationship to non-photochemical quenching in the unicellular green alga Dunaliella salina under nitrogen deficiency. JOURNAL OF PLANT RESEARCH 2013; 126:179-186. [PMID: 22890410 DOI: 10.1007/s10265-012-0512-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
Electron transport in photosystem II (PSII) and photosystem I (PSI) was estimated in terms of chlorophyll fluorescence and changes in P700 redox, respectively, in the unicellular green alga Dunaliella salina in the presence or absence of a nitrogen source in the culture medium. In a nitrogen-containing medium, the quantum yield of PSII (Φ(II)) and that in PSI (Φ(I)) were at the same level in low light, but cyclic electron transport around photosystem I (CET-PSI) was induced under high light as estimated from an increase in Φ(I)/Φ(II). High light might further enhance the rate of electron transport in PSI by inducing the state 2 transition, in which the distribution of light energy is shifted to PSI at the expense of PSII. Nitrogen deficiency resulted in a decrease in Φ(II) and an increase in Φ(I). As a consequence, the rate of CET-PSI was expected to increase. The high CET-PSI under N deficiency was probably associated with a high level of energy quenching (qE) formation in PSII.
Collapse
Affiliation(s)
- Alireza Einali
- Department of Biology, Faculty of Science, University of Isfahan, Hezar Jarib St., Isfahan, Iran
| | | | | | | |
Collapse
|
35
|
Peeva VN, Tóth SZ, Cornic G, Ducruet JM. Thermoluminescence and P700 redox kinetics as complementary tools to investigate the cyclic/chlororespiratory electron pathways in stress conditions in barley leaves. PHYSIOLOGIA PLANTARUM 2012; 144:83-97. [PMID: 21910736 DOI: 10.1111/j.1399-3054.2011.01519.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cyclic electron flow around photosystem I drives additional proton pumping into the thylakoid lumen, which enhances the protective non-photochemical quenching and increases ATP synthesis. It involves several pathways activated independently. In whole barley leaves, P700 oxidation under far-red illumination and subsequent P700(+) dark reduction kinetics provide a major probe of the activation of cyclic pathways. Two 'intermediate' and 'slow' exponential reduction phases are always observed and they become faster after high light illumination, but dark inactivation of the Benson-Calvin cycle causes the emergence of both a transient in the P700 oxidation and a 'fast' phase in the P700(+) reduction. We investigate here the afterglow (AG) thermoluminescence emission as another tool to detect the activation of cyclic electron pathways from stroma reductants to the acceptor side of photosystem II. This transfer is activated by warming, yielding an AG band at about 45°C. However, treatments that accelerate the 'intermediate' and 'slow' P700(+) reduction phases (brief anoxia, hexose infiltration, fast dehydration of excised leaves) also produced a downshift of this AG band. This pathway ascribable to NADPH dehydrogenase (NDH) would be triggered by a deficit in ATP, while the 'fast' reduction phase corresponding to the ferredoxin plastoquinone reductase pathway is triggered by an overreduction of the photosystem I acceptor pool and is undetected in thermoluminescence. Contrastingly, slow dehydration of unwatered plants did not cause faster reduction of P700(+) nor temperature downshift of the AG band, that is no induction of the NDH pathway, whereas an increased intensity of the AG band indicated a strong NADPH + ATP assimilatory potential.
Collapse
Affiliation(s)
- Violeta N Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, G Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | | | | | | |
Collapse
|
36
|
Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 2011; 287:5833-47. [PMID: 22205699 DOI: 10.1074/jbc.m111.304279] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report on the changes the photosynthetic apparatus of Chlamydomonas reinhardtii undergoes upon acclimation to different light intensity. When grown in high light, cells had a faster growth rate and higher biomass production compared with low and control light conditions. However, cells acclimated to low light intensity are indeed able to produce more biomass per photon available as compared with high light-acclimated cells, which dissipate as heat a large part of light absorbed, thus reducing their photosynthetic efficiency. This dissipative state is strictly dependent on the accumulation of LhcSR3, a protein related to light-harvesting complexes, responsible for nonphotochemical quenching in microalgae. Other changes induced in the composition of the photosynthetic apparatus upon high light acclimation consist of an increase of carotenoid content on a chlorophyll basis, particularly zeaxanthin, and a major down-regulation of light absorption capacity by decreasing the chlorophyll content per cell. Surprisingly, the antenna size of both photosystem I and II is not modulated by acclimation; rather, the regulation affects the PSI/PSII ratio. Major effects of the acclimation to low light consist of increased activity of state 1 and 2 transitions and increased contributions of cyclic electron flow.
Collapse
Affiliation(s)
- Giulia Bonente
- Dipartimento di Biotecnologie, Università di Verona, Ca'Vignal 1, Strada le Grazie 15, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
37
|
Sun X, Wen T. Physiological roles of plastid terminal oxidase in plant stress responses. J Biosci 2011; 36:951-6. [DOI: 10.1007/s12038-011-9161-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Johnson GN. Reprint of: physiology of PSI cyclic electron transport in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:906-11. [PMID: 21620796 DOI: 10.1016/j.bbabio.2011.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/12/2010] [Accepted: 11/13/2010] [Indexed: 11/17/2022]
Abstract
Having long been debated, it is only in the last few years that a concensus has emerged that the cyclic flow of electrons around Photosystem I plays an important and general role in the photosynthesis of higher plants. Two major pathways of cyclic flow have been identified, involving either a complex termed NDH or mediated via a pathway involving a protein PGR5 and two functions have been described-to generate ATP and to provide a pH gradient inducing non-photochemical quenching. The best evidence for the occurrence of the two pathways comes from measurements under stress conditions-high light, drought and extreme temperatures. In this review, the possible relative functions and importance of the two pathways is discussed as well as evidence as to how the flow through these pathways is regulated. Our growing knowledge of the proteins involved in cyclic electron flow will, in the future, enable us to understand better the occurrence and diversity of cyclic electron transport pathways. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
39
|
|
40
|
Physiology of PSI cyclic electron transport in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:384-9. [PMID: 21118673 DOI: 10.1016/j.bbabio.2010.11.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/12/2010] [Accepted: 11/13/2010] [Indexed: 11/21/2022]
Abstract
Having long been debated, it is only in the last few years that a concensus has emerged that the cyclic flow of electrons around Photosystem I plays an important and general role in the photosynthesis of higher plants. Two major pathways of cyclic flow have been identified, involving either a complex termed NDH or mediated via a pathway involving a protein PGR5 and two functions have been described-to generate ATP and to provide a pH gradient inducing non-photochemical quenching. The best evidence for the occurrence of the two pathways comes from measurements under stress conditions-high light, drought and extreme temperatures. In this review, the possible relative functions and importance of the two pathways is discussed as well as evidence as to how the flow through these pathways is regulated. Our growing knowledge of the proteins involved in cyclic electron flow will, in the future, enable us to understand better the occurrence and diversity of cyclic electron transport pathways. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|