1
|
Duan W, Wang S, Zhang H, Xie B, Zhang L. Plant growth and nitrate absorption and assimilation of two sweet potato cultivars with different N tolerances in response to nitrate supply. Sci Rep 2024; 14:21286. [PMID: 39266741 PMCID: PMC11393465 DOI: 10.1038/s41598-024-72422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
In sweet potato, rational nitrogen (N) assimilation and distribution are conducive to inhibiting vine overgrowth. Nitrate (NO3-) is the main N form absorbed by roots, and cultivar is an important factor affecting N utilization. Herein, a hydroponic experiment was conducted that included four NO3- concentrations of 0 (N0), 4 (N1), 8 (N2) and 16 (N3) mmol L-1 with two cultivars of Jishu26 (J26, N-sensitive) and Xushu32 (X32, N-tolerant). For J26, with increasing NO3- concentrations, the root length and root surface area significantly decreased. However, no significant differences were observed in these parameters for X32. Higher NO3- concentrations upregulated the expression levels of the genes that encode nitrate reductase (NR2), nitrite reductase (NiR2) and nitrate transporter (NRT1.1) in roots for both cultivars. The trends in the activities of NR and NiR were subject to regulation of NR2 and NiR2 transcription, respectively. For both cultivars, N2 increased the N accumulated in leaves, growth points and roots. For J26, N3 further increased the N accumulation in these organs. Under higher NO3- nutrition, compared with X32, J26 exhibited higher expression levels of the NiR2, NR2 and NRT1.1 genes, a higher influx NO3- rate in roots, and higher activities of NR and NiR in leaves and roots. Conclusively, the regulated effects of NO3- supplies on root growth and NO3- utilization were more significant for J26. Under high NO3- conditions, J26 exhibited higher capacities of NO3- absorption and distributed more N in leaves and in growth points, which may contribute to higher growth potential in shoots and more easily cause vine overgrowth.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Shasha Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China.
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Liming Zhang
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
- Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
2
|
Differential root response of maize inbred seedlings to root growth restriction and phosphorus availability. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Luo Z, Niu J, Zhang L, Chen X, Zhang W, Xie B, Du J, Zhu Z, Wu S, Li X. Roots-Enhanced Preferential Flows in Deciduous and Coniferous Forest Soils Revealed by Dual-Tracer Experiments. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:136-146. [PMID: 30640350 DOI: 10.2134/jeq2018.03.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Macropores formed by roots are crucial channels for preferential flows in forest soils that are largely responsible for water percolation and solute leaching. Using dual-tracer experiments (Brilliant Blue FCF and bromide [Br]), this study investigated the preferential flows of water and solutes in a deciduous forest dominated by Bl. and a coniferous forest mainly planted with (L.) Franco. Dye-stained patterns and concentrations of Brilliant Blue and Br were obtained in vertical soil profiles (0-30 cm), whereas stained and unstained roots were collected and analyzed in horizontal soil profiles to a 30-cm soil depth. Brilliant Blue and Br were mainly accumulated in the 0- to 20-cm soil depth, which had greater total root length density than the 20- to 30-cm soil depth ( < 0.05). Only part of the roots facilitated the preferential flows, with finer roots (i.e., diameter <1 mm) contributing the most. More intriguingly, the coniferous forest soil had a greater degree of preferential flows and greater tracer concentrations at deeper soil depth than the deciduous forest soil, suggesting the importance of tree species and forest composition on water and solute transport in forest ecosystems.
Collapse
|
4
|
He X, Ma H, Zhao X, Nie S, Li Y, Zhang Z, Shen Y, Chen Q, Lu Y, Lan H, Zhou S, Gao S, Pan G, Lin H. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. PLoS One 2016; 11:e0151697. [PMID: 26990640 PMCID: PMC4798287 DOI: 10.1371/journal.pone.0151697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs) related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach, we identified DEGs related to root development that also participated in the N-deficiency response in maize. These findings will increase our understanding of the molecular regulatory networks controlling root development and N-stress responses.
Collapse
Affiliation(s)
- Xiujing He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haixia Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Xiongwei Zhao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shujun Nie
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yuhua Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhiming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qi Chen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Hai Lan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shufeng Zhou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
- * E-mail:
| |
Collapse
|
5
|
Liu H, Tang C, Li C. The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency. AOB PLANTS 2016; 8:plw058. [PMID: 27519912 PMCID: PMC5018397 DOI: 10.1093/aobpla/plw058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/04/2016] [Indexed: 05/13/2023]
Abstract
Root morphological/physiological modifications are important for phosphorus (P) acquisition of plants under P deficiency, but strategies differ among plant species. Detailed studies on the response of maize roots to P deficiency are limited. Nitrogen (N) form influences root morphology/physiology, and thus may influence root responses to P deficiency. This work investigated adaptive mechanisms of maize roots to low P by comparison with white lupin and faba bean supplied with two N forms. Plants were grown for 7-16 days in hydroponics with sufficient (250 µmol L(-1)) and deficient P supply (1 µmol L(-1)) under supply of NH4NO3 or Ca(NO3)2 Plant growth and P uptake were measured, and release of protons and organic acid anions, and acid phosphatase activity in the root were monitored. The results showed that P deficiency significantly decreased shoot growth while increased root growth and total root length of maize and faba bean, but not white lupin. It enhanced the release of protons and organic acid anions, and acid phosphatase activity, from the roots of both legumes but not maize. Compared with Ca(NO3)2, NH4NO3 dramatically increased proton release by roots but did not alter root morphology or physiology of the three species in response to low P. It is concluded that the N form did not fundamentally change root morphological/physiological responses of the three species to P deficiency. Morphological variation in maize and morpho-physiological modifications in white lupin and faba bean were the main adaptive strategies to P deficiency.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia
| | - Chunjian Li
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Han H, Sun X, Xie Y, Feng J, Zhang S. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis). BMC PLANT BIOLOGY 2014; 14:305. [PMID: 25425065 PMCID: PMC4253636 DOI: 10.1186/s12870-014-0305-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/27/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. RESULTS We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥ 2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. CONCLUSIONS These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined use of two important technologies as a powerful approach to advance research on non-model, but otherwise important, larch species.
Collapse
Affiliation(s)
- Hua Han
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Xiaomei Sun
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Yunhui Xie
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Jian Feng
- />Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Chongshan Rd, Liaoning, 110032 P. R. China
| | - Shougong Zhang
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| |
Collapse
|
7
|
Yu P, White PJ, Hochholdinger F, Li C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. PLANTA 2014; 240:667-78. [PMID: 25143250 DOI: 10.1007/s00425-014-2150-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 05/03/2023]
Abstract
Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms coordinating these responses have been investigated particularly in Arabidopsis, a model dicotyledonous plant. Recently, progress has been made in describing the phenotypic plasticity of root architecture in maize, a monocotyledonous crop. This article reviews aspects of phenotypic plasticity of maize root system architecture, with special emphasis on describing (1) the development of its complex root system; (2) phenotypic responses in root system architecture to heterogeneous N availability; (3) the importance of phenotypic plasticity for N acquisition; (4) different regulation of root growth and nutrients uptake by shoot; and (5) root traits in maize breeding. This knowledge will inform breeding strategies for root traits enabling more efficient acquisition of soil resources and synchronizing crop growth demand, root resource acquisition and fertilizer application during crop growing season, thereby maximizing crop yields and nutrient-use efficiency and minimizing environmental pollution.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Yu P, Li X, Yuan L, Li C. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. PHYSIOLOGIA PLANTARUM 2014; 150:133-44. [PMID: 23724916 DOI: 10.1111/ppl.12075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/20/2013] [Indexed: 05/03/2023]
Abstract
Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | | | | | | |
Collapse
|
9
|
Nouri MZ, Hiraga S, Yanagawa Y, Sunohara Y, Matsumoto H, Komatsu S. Characterization of calnexin in soybean roots and hypocotyls under osmotic stress. PHYTOCHEMISTRY 2012; 74:20-9. [PMID: 22169501 DOI: 10.1016/j.phytochem.2011.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/27/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
Calnexin is an endoplasmic reticulum-localized molecular chaperone protein which is involved in folding and quality control of proteins. To evaluate the expression of calnexin in soybean seedlings under osmotic stress, immunoblot analysis was performed using a total membrane protein fraction. Calnexin constantly accumulated at an early growth stage of soybean under normal growth conditions. Expression of this protein decreased in 14-day-old soybean roots when treated with 10% polyethylene glycol for 2 days. Other abiotic stresses such as drought, salinity, cold as well as abscisic acid treatment, similarly reduced accumulation of calnexin and this reduction was correlated with reduction in root length in soybean seedlings under abiotic stresses. When compared between soybean and rice, calnexin expression was not changed in rice under abiotic stresses. Using Flag-tagged calnexin, a 70 kDa heat shock cognate protein was identified as an interacting protein. These results suggest that osmotic or other abiotic stresses highly reduce accumulation of the calnexin protein in developing soybean roots. It is also suggested that calnexin interacts with a 70 kDa heat shock cognate protein and probably functions as molecular chaperone in soybean.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|