1
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
2
|
Vashisth V, Sharma G, Giri J, Sharma AK, Tyagi AK. Rice A20/AN1 protein, OsSAP10, confers water-deficit stress tolerance via proteasome pathway and positive regulation of ABA signaling in Arabidopsis. PLANT CELL REPORTS 2024; 43:215. [PMID: 39138747 DOI: 10.1007/s00299-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood. To improve our understanding of SAP gene functions, OsSAP10, a stress-inducible rice gene, was chosen for the functional and molecular characterization. To elucidate its role in water-deficit stress (WDS) response, we aimed to functionally characterize its roles in transgenic Arabidopsis, overexpressing OsSAP10. OsSAP10 transgenics showed improved tolerance to water-deficit stress at seed germination, seedling and mature plant stages. At physiological and biochemical levels, OsSAP10 transgenics exhibited a higher survival rate, increased relative water content, high osmolyte accumulation (proline and soluble sugar), reduced water loss, low ROS production, low MDA content and protected yield loss under WDS relative to wild type (WT). Moreover, transgenics were hypersensitive to ABA treatment with enhanced ABA signaling and stress-responsive genes expression. The protein-protein interaction studies revealed that OsSAP10 interacts with proteins involved in proteasomal pathway, such as OsRAD23, polyubiquitin and with negative and positive regulators of stress signaling, i.e., OsMBP1.2, OsDRIP2, OsSCP and OsAMTR1. The A20 domain was found to be crucial for most interactions but insufficient for all interactions tested. Overall, our investigations suggest that OsSAP10 is an important candidate for improving water-deficit stress tolerance in plants, and positively regulates ABA and WDS signaling via protein-protein interactions and modulation of endogenous genes expression in ABA-dependent manner.
Collapse
Affiliation(s)
- Vishal Vashisth
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gunjan Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
3
|
Zhang C, Zhang X, Wu Y, Li X, Du C, Di N, Chen Y. Genome-wide identification and evolution of the SAP gene family in sunflower ( Helianthus annuus L.) and expression analysis under salt and drought stress. PeerJ 2024; 12:e17808. [PMID: 39099650 PMCID: PMC11296301 DOI: 10.7717/peerj.17808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Stress-associated proteins (SAPs) are known to play an important role in plant responses to abiotic stresses. This study systematically identified members of the sunflower SAP gene family using sunflower genome data. The genes of the sunflower SAP gene family were analyzed using bioinformatic methods, and gene expression was assessed through fluorescence quantification (qRT-PCR) under salt and drought stress. A comprehensive analysis was also performed on the number, structure, collinearity, and phylogeny of seven Compositae species and eight other plant SAP gene families. The sunflower genome was found to have 27 SAP genes, distributed across 14 chromosomes. The evolutionary analysis revealed that the SAP family genes could be divided into three subgroups. Notably, the annuus variety exhibited amplification of the SAP gene for Group 3. Among the Compositae species, C. morifolium demonstrated the highest number of collinearity gene pairs and the closest distance on the phylogenetic tree, suggesting relative conservation in the evolutionary process. An analysis of gene structure revealed that Group 1 exhibited the most complex gene structure, while the majority of HaSAP genes in Group 2 and Group 3 lacked introns. The promoter analysis revealed the presence of cis-acting elements related to ABA, indicating their involvement in stress responses. The expression analysis indicated the potential involvement of 10 genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) in sunflower salt tolerance. The expression of these 10 genes were then examined under salt and drought stress using qRT-PCR, and the tissue-specific expression patterns of these 10 genes were also analyzed. HaSAP1, HaSAP21, and HaSAP23 exhibited consistent expression patterns under both salt and drought stress, indicating these genes play a role in both salt tolerance and drought resistance in sunflower. The findings of this study highlight the significant contribution of the SAP gene family to salt tolerance and drought resistance in sunflower.
Collapse
Affiliation(s)
| | - Xiaohong Zhang
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | - Yue Wu
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | | | - Chao Du
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | - Na Di
- Hetao College, Bayannur, China
| | | |
Collapse
|
4
|
Naithani S, Mohanty B, Elser J, D’Eustachio P, Jaiswal P. Biocuration of a Transcription Factors Network Involved in Submergence Tolerance during Seed Germination and Coleoptile Elongation in Rice ( Oryza sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:2146. [PMID: 37299125 PMCID: PMC10255735 DOI: 10.3390/plants12112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Modeling biological processes and genetic-regulatory networks using in silico approaches provides a valuable framework for understanding how genes and associated allelic and genotypic differences result in specific traits. Submergence tolerance is a significant agronomic trait in rice; however, the gene-gene interactions linked with this polygenic trait remain largely unknown. In this study, we constructed a network of 57 transcription factors involved in seed germination and coleoptile elongation under submergence. The gene-gene interactions were based on the co-expression profiles of genes and the presence of transcription factor binding sites in the promoter region of target genes. We also incorporated published experimental evidence, wherever available, to support gene-gene, gene-protein, and protein-protein interactions. The co-expression data were obtained by re-analyzing publicly available transcriptome data from rice. Notably, this network includes OSH1, OSH15, OSH71, Sub1B, ERFs, WRKYs, NACs, ZFP36, TCPs, etc., which play key regulatory roles in seed germination, coleoptile elongation and submergence response, and mediate gravitropic signaling by regulating OsLAZY1 and/or IL2. The network of transcription factors was manually biocurated and submitted to the Plant Reactome Knowledgebase to make it publicly accessible. We expect this work will facilitate the re-analysis/re-use of OMICs data and aid genomics research to accelerate crop improvement.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (J.E.); (P.J.)
| |
Collapse
|
5
|
Lin C, Huang Q, Liu Z, Brown SE, Chen Q, Li Y, Dong Y, Wu H, Mao Z. AoSAP8-P encoding A20 and/or AN1 type zinc finger protein in asparagus officinalis L. Improving stress tolerance in transgenic Nicotiana sylvestris. Gene 2023; 862:147284. [PMID: 36781027 DOI: 10.1016/j.gene.2023.147284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
The full length CDS of an A20 and AN1 type zinc finger gene (named AoSAP8-P), located nearby the male specific Y chromosome (MSY) region of Asparagus officinalis (garden asparagus) was amplified by RT-PCR from purple passion. This gene, predicted as the stress associated protein (SAPs) gene families, encodes 172 amino acids with multiple cis elements including light, stress response box, MYB and ERF binding sites on its promoter. To analyze its function, the gene expression of different organs in different asparagus gender were analyzed and the overexpressed transgenic Nicotiana sylvestris lines were generated. The results showed the gene was highly expressed in both flower and root of male garden asparagus; the germination rate of seeds of the T2 transgenic lines (T2-5-4 and T2-7-1) under the stress conditions of 125 mM NaCl and 150 mM mannitol were significantly higher than the wild type (WT) respectively. When the potted T2-5-4, T2-7-1 lines and WT were subjected to drought stress for 24 days and the leaf discs immerged into 20 % PEG6000 and 300 mM NaCl solution for 48 h respectively, the T2-5-4 and T2-7-1 with AoSAP8-P expression showed stronger drought, salt and osmotic stress tolerance. When compared, the effects of AoSAP8-P overexpression on productive development showed that the flowering time of transgenic lines, were ∼ 9 day earlier with larger but fewer pollens than its WT counterparts. However, there were no significant differences in anthers, stigmas and pollen viability between the transgenic lines and WT. Our results suggested that, the AoSAP8-P gene plays a role in improving the stress resistance and shortening seeds generation time for perianal survival during the growth and development of garden asparagus.
Collapse
Affiliation(s)
- Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Qiuqiu Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Qing Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yumei Dong
- Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
6
|
Chen Y, Li X, Xie X, Liu L, Fu J, Wang Q. Maize transcription factor ZmNAC2 enhances osmotic stress tolerance in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153948. [PMID: 36812721 DOI: 10.1016/j.jplph.2023.153948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress seriously limits crop yield and quality. Among plant-specific transcription factors families, the NAC family of transcription factors is extensively involved in various growth, development and stress responses. Here we identified a maize NAC family transcription factor ZmNAC2 with inducible gene expression in response to osmotic stress. The subcellular localization showed that it was localized in the nucleus and overexpression of ZmNAC2 in Arabidopsis significantly promoted seed germination and elevated cotyledon greening under osmotic stress. ZmNAC2 also enhanced stomatal closure and decreased water loss in transgenic Arabidopsis. Overexpression of ZmNAC2 activated ROS scavenging and the transgenic lines accumulated less MDA and developed more lateral roots with drought or mannitol treatment. Further RNA-seq and qRT-PCR analysis showed that ZmNAC2 up-regulated a number of genes related to osmotic stress resistance, as well as plant hormone signaling genes. All together, ZmNAC2 enhances osmotic stress tolerance by regulating multiple physiological processes and molecular mechanisms, and exhibits potential as the target gene in crop breeding to increase osmotic stress resistance.
Collapse
Affiliation(s)
- Yiyao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Xu W, Ren H, Qi X, Zhang S, Yu Z, Xie J. Conserved hierarchical gene regulatory networks for drought and cold stress response in Myrica rubra. FRONTIERS IN PLANT SCIENCE 2023; 14:1155504. [PMID: 37123838 PMCID: PMC10140524 DOI: 10.3389/fpls.2023.1155504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Stress response in plant is regulated by a large number of genes co-operating in diverse networks that serve multiple adaptive process. To understand how gene regulatory networks (GRNs) modulating abiotic stress responses, we compare the GRNs underlying drought and cold stresses using samples collected at 4 or 6 h intervals within 48 h in Chinese bayberry (Myrica rubra). We detected 7,583 and 8,840 differentially expressed genes (DEGs) under drought and cold stress respectively, which might be responsive to environmental stresses. Drought- and cold-responsive GRNs, which have been built according to the timing of transcription under both abiotic stresses, have a conserved trans-regulator and a common regulatory network. In both GRNs, basic helix-loop-helix family transcription factor (bHLH) serve as central nodes. MrbHLHp10 transcripts exhibited continuous increase in the two abiotic stresses and acts upstream regulator of ASCORBATE PEROXIDASE (APX) gene. To examine the potential biological functions of MrbHLH10, we generated a transgenic Arabidopsis plant that constitutively overexpresses the MrbHLH10 gene. Compared to wild-type (WT) plants, overexpressing transgenic Arabidopsis plants maintained higher APX activity and biomass accumulation under drought and cold stress. Consistently, RNAi plants had elevated susceptibility to both stresses. Taken together, these results suggested that MrbHLH10 mitigates abiotic stresses through the modulation of ROS scavenging.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
- Xianghu Lab., Hangzhou, China
- *Correspondence: Haiying Ren, ; Jianbo Xie,
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
- Xianghu Lab., Hangzhou, China
| | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- *Correspondence: Haiying Ren, ; Jianbo Xie,
| |
Collapse
|
8
|
Genome-Wide Identification and Characterisation of Stress-Associated Protein Gene Family to Biotic and Abiotic Stresses of Grapevine. Pathogens 2022; 11:pathogens11121426. [PMID: 36558760 PMCID: PMC9784323 DOI: 10.3390/pathogens11121426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Grapevine is one of the earliest domesticated fruit crops and prized for its table fruits and wine worldwide. However, the concurrence of a number of biotic/abiotic stresses affects their yield. Stress-associated proteins (SAPs) play important roles in response to both biotic and abiotic stresses in plants. Despite the growing number of studies on the genomic organisation of SAP gene family in various species, little is known about this family in grapevines (Vitis vinifera L.). In this study, a total of 15 genes encoding proteins possessing A20/AN1 zinc-finger were identified based on the analysis of several genomic and proteomic grapevine databases. According to their structural and phylogenetics features, the identified SAPs were classified into three main groups. Results from sequence alignments, phylogenetics, genomics structure and conserved domains indicated that grapevine SAPs are highly and structurally conserved. In order to shed light on their regulatory roles in growth and development, as well as the responses to biotic/abiotic stresses in grapevine, the expression profiles of SAPs were examined in publicly available microarray data. Bioinformatics analysis revealed distinct temporal and spatial expression patterns of SAPs in various tissues, organs and developmental stages, as well as in response to biotic/abiotic stresses. This study provides insight into the evolution of SAP genes in grapevine and may aid in efforts for further functional identification of A20/AN1-type proteins in the signalling cross-talking induced by biotic/abiotic stresses.
Collapse
|
9
|
Identification and Analysis of Stress-Associated Proteins (SAPs) Protein Family and Drought Tolerance of ZmSAP8 in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232214109. [PMID: 36430587 PMCID: PMC9696418 DOI: 10.3390/ijms232214109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Stress-associated proteins (SAPs), a class of A20/AN1 zinc finger proteins, play vital roles in plant stress response. However, investigation of SAPs in maize has been very limited. Herein, to better trace the evolutionary history of SAPs in maize and plants, 415 SAPs were identified in 33 plant species and four species of other kingdoms. Moreover, gene duplication mode exploration showed whole genome duplication contributed largely to SAP gene expansion in angiosperms. Phylogeny reconstruction was performed with all identified SAPs by the maximum likelihood (ML) method and the SAPs were divided into five clades. SAPs within the same clades showed conserved domain composition. Focusing on maize, nine ZmSAPs were identified. Further promoter cis-elements and stress-induced expression pattern analysis of ZmSAPs indicated that ZmSAP8 was a promising candidate in response to drought stress, which was the only AN1-AN1-C2H2-C2H2 type SAP in maize and belonged to clade I. Additionally, ZmSAP8 was located in the nucleus and had no transactivation activity in yeast. Overexpressing ZmSAP8 enhanced the tolerance to drought stress in Arabidopsis thaliana, with higher seed germination and longer root length. Our results should benefit the further functional characterization of ZmSAPs.
Collapse
|
10
|
Comprehensive Identification and Functional Analysis of Stress-Associated Protein (SAP) Genes in Osmotic Stress in Maize. Int J Mol Sci 2022; 23:ijms232214010. [PMID: 36430489 PMCID: PMC9692755 DOI: 10.3390/ijms232214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stress-associated proteins (SAPs) are a kind of zinc finger protein with an A20/AN1 domain and contribute to plants' adaption to various abiotic and biological stimuli. However, little is known about the SAP genes in maize (Zea mays L.). In the present study, the SAP genes were identified from the maize genome. Subsequently, the protein properties, gene structure and duplication, chromosomal location, and cis-acting elements were analyzed by bioinformatic methods. Finally, their expression profiles under osmotic stresses, including drought and salinity, as well as ABA, and overexpression in Saccharomyces cerevisiae W303a cells, were performed to uncover the potential function. The results showed that a total of 10 SAP genes were identified and named ZmSAP1 to ZmSAP10 in maize, which was unevenly distributed on six of the ten maize chromosomes. The ZmSAP1, ZmSAP4, ZmSAP5, ZmSAP6, ZmSAP7, ZmSAP8 and ZmSAP10 had an A20 domain at N terminus and AN1 domain at C terminus, respectively. Only ZmSAP2 possessed a single AN1 domain at the N terminus. ZmSAP3 and ZmSAP9 both contained two AN1 domains without an A20 domain. Most ZmSAP genes lost introns and had abundant stress- and hormone-responsive cis-elements in their promoter region. The results of quantitative real-time PCR showed that all ZmSAP genes were regulated by drought and saline stresses, as well as ABA induction. Moreover, heterologous expression of ZmSAP2 and ZmSAP7 significantly improved the saline tolerance of yeast cells. The study provides insights into further underlying the function of ZmSAPs in regulating stress response in maize.
Collapse
|
11
|
Chen M, Fu Y, Mou Q, An J, Zhu X, Ahmed T, Zhang S, Basit F, Hu J, Guan Y. Spermidine Induces Expression of Stress Associated Proteins (SAPs) Genes and Protects Rice Seed from Heat Stress-Induced Damage during Grain-Filling. Antioxidants (Basel) 2021; 10:antiox10101544. [PMID: 34679679 PMCID: PMC8533277 DOI: 10.3390/antiox10101544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023] Open
Abstract
Heat stress during seed maturation significantly reduced seed size and quality. Polyamines, especially spermidine (Spd), were reported to be closely related to seed development and plant heat tolerance. Stress-associated proteins (SAPs) also played a critical role in plant heat resistance, but the relationship between Spd and SAPs in improving rice tolerance to heat stress during grain filling has not been reported. Our results showed that the external spraying Spd (1.5 mM) significantly increased seed germination rate, germination index, vigor index and 1000-grain weight, significantly increased endogenous Spd, spermine (Spm) content and peroxidase activity; significantly reduced MDA content; and greatly alleviated the impact of heat stress on rice seed quality during grain filling stage as compared with high temperature control. OsSAP5 was the most upregulated expression induced by Spd, and may be mainly involved in the Spd-mediated enhancement of high-temperature resistance during rice seed development. Overexpression of OsSAP5 in Arabidopsis enhanced 1000-grain weight and seed heat resistance. Exogenous Spd alleviated the survival rate and seedling length, reduced MDA content, and upregulated the expression levels of SPDS and SPMS in Atsap4 mutant under high temperature during seed germination. In all, exogenous Spd alleviated the heat damage on seed quality during the grain filling stage and seed germination stage by improving endogenous Spd and Spm. OsSAP5, a key gene induced by Spd, might be involved in the rice heat resistance and seed quality in coordination with Spd and Spm.
Collapse
Affiliation(s)
- Min Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Yuying Fu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230041, China;
| | - Qingshan Mou
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Jianyu An
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Sheng Zhang
- Taizhou Agricultural Technology Extension Center, Taizhou 318000, China;
| | - Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
- Hainan Research Institute, Zhejiang University, Sanya 572025, China;
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.C.); (Q.M.); (J.A.); (F.B.); (J.H.)
- Correspondence:
| |
Collapse
|
12
|
Zhao Y, Xie J, Wang S, Xu W, Chen S, Song X, Lu M, El-Kassaby YA, Zhang D. Synonymous mutation in Growth Regulating Factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4502-4519. [PMID: 34865000 DOI: 10.1093/jxb/erab120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 05/04/2023]
Abstract
Abstract
Heat stress damages plant tissues and induces multiple adaptive responses. Complex and spatiotemporally specific interactions among transcription factors (TFs), microRNAs (miRNAs), and their targets play crucial roles in regulating stress responses. To explore these interactions and to identify regulatory networks in perennial woody plants subjected to heat stress, we integrated time-course RNA-seq, small RNA-seq, degradome sequencing, weighted gene correlation network analysis, and multi-gene association approaches in poplar. Results from Populus trichocarpa enabled us to construct a three-layer, highly interwoven regulatory network involving 15 TFs, 45 miRNAs, and 77 photosynthetic genes. Candidate gene association studies in a population of P. tomentosa identified 114 significant associations and 696 epistatic SNP–SNP pairs that were linked to 29 photosynthetic and growth traits (P<0.0001, q<0.05). We also identified miR396a and its target, Growth-Regulating Factor 15 (GRF15) as an important regulatory module in the heat-stress response. Transgenic plants of hybrid poplar (P. alba × P. glandulosa) overexpressing a GRF15 mRNA lacking the miR396a target sites exhibited enhanced heat tolerance and photosynthetic efficiency compared to wild-type plants. Together, our observations demonstrate that GRF15 plays a crucial role in responding to heat stress, and they highlight the power of this new, multifaceted approach for identifying regulatory nodes in plants.
Collapse
Affiliation(s)
- Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sha Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Li W, Wang Y, Li R, Chang X, Yuan X, Jing R. Cloning and Characterization of TaSAP7-A, a Member of the Stress-Associated Protein Family in Common Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:609351. [PMID: 33828570 PMCID: PMC8020846 DOI: 10.3389/fpls.2021.609351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Stress association proteins (SAPs) are A20/AN1 zinc-finger domain proteins, which play important roles in plant adaptation to abiotic stress and plant development. The functions of SAPs in some plants were reported, but little is known about it in wheat (Triticum aestivum L.). In this study, we characterized a novel 2AN1-type stress association protein gene TaSAP7-A, which was mapped to chromosome 5A in wheat. Subcellular localization indicated that TaSAP7-A was distributed in the nucleus and cytoplasm. Unlike previously known A20/AN1-type SAP genes, TaSAP7-A was negatively regulated to abiotic stress tolerance. Overexpressing TaSAP7-A Arabidopsis lines were hypersensitive to ABA, osmotic and salt stress at germination stage and post-germination stage. Overexpression of TaSAP7-A Arabidopsis plants accelerated the detached leaves' chlorophyll degradation. Association analysis of TaSAP7-A haplotypes and agronomic traits showed that Hap-5A-2 was significantly associated with higher chlorophyll content at jointing stage and grain-filling stage. These results jointly revealed that TaSAP7-A is related to the chlorophyll content in the leaves of Arabidopsis and wheat. Both in vivo and in vitro experiments demonstrated that TaSAP7-A interacted with TaS10B, which was the component of regulatory subunit in 26S proteasome. In general, TaSAP7-A was a regulator of chlorophyll content, and favorable haplotypes should be helpful for improving plant chlorophyll content and grain yield of wheat.
Collapse
Affiliation(s)
- Wenlu Li
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Yixue Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Lai W, Zhou Y, Pan R, Liao L, He J, Liu H, Yang Y, Liu S. Identification and Expression Analysis of Stress-Associated Proteins (SAPs) Containing A20/AN1 Zinc Finger in Cucumber. PLANTS (BASEL, SWITZERLAND) 2020; 9:E400. [PMID: 32213813 PMCID: PMC7154871 DOI: 10.3390/plants9030400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Stress-associated proteins (SAPs) are a class of zinc finger proteins that confer tolerance to a variety of abiotic and biotic stresses in diverse plant species. However, in cucumber (Cucumis sativus L.), very little is known about the roles of SAP gene family members in regulating plant growth, development, and stress responses. In this study, a total of 12 SAP genes (named as CsSAP1-CsSAP12) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. Gene duplication analysis detected one tandem duplication and two segmental duplication events. Phylogenetic analysis of SAP proteins from cucumber and other plants suggested that they could be divided into seven groups (sub-families), and proteins in the same group generally had the same arrangement of AN1 (ZnF-AN1) and A20 (ZnF-A20) domains. Most of the CsSAP genes were intronless and harbored a number of stress- and hormone-responsive cis-elements in their promoter regions. Tissue expression analysis showed that the CsSAP genes had a broad spectrum of expression in different tissues, and some of them displayed remarkable alteration in expression during fruit development. RT-qPCR results indicated that all the selected CsSAP genes displayed transcriptional responses to cold, drought, and salt stresses. These results enable the first comprehensive description of the SAP gene family in cucumber and lay a solid foundation for future research on the biological functions of CsSAP genes.
Collapse
Affiliation(s)
- Wei Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rao Pan
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liting Liao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juncheng He
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haoju Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingui Yang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Li J, Sun P, Xia Y, Zheng G, Sun J, Jia H. A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress. Int J Mol Sci 2019; 20:ijms20225782. [PMID: 31744233 PMCID: PMC6888306 DOI: 10.3390/ijms20225782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.
Collapse
Affiliation(s)
- Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.L.); (H.J.)
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Guangshun Zheng
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Jingshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
16
|
Ben Saad R, Safi H, Ben Hsouna A, Brini F, Ben Romdhane W. Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. PROTOPLASMA 2019; 256:1333-1344. [PMID: 31062172 DOI: 10.1007/s00709-019-01390-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 05/13/2023]
Abstract
Stress-associated proteins (SAPs), such as A20/AN1 zinc-finger domain-containing proteins, have emerged as a novel class of proteins involved in abiotic stress signaling, and they are important candidates for preventing the loss of yield caused by exposure to environmental stresses. In a previous report, it was found that the ectopic-expression of Lobularia maritima stress-associated protein, LmSAP, conferred tolerance to abiotic and heavy metal stresses in transgenic tobacco plants. This study aimed to investigate the functions of the A20 and AN1 domains of LmSAP in salt and osmotic stress tolerance. To this end, in addition to the full-length LmSAP gene, we have generated three LmSAP-truncated forms (LmSAPΔA20, LmSAPΔAN1, and LmSAPΔA20-ΔAN1). Heterologous expression in Saccharomyces cerevisiae of different truncated forms of LmSAP revealed that the A20 domain is essential to increase cell tolerance to salt, ionic, and osmotic stresses. Transgenic tobacco plants overexpressing LmSAP and LmSAPΔAN1 constructs exhibited higher tolerance to salt and osmotic stresses in comparison to the non-transgenic plants (NT) and lines transformed with LmSAPΔA20 and LmSAPΔA20-ΔAN1 constructs. Similarly, transgenic plants overexpressing the full-length LmSAP gene and LmSAPΔAN1 truncated domain maintained higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) enzymatic activities due to the high expression levels of the genes encoding these key antioxidant enzymes, MnSOD, POD, and CAT1, as well as accumulated lower levels of malondialdehyde (MDA) under salt and osmotic stresses compared to NT and LmSAPΔA20 and LmSAPΔA20-ΔAN1 forms. These findings provide insights into the pivotal role of A20 and AN1 domains of LmSAP protein in salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Hela Safi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
17
|
Zhang XZ, Zheng WJ, Cao XY, Cui XY, Zhao SP, Yu TF, Chen J, Zhou YB, Chen M, Chai SC, Xu ZS, Ma YZ. Genomic Analysis of Stress Associated Proteins in Soybean and the Role of GmSAP16 in Abiotic Stress Responses in Arabidopsis and Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1453. [PMID: 31803204 PMCID: PMC6876671 DOI: 10.3389/fpls.2019.01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
Stress associated proteins (SAPs) containing A20/AN1 zinc finger domains have emerged as novel regulators of stress responses. In this study, 27 SAP genes were identified in soybean. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, putative cis-acting elements, and expression patterns of SAPs in various tissues under abiotic stresses were analyzed. Among the soybean SAP genes, GmSAP16 was significantly induced by water deficit stress, salt, and abscisic acid (ABA) and selected for further analysis. GmSAP16 was located in the nucleus and cytoplasm. The overexpression of GmSAP16 in Arabidopsis improved drought and salt tolerance at different developmental stages and increased ABA sensitivity, as indicated by delayed seed germination and stomatal closure. The GmSAP16 transgenic Arabidopsis plants had a higher proline content and a lower water loss rate and malondialdehyde (MDA) content than wild type (WT) plants in response to stresses. The overexpression of GmSAP16 in soybean hairy roots enhanced drought and salt tolerance of soybean seedlings, with higher proline and chlorophyll contents and a lower MDA content than WT. RNA inference (RNAi) of GmSAP16 increased stress sensitivity. Stress-related genes, including GmDREB1B;1, GmNCED3, GmRD22, GmDREB2, GmNHX1, and GmSOS1, showed significant expression alterations in GmSAP16-overexpressing and RNAi plants under stress treatments. These results indicate that soybean SAP genes play important roles in abiotic stress responses.
Collapse
Affiliation(s)
- Xiang-Zhan Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xin-You Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement, Jinan, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Shu-Ping Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Tai-Fei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Shou-Cheng Chai
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
18
|
Khan A, Pan X, Najeeb U, Tan DKY, Fahad S, Zahoor R, Luo H. Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 2018; 51:47. [PMID: 30428929 PMCID: PMC6234603 DOI: 10.1186/s40659-018-0198-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Increased levels of greenhouse gases in the atmosphere and associated climatic variability is primarily responsible for inducing heat waves, flooding and drought stress. Among these, water scarcity is a major limitation to crop productivity. Water stress can severely reduce crop yield and both the severity and duration of the stress are critical. Water availability is a key driver for sustainable cotton production and its limitations can adversely affect physiological and biochemical processes of plants, leading towards lint yield reduction. Adaptation of crop husbandry techniques suitable for cotton crop requires a sound understanding of environmental factors, influencing cotton lint yield and fiber quality. Various defense mechanisms e.g. maintenance of membrane stability, carbon fixation rate, hormone regulation, generation of antioxidants and induction of stress proteins have been found play a vital role in plant survival under moisture stress. Plant molecular breeding plays a functional role to ascertain superior genes for important traits and can offer breeder ready markers for developing ideotypes. This review highlights drought-induced damage to cotton plants at structural, physiological and molecular levels. It also discusses the opportunities for increasing drought tolerance in cotton either through modern gene editing technology like clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), zinc finger nuclease, molecular breeding as well as through crop management, such as use of appropriate fertilization, growth regulator application and soil amendments.
Collapse
Affiliation(s)
- Aziz Khan
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 People’s Republic of China
- Key Laboratory of Plant Genetic and Breeding, College of Agriculture, Guangxi University, Nanning, 530005 People’s Republic of China
| | - Xudong Pan
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 People’s Republic of China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350 Australia
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Faculty of Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - Daniel Kean Yuen Tan
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Faculty of Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - Shah Fahad
- Department of Plant Sciences and Technology, Huazhong Agriculture University, Wuhan, 430000 People’s Republic of China
- Department of Agronomy, The University of Swabi, Swabi, Pakistan
- College of Life Science, Linyi University, Linyi, 276000 Shandong China
| | - Rizwan Zahoor
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Honghai Luo
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003 People’s Republic of China
| |
Collapse
|
19
|
Genome-Wide Analysis and Cloning of the Apple Stress-Associated Protein Gene Family Reveals MdSAP15, Which Confers Tolerance to Drought and Osmotic Stresses in Transgenic Arabidopsis. Int J Mol Sci 2018; 19:ijms19092478. [PMID: 30134640 PMCID: PMC6164895 DOI: 10.3390/ijms19092478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome. Phylogenetic analysis revealed two major groups within that family. Results from sequence alignments and analyses of 3D structures, phylogenetics, genomics structure, and conserved domains indicated that apple SAPs are highly and structurally conserved. Comprehensive qRT-PCR analysis found various expression patterns for MdSAPs in different tissues and in response to a water deficit. A transgenic analysis showed that the overexpression of MdSAP15 in transgenic Arabidopsis plants markedly enhanced their tolerance to osmotic and drought stresses. Our results demonstrate that the SAP genes are highly conserved in plant species, and that MdSAP15 can be used as a target gene in genetic engineering approaches to improve drought tolerance.
Collapse
|
20
|
Dixit A, Tomar P, Vaine E, Abdullah H, Hazen S, Dhankher OP. A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. PLANT, CELL & ENVIRONMENT 2018; 41:1171-1185. [PMID: 29194659 DOI: 10.1111/pce.13103] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 05/28/2023]
Abstract
Members of Stress-Associated Protein (SAP) family in plants have been shown to impart tolerance to multiple abiotic stresses, however, their mode of action in providing tolerance to multiple abiotic stresses is largely unknown. There are 14 SAP genes in Arabidopsis thaliana containing A20, AN1, and Cys2-His2 zinc finger domains. AtSAP13, a member of the SAP family, carries two AN1 zinc finger domains and an additional Cys2-His2 domain. AtSAP13 transcripts showed upregulation in response to Cd, ABA, and salt stresses. AtSAP13 overexpression lines showed strong tolerance to toxic metals (AsIII, Cd, and Zn), drought, and salt stress. Further, transgenic lines accumulated significantly higher amounts of Zn, but less As and Cd accumulation in shoots and roots. AtSAP13 promoter-GUS fusion studies showed GUS expression predominantly in the vascular tissue, hydathodes, and the apical meristem and region of root maturation and elongation as well as the root hairs. At the subcellular level, the AtSAP13-eGFP fusion protein was found to localize in both nucleus and cytoplasm. Through yeast one-hybrid assay, we identified several AP2/EREBP family transcription factors that interacted with the AtSAP13 promoter. AtSAP13 and its homologues will be highly useful for developing climate resilient crops.
Collapse
Affiliation(s)
- Anirudha Dixit
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Parul Tomar
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Evan Vaine
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Hesham Abdullah
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Samuel Hazen
- Biology Department, University of Massachusetts Amherst, MA, 01003, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| |
Collapse
|
21
|
Ghneim-Herrera T, Selvaraj MG, Meynard D, Fabre D, Peña A, Ben Romdhane W, Ben Saad R, Ogawa S, Rebolledo MC, Ishitani M, Tohme J, Al-Doss A, Guiderdoni E, Hassairi A. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:994. [PMID: 28659945 PMCID: PMC5466986 DOI: 10.3389/fpls.2017.00994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
We evaluated the yields of Oryza sativa L. 'Nipponbare' rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT) and wild-type (WT) controls, providing 50-90% increases in grain yield (GY). Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.
Collapse
Affiliation(s)
| | | | - Donaldo Meynard
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Denis Fabre
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Alexandra Peña
- Departamento de Ciencias Biológicas, Universidad IcesiCali, Colombia
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of SfaxSfax, Tunisia
| | - Satoshi Ogawa
- International Center for Tropical AgricultureCali, Colombia
- Graduate School of Agricultural and Life Science, Department of Global Agricultural Science, The University of TokyoTokyo, Japan
| | | | | | - Joe Tohme
- International Center for Tropical AgricultureCali, Colombia
| | - Abdullah Al-Doss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Emmanuel Guiderdoni
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Centre of Biotechnology of SfaxSfax, Tunisia
| |
Collapse
|
22
|
Lloret A, Conejero A, Leida C, Petri C, Gil-Muñoz F, Burgos L, Badenes ML, Ríos G. Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 2017; 7:332. [PMID: 28336950 PMCID: PMC5428470 DOI: 10.1038/s41598-017-00471-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
We have identified a gene (PpSAP1) of Prunus persica coding for a stress-associated protein (SAP) containing Zn-finger domains A20 and AN1. SAPs have been described as regulators of the abiotic stress response in plant species, emerging as potential candidates for improvement of stress tolerance in plants. PpSAP1 was highly expressed in leaves and dormant buds, being down-regulated before bud dormancy release. PpSAP1 expression was moderately induced by water stresses and heat in buds. In addition, it was found that PpSAP1 strongly interacts with polyubiquitin proteins in the yeast two-hybrid system. The overexpression of PpSAP1 in transgenic plum plants led to alterations in leaf shape and an increase of water retention under drought stress. Moreover, we established that leaf morphological alterations were concomitant with a reduced cell size and down-regulation of genes involved in cell growth, such as GROWTH-REGULATING FACTOR (GRF)1-like, TONOPLAST INTRINSIC PROTEIN (TIP)-like, and TARGET OF RAPAMYCIN (TOR)-like. Especially, the inverse expression pattern of PpSAP1 and TOR-like in transgenic plum and peach buds suggests a role of PpSAP1 in cell expansion through the regulation of TOR pathway.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - César Petri
- Department of Plant Production, Instituto de Biotecnología Vegetal-Universidad Politécnita de Cartagena (IBV-UPCT), 30202, Cartagena, Murcia, Spain
| | - Francisco Gil-Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Lorenzo Burgos
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, 30100, Murcia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
23
|
Ullah A, Sun H, Yang X, Zhang X. Drought coping strategies in cotton: increased crop per drop. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:271-284. [PMID: 28055133 PMCID: PMC5316925 DOI: 10.1111/pbi.12688] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 05/04/2023]
Abstract
The growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho-physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress-related transcription factors and genes, such as ROS scavenging, ABA or mitogen-activated protein kinases (MAPK) signalling genes, which activate various drought-related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought-tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton.
Collapse
Affiliation(s)
- Abid Ullah
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Heng Sun
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
24
|
Liu J, Yang X, Yang X, Xu M, Liu J, Xue M, Ma P. Isolation and characterization of LcSAP, a Leymus chinensis gene which enhances the salinity tolerance of Saccharomyces cerevisiae. Mol Biol Rep 2016; 44:5-9. [PMID: 27853974 DOI: 10.1007/s11033-016-4091-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 11/11/2016] [Indexed: 01/21/2023]
Abstract
A number of members of the SAP ("stress-associated protein") gene family have been implicated in the plant stress response. Here, a SAP gene has been isolated using PCR RACE from the perennial grass Leymus chinensis, a species which has reputation for ecological adaptability. The 17.6 kDa LcSAP product comprised 161 residues, including both an A20 domain and an AN1 domain, a feature of type I SAPs. Using a semi-quantitative RT-PCR assay to profile its transcription, it was shown that LcSAP was more strongly transcribed in the leaf than in the root under control conditions. The level of LcSAP transcription began to rise 6 h after the plant's exposure to 400 mM NaCl, and the abundance of transcript remained stable for at least 24 h. Exposing the plant to 100 mM Na2CO3 also induced LcSAP transcription, but the abundance of SAP transcript faded after 6 h. When LcSAP was introduced into yeast cells, the transgenic cells grew better than wild type ones when the medium contained 1.4 M NaCl. The ability of LcSAP to respond to salinity stress in yeast suggests that it also makes a contribution to the stress tolerance shown by L. chinensis.
Collapse
Affiliation(s)
- Jingying Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, People's Republic of China
- College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xizhe Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Mingyue Xu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Jie Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Mengmeng Xue
- College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
25
|
Gao W, Long L, Tian X, Jin J, Liu H, Zhang H, Xu F, Song C. Genome-wide identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cotton. Mol Genet Genomics 2016; 291:2199-2213. [PMID: 27681253 DOI: 10.1007/s00438-016-1252-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
Stress-associated proteins (SAPs) containing the A20/AN1 zinc-finger domain play important roles in response to both biotic and abiotic stresses in plants. Nevertheless, few studies have focused on the SAP gene family in cotton. To explore the distributions and expression patterns of these genes, we performed genome-wide identification and characterization of SAPs in tetraploid Gossypium hirsutum L. TM-1 (AD1). A total of 37 genes encoding SAPs were identified, 36 of which were duplicated in the A and D sub-genomes. The analysis of gene architectures and conserved protein motifs revealed that nearly all A20-AN1-type SAPs were intron-free, whereas AN1-AN1-type SAPs contained one intron. The cis-elements of the SAP promoters were studied, as were the expression levels of cotton SAP genes under different stresses based on RNA-seq data and validated by qRT-PCR. Most cotton SAP genes were induced by multiple stresses and phytohormones, particularly salt stress, indicating that SAP genes may play important roles in cotton's response to unfavorable environmental changes. Among these identified SAPs, the expression of GhSAP17A/D is suppressed in cotton response to Vertillium dahliae, and the GhSAP17A/D-silenced cotton exhibits more resistance to V. dahliae. This study provides insight into the evolution of SAP genes in upland cotton and may aid in efforts at further functional identification of A20/AN1-type proteins and cotton's response to different stresses.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Xinquan Tian
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Jingjing Jin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huili Liu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Fuchun Xu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Chunpeng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
26
|
Characterization of Small RNAs and Their Targets from Fusarium oxysporum Infected and Noninfected Cotton Root Tissues. PLANT MOLECULAR BIOLOGY REPORTER 2015. [DOI: 10.1007/s11105-015-0945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Li J, Han Y, Zhao Q, Li C, Xie Q, Chong K, Xu Y. The E3 ligase AtRDUF1 positively regulates salt stress responses in Arabidopsis thaliana. PLoS One 2013; 8:e71078. [PMID: 23951086 PMCID: PMC3741333 DOI: 10.1371/journal.pone.0071078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination is an important post-translational protein modification that is known to play critical roles in diverse biological processes in eukaryotes. The RING E3 ligases function in ubiquitination pathways, and are involved in a large diversity of physiological processes in higher plants. The RING domain-containing E3 ligase AtRDUF1 was previously identified as a positive regulator of ABA-mediated dehydration stress response in Arabidopsis. In this study, we report that AtRDUF1 is involved in plant responses to salt stress. AtRDUF1 expression is upregulated by salt treatment. Overexpression of AtRDUF1 in Arabidopsis results in an insensitivity to salt and osmotic stresses during germination and seedling growth. A double knock-out mutant of AtRDUF1 and its close homolog AtRDUF2 (atrduf1atrduf2) was hypersensitive to salt treatment. The expression levels of the stress-response genes RD29B, RD22, and KIN1 are more sensitive to salt treatment in AtRDUF1 overexpression plants. In summary, our data show that AtRDUF1 positively regulates responses to salt stress in Arabidopsis.
Collapse
Affiliation(s)
- Junhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yingying Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biology, College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang, China
| | - Qingzhen Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Charrier A, Lelièvre E, Limami AM, Planchet E. Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:874-7. [PMID: 23399404 DOI: 10.1016/j.jplph.2013.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 06/01/2023]
Abstract
Stress associated proteins (SAP) have been already reported to play a role in tolerance acquisition of some abiotic stresses. In the present study, the role of MtSAP1 (Medicago truncatula) in tolerance to temperature, osmotic and salt stresses has been studied in tobacco transgenic seedlings. Compared to wild type, MtSAP1 overexpressors were less affected in their growth and development under all tested stress conditions. These results confirm that MtSAP1 is involved in the response processes to various abiotic constraints. In parallel, we have performed studies on an eventual link between MtSAP1 overexpression and proline, a major player in stress response. In an interesting way, the results for the transgenic lines did not show any increase of proline content under osmotic and salt stress, contrary to the WT which usually accumulated proline in response to stress. These data strongly suggest that MtSAP1 is not involved in signaling pathway responsible for the proline accumulation in stress conditions. This could be due to the fact that the overexpression of MtSAP1 provides sufficient tolerance to seedlings to cope with stress without requiring the free proline action. Beyond that, the processes by which the MtSAP1 overexpression lead to the suppression of proline accumulation will be discussed in relation with data from our previous study involving nitric oxide.
Collapse
Affiliation(s)
- Aurélie Charrier
- University of Angers, Institut de Recherche en Horticulture et Semences UMR 1345, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France
| | | | | | | |
Collapse
|
29
|
Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK. SAPs as novel regulators of abiotic stress response in plants. Bioessays 2013; 35:639-48. [PMID: 23640876 DOI: 10.1002/bies.201200181] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress associated proteins (SAPs), novel A20/AN1 zinc-finger domain-containing proteins, are fast emerging as potential candidates for biotechnological approaches in order to improve abiotic stress tolerance in plants - the ultimate aim of which is crop-yield protection. Until relatively recently, such proteins had only been identified in humans, where they had been shown to be key regulators of innate immunity. Their phylogenetic relationship and recruitment of diverse protein domains reflect an architectural and mechanistic diversity. Emerging evidence suggests that SAPs may act as ubiquitin ligase, redox sensor, and regulator of gene expression during stress. Here, we evaluate the new knowledge on SAPs with a view to understand their mechanism of action. Furthermore, we set an agenda for investigating hitherto unexplored roles of these proteins.
Collapse
Affiliation(s)
- Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | | | | |
Collapse
|
30
|
Grover A, Mittal D, Negi M, Lavania D. Generating high temperature tolerant transgenic plants: Achievements and challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:38-47. [PMID: 23498861 DOI: 10.1016/j.plantsci.2013.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 05/17/2023]
Abstract
Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed.
Collapse
Affiliation(s)
- Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | | | | | | |
Collapse
|