1
|
Qu Z, Tian Y, Zhou X, Li X, Zhou Q, Wang X, Dong S. Effects of Exogenous Sodium Nitroprusside Spraying on Physiological Characteristics of Soybean Leaves at the Flowering Stage under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1598. [PMID: 37111822 PMCID: PMC10143010 DOI: 10.3390/plants12081598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Nitric oxide (NO) plays a significant role in plant drought resistance. However, the effects of the exogenous application of NO to crops under drought stress vary within and among species. In this study, we explored the influence of exogenous sodium nitroprusside (SNP) on the drought resistance of soybean leaves in the full flowering stage using two varieties: drought-tolerant HN44 and non-drought-tolerant HN65. Spraying SNP on soybean leaves at the full flowering period under drought stress improved the NO content in soybean leaves. The activities of nitrite reductase (NiR) and nitrate reductase (NR) in leaves were affected by NO inhibition. The activity of antioxidant enzymes in leaves increased with the extension of SNP application time. Contents of osmomodulatory substances, including proline (Pro), soluble sugar (SS), and soluble protein (SP) increased gradually with the extension of SNP application time. The malondialdehyde (MDA) content decreased as the NO content increased, thus reducing membrane system damage. Overall, spraying SNP reduced damage and improved the ability of soybean to cope with drought. This study explored the physiological changes of SNP soybean under drought stress and provided theoretical basis for improving drought-resistant cultivation of soybean.
Collapse
Affiliation(s)
- Zhipeng Qu
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Yumei Tian
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhou
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomei Li
- Agriculture and Food Science and Technology Branch, Heilongjiang Agricultural Engineering Vocational College, Harbin 150025, China
| | - Qi Zhou
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Xiyue Wang
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| | - Shoukun Dong
- Agricultural College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Esterhuizen M, Lutsko M, Kim Y, Yoon H, Park CB, Kim YJ, Pflugmacher S. Titanium (IV) oxide anatase nanoparticles as vectors for diclofenac: assessing the antioxidative responses to single and combined exposures in the aquatic macrophyte Egeria densa. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:394-402. [PMID: 37000303 PMCID: PMC10102128 DOI: 10.1007/s10646-023-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Titanium dioxide, frequently used in commonplace products, is now regularly detected in aquatic environments. Understanding its toxic effects on native biota is essential. However, combined toxicity with commonly occurring pollutants, such as the pharmaceutical diclofenac, may provide more insight into environmental situations. Therefore, the present study aimed to evaluate the effects of titanium dioxide and diclofenac, individually and combined, on the macrophyte Egeria densa. Diclofenac uptake and removal by the macrophyte were assessed. Diclofenac and titanium dioxide were mixed prior to exposure to allow binding, which was assessed. Toxicity of the individual compounds and the combination was evaluated by assaying enzymes as bioindicators of biotransformation and the antioxidative system. Cytosolic glutathione S-transferase and glutathione reductase activities were increased by diclofenac, titanium dioxide, and the combination. Both enzymes' activities were more significantly elevated by diclofenac and the combination than nanoparticles alone. Microsomal glutathione S-transferase was unaffected by diclofenac exposure but inhibited with titanium dioxide and the mixture. Diclofenac elicited the most significant response. Based on the data, the cytosolic enzymes effectively prevented damage.
Collapse
Affiliation(s)
- Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, University of Helsinki, 15140, Lahti, Finland.
- Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014, Helsinki, Finland.
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Building, 125 Dysart Road, Winnipeg, MB, R3T 2N2, Canada.
- Korea Institute of Science and Technology Europe (KIST Europe) Forschungsgesellschaft GmbH, Joint Laboratory of Applied Ecotoxicology, Environmental Safety Group, Universität des Saarlandes Campus E7 1, 66123, Saarbrücken, Germany.
| | - Mariia Lutsko
- Department of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Youngsam Kim
- Korea Institute of Science and Technology Europe (KIST Europe) Forschungsgesellschaft GmbH, Joint Laboratory of Applied Ecotoxicology, Environmental Safety Group, Universität des Saarlandes Campus E7 1, 66123, Saarbrücken, Germany
| | - Hakwon Yoon
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju, 52834, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju, 52834, Republic of Korea
| | - Young Jun Kim
- Korea Institute of Science and Technology Europe (KIST Europe) Forschungsgesellschaft GmbH, Joint Laboratory of Applied Ecotoxicology, Environmental Safety Group, Universität des Saarlandes Campus E7 1, 66123, Saarbrücken, Germany
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Building, 125 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
3
|
Role of Sodium Nitroprusside on Potential Mitigation of Salt Stress in Centaury ( Centaurium erythraea Rafn) Shoots Grown In Vitro. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010154. [PMID: 36676103 PMCID: PMC9866427 DOI: 10.3390/life13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Soil salinity is one of the most common abiotic stressors that affects plant growth and development. The aim of this work was to investigate the influence of sodium nitroprusside (SNP), a donor of nitric oxide (NO), on the physiological response of common centaury (Centaurium erythraea) shoots grown under stress conditions caused by sodium chloride (NaCl) in vitro. Centaury shoots were first grown on nutrient medium containing different SNP concentrations (50, 100 and 250 μM) during the pretreatment phase. After three weeks, the shoots were transferred to nutrient media supplemented with NaCl (150 mM) and/or SNP (50, 100 or 250 μM) for one week. The results showed that salinity decreased photosynthetic pigments, total phenolic content and DPPH (1,1-diphenyl-2-picrylhydrazyl radical) concentration. The activities of antioxidant enzymes, namely superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX), were also reduced under salt stress. However, MDA concentration was decreased, while H2O2 and proline content did not drastically change under the stress conditions caused by NaCl. Exogenous application of SNP altered the biochemical parameters of centaury shoots grown under salt stress. In this case, increased photosynthetic pigment content, total phenolics and proline content were noted, with reduced MDA, but not H2O2, concentration was observed. In addition, the exogenous application of SNP increased the degree of DPPH reduction as well as SOD, CAT and POX activities.
Collapse
|
4
|
Seckin Dinler B, Cetinkaya H, Secgin Z. The regulation of glutathione s-transferases by gibberellic acid application in salt treated maize leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:69-85. [PMID: 36733837 PMCID: PMC9886772 DOI: 10.1007/s12298-022-01269-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Plant hormones and antioxidant system changes occur during plants' exposure to stress conditions. Although the interactions of some plant hormones (abscisic acid, salicylic acid, jasmonic acid, nitric oxide, and ethylene) with the glutathione s-transferase (GST) enzyme, which is one of the antioxidant enzymes, have already been reported, the influence of gibberellic acid (GA3) on this enzyme under saline conditions has not yet been reported. Plant material for the experiments was obtained from M14G144 cultivar of maize (Zea mays L.) plants grown as a soil culture in growth chambers at 22 °C, 65-70% moisture, 16-h light/8-h dark conditions, and with full strength Hoagland solution for 8 days under controlled growth conditions. Then, the plants were exposed to salt stress (350 mM NaCl and 100, 300, and 500 ppm GA3) simultaneously. In maize leaves, GA3 treatment alleviated the physiological parameters under salt stress. Specifically, the treatments with 100 and 500 ppm of GA3 were able to trigger GST enzyme and isoenzyme activities as well as hydrogen sulfide accumulation and anthocyanin content, although the lowest malondialdehyde, hydrogen peroxide, and superoxide radical content were under the treatment of 300 ppm of GA3. Besides this, GST gene expression levels were found to be upregulated between 1.5 and fourfold higher in all the plants treated with GA3 at different concentrations in proportion to salt stress. These results first indicated that the reason for the changes in GA3-treated plants was the stimulating role of this hormone to maintain GST regulation in maize plants. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01269-2.
Collapse
Affiliation(s)
- Burcu Seckin Dinler
- Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey
| | - Hatice Cetinkaya
- Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey
| | - Zafer Secgin
- Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
5
|
Maslennikova DR, Lastochkina OV, Shakirova FM. Exogenous Sodium Nitroprusside Improves Salt Stress Tolerance of Wheat (Triticum aestivum L.) via Regulating the Components of Ascorbate-Glutathione Cycle, Chlorophyll Content and Stabilization of Cell Membranes State. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2022; 69:130. [DOI: 10.1134/s102144372206019x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 06/23/2023]
|
6
|
Saha I, Ghosh A, Dolui D, Fujita M, Hasanuzzaman M, Adak MK. Differential Impact of Nitric Oxide and Abscisic Acid on the Cellular and Physiological Functioning of sub1A QTL Bearing Rice Genotype under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081084. [PMID: 35448812 PMCID: PMC9029218 DOI: 10.3390/plants11081084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Hydroponic culture containing 200 mM NaCl was used to induce oxidative stress in seedlings of cultivars initially primed with 1 mM SNP and 10 µM ABA. Exogenous application of sodium nitroprusside (SNP - a nitric oxide donor) and abscisic acid (ABA) was well sensitized more in cv. Swarna Sub1 than cv. Swarna and also reflected in different cellular responses. The major effects of salinity, irrespective of the cultivar, were lowering the water relation, including relative water content and osmotic potential, and decreasing the compatible solutes like alanine, gamma-aminobutyric acid, and glycine betaine. The accumulated polyamines were reduced more in cv. Swarna with a concomitant decrease in photosynthetic reserves. NADP-malic enzyme activity, sucrose accumulation, ascorbate peroxidase, and glutathione S-transferase activities gradually declined under NaCl stress and the catabolizing enzymes like invertase (both wall and cytosolic forms) also declined. On the contrary, plants suffered from oxidative stress through superoxide, hydrogen peroxide, and their biosynthetic enzymes like NADP(H) oxidase. Moderation of Na+/K+ by both SNP and ABA were correlated with other salt sensitivities in the plants. The maximum effects of SNP and ABA were found in the recovery of antioxidation pathways, osmotic tolerance, and carbohydrate metabolism. Findings predict the efficacy of SNP and ABA either independently or cumulatively in overcoming NaCl toxicity in rice.
Collapse
Affiliation(s)
- Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Debabrata Dolui
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| |
Collapse
|
7
|
Yin X, Hu Y, Zhao Y, Meng L, Zhang X, Liu H, Wang L, Cui G. Effects of exogenous nitric oxide on wild barley ( Hordeum brevisubulatum) under salt stress. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2041096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Xiujie Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yao Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yihang Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Lingdong Meng
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Xiaomeng Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Haoyue Liu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Lina Wang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
8
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
9
|
Miras-Moreno B, Zhang L, Senizza B, Lucini L. A metabolomics insight into the Cyclic Nucleotide Monophosphate signaling cascade in tomato under non-stress and salinity conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110955. [PMID: 34134851 DOI: 10.1016/j.plantsci.2021.110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Cyclic Nucleotides Monophosphate (cNMP) are key signalling compounds whose role in plant cell signal transduction is still poorly understood. In this work we used sildenafil, a phosphodiesterase (PDE) inhibitor used in human, to amplify the signal cascade triggered by cNMP using tomato as model plant. Metabolomics was then used, together with plant growth and root architecture parameters, to unravel the changes elicited by PDE inhibition either under non-stress and 100 mM NaCl salinity conditions. The PDE inhibitor elicited a significant increase in biomass (+62 %) and root length (+56 %) under no stress conditions, and affected root architecture in terms of distribution over diameter classes. Together with cGMP, others cNMP were modulated by the treatment. Moreover, PDE inhibition triggered a broad metabolic reprogramming involving photosynthesis and secondary metabolism. A complex crosstalk network of phytohormones and other signalling compounds could be observed in treated plants. Nonetheless, metabolites related to redox imbalance processes and NO signalling could be highlighted in tomato following PDE application. Despite salinity damped down the growth-promoting effects of sildenafil, interesting implications in plant mitigation to stress-related detrimental effects could be observed.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| |
Collapse
|
10
|
Jabeen Z, Fayyaz HA, Irshad F, Hussain N, Hassan MN, Li J, Rehman S, Haider W, Yasmin H, Mumtaz S, Bukhari SAH, Khalofah A, Al-Qthanin RN, Alsubeie MS. Sodium nitroprusside application improves morphological and physiological attributes of soybean (Glycine max L.) under salinity stress. PLoS One 2021; 16:e0248207. [PMID: 33861749 PMCID: PMC8051766 DOI: 10.1371/journal.pone.0248207] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
Salinity is among the major abiotic stresses negatively affecting the growth and productivity of crop plants. Sodium nitroprusside (SNP) -an external nitric oxide (NO) donor- has been found effective to impart salinity tolerance to plants. Soybean (Glycine max L.) is widely cultivated around the world; however, salinity stress hampers its growth and productivity. Therefore, the current study evaluated the role of SNP in improving morphological, physiological and biochemical attributes of soybean under salinity stress. Data relating to biomass, chlorophyll and malondialdehyde (MDA) contents, activities of various antioxidant enzymes, ion content and ultrastructural analysis were collected. The SNP application ameliorated the negative effects of salinity stress to significant extent by regulating antioxidant mechanism. Root and shoot length, fresh and dry weight, chlorophyll contents, activities of various antioxidant enzymes, i.e., catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) were improved with SNP application under salinity stress compared to control treatment. Similarly, plants treated with SNP observed less damage to cell organelles of roots and leaves under salinity stress. The results revealed pivotal functions of SNP in salinity tolerance of soybean, including cell wall repair, sequestration of sodium ion in the vacuole and maintenance of normal chloroplasts with no swelling of thylakoids. Minor distortions of cell membrane and large number of starch grains indicates an increase in the photosynthetic activity. Therefore, SNP can be used as a regulator to improve the salinity tolerance of soybean in salt affected soils.
Collapse
Affiliation(s)
- Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Hafiza Asma Fayyaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Faiza Irshad
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, PR China
| | - Nazim Hussain
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, PR China
| | | | - Junying Li
- Bio-Ultrastructure Analysis Laboratory of Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, PR China
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Waseem Haider
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Ahlam Khalofah
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Rahmah N. Al-Qthanin
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Prince Sultan Bin-Abdul-Aziz Center for Environment and Tourism Studies and Researches, King Khalid University, Abha, Saudi Arabia
| | - Moodi Saham Alsubeie
- Biology Department, College of Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Napieraj N, Reda MG, Janicka MG. The role of NO in plant response to salt stress: interactions with polyamines. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:865-879. [PMID: 32522331 DOI: 10.1071/fp19047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity is a major abiotic stress that limits plant growth and productivity. High concentrations of sodium chloride can cause osmotic and ionic effects. This stress minimises a plant's ability to uptake water and minerals, and increases Na+ accumulation in the cytosol, thereby disturbing metabolic processes. Prolonged plant exposure to salt stress can lead to oxidative stress and increased production of reactive oxygen species (ROS). Higher plants developed some strategies to cope with salt stress. Among these, mechanisms involving nitric oxide (NO) and polyamines (PAs) are particularly important. NO is a key signalling molecule that mediates a variety of physiological functions and defence responses against abiotic stresses in plants. Under salinity conditions, NO donors increase growth parameters, reduce Na+ toxicity, maintain ionic homeostasis, stimulate osmolyte accumulation and prevent damages caused by ROS. NO enhances salt tolerance of plants via post-translational protein modifications through S-nitrosylation of thiol groups, nitration of tyrosine residues and modulation of multiple gene expression. Several reviews have reported on the role of polyamines in modulating salt stress plant response and the capacity to enhance PA synthesis upon salt stress exposure, and it is known that NO and PAs interact under salinity. In this review, we focus on the role of NO in plant response to salt stress, paying particular attention to the interaction between NO and PAs.
Collapse
Affiliation(s)
- Natalia Napieraj
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ma Gorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ma Gorzata Janicka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; and Corresponding author.
| |
Collapse
|
12
|
Zhu H, Ai H, Hu Z, Du D, Sun J, Chen K, Chen L. Comparative transcriptome combined with metabolome analyses revealed key factors involved in nitric oxide (NO)-regulated cadmium stress adaptation in tall fescue. BMC Genomics 2020; 21:601. [PMID: 32867669 PMCID: PMC7457814 DOI: 10.1186/s12864-020-07017-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/20/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND It has been reported that nitric oxide (NO) could ameliorate cadmium (Cd) toxicity in tall fescue; however, the underlying mechanisms of NO mediated Cd detoxification are largely unknown. In this study, we investigated the possible molecular mechanisms of Cd detoxification process by comparative transcriptomic and metabolomic approaches. RESULTS The application of Sodium nitroprusside (SNP) as NO donor decreased the Cd content of tall fescue by 11% under Cd stress (T1 treatment), but the Cd content was increased by 24% when treated with Carboxy-PTIO (c-PTIO) together with Nitro-L-arginine methyl ester (L-NAME) (T2 treatment). RNA-seq analysis revealed that 904 (414 up- and 490 down-regulated) and 118 (74 up- and 44 down-regulated) DEGs were identified in the T1 vs Cd (only Cd treatment) and T2 vs Cd comparisons, respectively. Moreover, metabolite profile analysis showed that 99 (65 up- and 34-down- regulated) and 131 (45 up- and 86 down-regulated) metabolites were altered in the T1 vs Cd and T2 vs Cd comparisons, respectively. The integrated analyses of transcriptomic and metabolic data showed that 81 DEGs and 15 differentially expressed metabolites were involved in 20 NO-induced pathways. The dominant pathways were antioxidant activities such as glutathione metabolism, arginine and proline metabolism, secondary metabolites such as flavone and flavonol biosynthesis and phenylpropanoid biosynthesis, ABC transporters, and nitrogen metabolism. CONCLUSIONS In general, the results revealed that there are three major mechanisms involved in NO-mediated Cd detoxification in tall fescue, including (a) antioxidant capacity enhancement; (b) accumulation of secondary metabolites related to cadmium chelation and sequestration; and (c) regulation of cadmium ion transportation, such as ABC transporter activation. In conclusion, this study provides new insights into the NO-mediated cadmium stress response.
Collapse
Affiliation(s)
- Huihui Zhu
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, P.R. China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Honglian Ai
- College of Pharmacy, South-Central University for Nationalities, Wuhan, P.R. China
| | - Zhengrong Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Dongyun Du
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, P.R. China
| | - Jie Sun
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, P.R. China
| | - Ke Chen
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, P.R. China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
13
|
Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Salinity is one of the main constraints for agriculture productivity worldwide. This important abiotic stress has worsened in the last 20 years due to the increase in water demands in arid and semi-arid areas. In this context, increasing tolerance of crop plants to salt stress is needed to guarantee future food supply to a growing population. This review compiles knowledge on the use of phytoprotectants of microbial origin (arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria), osmoprotectants, melatonin, phytohormones and antioxidant metabolism-related compounds as alleviators of salt stress in numerous plant species. Phytoprotectants are discussed in detail, including their nature, applicability, and role in the plant in terms of physiological and phenotype effects. As a result, increased crop yield and crop quality can be achieved, which in turn positively impact food security. Herein, efforts from academic and industrial sectors should focus on defining the treatment conditions and plant-phytoprotectant associations providing higher benefits.
Collapse
|
14
|
Yuan F, Leng B, Zhang H, Wang X, Han G, Wang B. A WD40-Repeat Protein From the Recretohalophyte Limonium bicolor Enhances Trichome Formation and Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1456. [PMID: 31781150 PMCID: PMC6861380 DOI: 10.3389/fpls.2019.01456] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) controls epidermis development, playing opposite roles in trichome differentiation and root hair formation. We isolated and characterized LbTTG1 (encoding a WD40-repeat protein with high sequence similarity to TTG1) from the recretohalophyte Limonium bicolor, which actively excretes absorbed salt via a salt gland. The complete open reading frame of LbTTG1 was 1,095 bp, encoding a protein of 364 amino acids, and showed highest expression during the salt gland initiation stage. We heterologously expressed LbTTG1 in wild type and ttg1-13 Arabidopsis plants to verify the protein's function, and the copies of LbTTG1 were identified in transgenic strains using southern blotting. Trichomes were extremely induced on the first true leaves of plants heterologously expressing LbTTG1, whereas no trichomes were produced by ttg1-13 plants. Conversely, plants heterologously expressing LbTTG1 produced fewer root hairs than ttg1-13 plants. In plants heterologously expressing LbTTG1 compared to controls, epidermis differentiation genes (GLABRA1 and GLABRA3) were up-regulated while genes encoding negative regulators of trichome development (TRIPTYCHON and CAPRICE) were down-regulated. Under increased NaCl concentrations, both of the transgenic lines showed enhanced germination and root length, and accumulated less malondialdehyde (MDA) and Na+ and produced more proline, soluble sugar, and higher glutathione S-transferase activity, compared with the ttg1-13 mutant. These results indicate that LbTTG1 participates in epidermis development in Arabidopsis, similarly to other WD40-repeat proteins, and specifically increases salt tolerance of transgenic Arabidopsis by reducing ion accumulation and increasing osmolyte levels.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, China
| |
Collapse
|
15
|
Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. TREE PHYSIOLOGY 2018; 38:1605-1622. [PMID: 29917117 DOI: 10.1093/treephys/tpy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/01/2018] [Indexed: 05/25/2023]
Affiliation(s)
- Zhi-jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Juan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, PR China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-jun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Gui-feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Mei-rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Zan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Xue-yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Hai-lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
16
|
Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S, Lee IJ. Gibberellins Producing Endophytic Fungus Porostereum spadiceum AGH786 Rescues Growth of Salt Affected Soybean. Front Microbiol 2017; 8:686. [PMID: 28473818 PMCID: PMC5397423 DOI: 10.3389/fmicb.2017.00686] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/04/2017] [Indexed: 01/05/2023] Open
Abstract
In the pursuit of sustainable agriculture through environment and human health friendly practices, we evaluated the potential of a novel gibberellins (GAs) producing basidiomycetous endophytic fungus Porostereum spadiceum AGH786, for alleviating salt stress and promoting health benefits of soybean. Soybean seedlings exposed to different levels of NaCl stress (70 and 140 mM) under greenhouse conditions, were inoculated with the AGH786 strain. Levels of phytohormones including GAs, JA and ABA, and isoflavones were compared in control and the inoculated seedlings to understand the mechanism through which the stress is alleviated. Gibberellins producing endophytic fungi have been vital for promoting plant growth under normal and stress conditions. We report P. spadiceum AGH786 as the ever first GAs producing basidiomycetous fungus capable of producing six types of GAs. In comparison to the so for most efficient GAs producing Gibberella fujikuroi, AGH786 produced significantly higher amount of the bioactive GA3. Salt-stressed phenotype of soybean seedlings was characterized by low content of GAs and high amount of ABA and JA with reduced shoot length, biomass, leaf area, chlorophyll contents, and rate of photosynthesis. Mitigation of salt stress by AGH786 was always accompanied by high GAs, and low ABA and JA, suggesting that this endophytic fungus reduces the effect of salinity by modulating endogenous phytohormones of the seedlings. Additionally, this strain also enhanced the endogenous level of two isoflavones including daidzen and genistein in soybean seedlings under normal as well as salt stress conditions as compared to their respective controls. P. spadiceum AGH786 boosted the NaCl stress tolerance and growth in soybean, by modulating seedlings endogenous phytohormones and isoflavones suggesting a valuable contribution of this potent fungal biofertilizer in sustainable agriculture in salt affected soils.
Collapse
Affiliation(s)
- Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University MardanMardan, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University MardanMardan, Pakistan
| | - Sumera A. Khan
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Ho-Youn Kim
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Abdul L. Khan
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Irshad
- Department of Botany, Abdul Wali Khan University MardanMardan, Pakistan
| | - Amjad Iqbal
- Department of Agriculture, Abdul Wali Khan University MardanMardan, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University MardanMardan, Pakistan
| | - Samin Jan
- Department of Botany, Islamia College University PeshawarPeshawar, Pakistan
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
17
|
Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium nitroprusside;SNP) and a nitric oxide synthesis inhibitor (Nω-nitro-L-arginine methyl ester;L-NAME) on lettuce plants under well watered and drought conditions. Symbiosis 2017. [DOI: 10.1007/s13199-017-0486-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Abstract
This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.
Collapse
|