1
|
Wu H, Wan X, Niu J, Cao Y, Wang S, Zhang Y, Guo Y, Xu H, Xue X, Yao J, Zhu C, Li Y, Li Q, Lu T, Yu H, Jiang W. Enhancing iron content and growth of cucumber seedlings with MgFe-LDHs under low-temperature stress. J Nanobiotechnology 2024; 22:268. [PMID: 38764056 PMCID: PMC11103931 DOI: 10.1186/s12951-024-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.
Collapse
Affiliation(s)
- Hongyang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaoyang Wan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiefei Niu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- Faculty of Medicine, Ludwig- Maximilians-University München, Munich, 81377, Germany
| | - Yidan Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shufang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yayu Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian Xue
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Cuifang Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
2
|
Zhang LY, Yang C, Wu ZC, Zhang XJ, Fan SJ. Comprehensive Time-Course Transcriptome Reveals the Crucial Biological Pathways Involved in the Seasonal Branch Growth in Siberian Elm ( Ulmus pumila). Int J Mol Sci 2023; 24:14976. [PMID: 37834427 PMCID: PMC10573607 DOI: 10.3390/ijms241914976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Timber, the most prevalent organic material on this planet, is the result of a secondary xylem emerging from vascular cambium. Yet, the intricate processes governing its seasonal generation are largely a mystery. To better understand the cyclic growth of vascular tissues in elm, we undertook an extensive study examining the anatomy, physiology, and genetic expressions in Ulmus pumila. We chose three robust 15-year-old elm trees for our study. The cultivars used in this study were collected from the Inner Mongolia Autonomous Region in China and nurtured in the tree farm of Shandong Normal University. Monthly samples of 2-year-old elm branches were taken from the tree from February to September. Marked seasonal shifts in elm branch vascular tissues were observed by phenotypic observation: In February, the cambium of the branch emerged from dormancy, spurring growth. By May, elms began generating secondary xylem, or latewood, recognized by its tiny pores and dense cell structure. From June to August, there was a marked increase in the thickness of the secondary xylem. Transcriptome sequencing provides a potential molecular mechanism for the thickening of elm branches and their response to stress. In February, the tree enhanced its genetic responses to cold and drought stress. The amplified expression of CDKB, CYCB, WOX4, and ARF5 in the months of February and March reinforced their essential role in the development of the vascular cambium in elm. Starting in May, the elm deployed carbohydrates as a carbon resource to synthesize the abundant cellulose and lignin necessary for the formation of the secondary wall. Major genes participating in cellulose (SUC and CESA homologs), xylan (UGD, UXS, IRX9, IRX10, and IRX14), and lignin (PAL, C4H, 4CL, HCT, C3H, COMT, and CAD) biosynthetic pathways for secondary wall formation were up-regulated by May or/and June. In conclusion, our findings provided a foundation for an in-depth exploration of the molecular processes dictating the seasonal growth of elm timber.
Collapse
Affiliation(s)
| | | | | | - Xue-Jie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Ji’nan 250014, China; (L.-Y.Z.); (C.Y.); (Z.-C.W.)
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Ji’nan 250014, China; (L.-Y.Z.); (C.Y.); (Z.-C.W.)
| |
Collapse
|
3
|
Guo Y, Xu H, Chen B, Grünhofer P, Schreiber L, Lin J, Zhao Y. Genome-wide analysis of long non-coding RNAs in shoot apical meristem and vascular cambium in Populus tomentosa. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153759. [PMID: 35820347 DOI: 10.1016/j.jplph.2022.153759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Shoot apical and lateral meristems play essential roles in the formation and development of primary and secondary growth in plants. A delicate regulatory mechanism is needed to maintain homeostatic balance between the primary and secondary growth, as well as the self-renewal of meristems with the rate of cell division and differentiation of new meristems. However, little is known about the roles of long non-coding RNAs (lncRNAs) in the regulation of maintenance and differentiation of primary and secondary growth in Populus, especially in the cambium division and differentiation into secondary xylem. Here, 1298 lncRNAs were identified both in the apical meristem and vascular cambium, with 80 lncRNAs being expressed only in shoot apical meristem and 45 only in vascular cambium. There are 410 differentially expressed lncRNAs in shoot apical meristem and vascular cambium, among which 271 lncRNAs were up-regulated and 139 were down-regulated in cambium. The GO enrichment analysis revealed that differentially expressed lncRNAs mainly influenced the expression of lncRNAs related to the ribosome pathway, plant hormone signal pathway and photosynthesis pathway. The differentially expressed lncRNAs mainly target mRNA through cis-regulation in the vascular cambium. In addition, six key lncRNAs and also their significantly upregulated target genes were identified. Theses target genes are involved in plant secondary metabolites, cellulose and lignin synthesis, hormone and signal transduction. In addition, six key lncRNAs were identified, their significantly upregulated target genes are related to plant secondary metabolites, cellulose and lignin synthesis, hormone and signal transduction. Investigating lncRNA-mRNA interactions, we further found some genes that may be related to the development of vascular cambium, such as domain-containing transcription factors, cellulose synthesis genes, calcium dependent protein kinase 2, cytokinin receptor 1, glycosyl transferase and polyphenol oxidase. Our findings provide new insights into the lncRNA-mRNA networks in the development of vascular cambium of secondary growth in Populus.
Collapse
Affiliation(s)
- Yayu Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Bo Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Paul Grünhofer
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Yuanyuan Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Sanaeifar A, Ye D, Li X, Luo L, Tang Y, He Y. A Spatial-Temporal Analysis of Cellular Biopolymers on Leaf Blight-Infected Tea Plants Using Confocal Raman Microspectroscopy. FRONTIERS IN PLANT SCIENCE 2022; 13:846484. [PMID: 35519809 PMCID: PMC9062664 DOI: 10.3389/fpls.2022.846484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The objective of the present study was to characterize the temporal and spatial variation of biopolymers in cells infected by the tea leaf blight using confocal Raman microspectroscopy. We investigated the biopolymers on serial sections of the infection part, and four sections corresponding to different stages of infection were obtained for analysis. Raman spectra extracted from four selected regions (circumscribing the vascular bundle) were analyzed in detail to enable a semi-quantitative comparison of biopolymers on a micron-scale. As the infection progressed, lignin and other phenolic compounds decreased in the vascular bundle, while they increased in both the walls of the bundle sheath cells as well as their intracellular components. The amount of cellulose and other polysaccharides increased in all parts as the infection developed. The variations in the content of lignin and cellulose in different tissues of an individual plant may be part of the reason for the plant's disease resistance. Through wavelet-based data mining, two-dimensional chemical images of lignin, cellulose and all biopolymers were quantified by integrating the characteristic spectral bands ranging from 1,589 to 1,607 cm-1, 1,087 to 1,100 cm-1, and 2,980 to 2,995 cm-1, respectively. The chemical images were consistent with the results of the semi-quantitative analysis, which indicated that the distribution of lignin in vascular bundle became irregular in sections with severe infection, and a substantial quantity of lignin was detected in the cell wall and inside the bundle sheath cell. In serious infected sections, cellulose was accumulated in vascular bundles and distributed within bundle sheath cells. In addition, the distribution of all biopolymers showed that there was a tylose substance produced within the vascular bundles to prevent the further development of pathogens. Therefore, confocal Raman microspectroscopy can be used as a powerful approach for investigating the temporal and spatial variation of biopolymers within cells. Through this method, we can gain knowledge about a plant's defense mechanisms against fungal pathogens.
Collapse
Affiliation(s)
- Alireza Sanaeifar
- Fujian Colleges and Universities Engineering Research Center of Modern Agricultural Equipment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dapeng Ye
- Fujian Colleges and Universities Engineering Research Center of Modern Agricultural Equipment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoli Li
- Fujian Colleges and Universities Engineering Research Center of Modern Agricultural Equipment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Liubin Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yu Tang
- Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Guo Y, Xu H, Wu H, Shen W, Lin J, Zhao Y. Seasonal changes in cambium activity from active to dormant stage affect the formation of secondary xylem in Pinus tabulaeformis Carr. TREE PHYSIOLOGY 2022; 42:585-599. [PMID: 34505153 DOI: 10.1093/treephys/tpab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding the changing patterns of vascular cambium during seasonal cycles is crucial to reveal the mechanisms that control cambium activity and wood formation, but this area has been underexplored, especially in conifers. Here, we quantified the changing cellular morphology patterns of cambial zones during the active, transition and dormant stages. With the help of toluidine blue and periodic acid-Schiff staining to visualize cell walls and identify their constituents, we observed decreasing cambial cell layers, thickening of newly formed xylem cell walls and increased polysaccharide granules in phloem from June to the following March over the course of our collecting period. Pectin immunofluorescence showed that dormant-stage cambium can produce highly abundant de-esterified homogalacturonan and (1-4)-β-d-galactan epitopes, whereas active cambium can strong accumulate high methylesterified homogalacturonan. Calcofluor white staining and confocal Raman spectroscopy analysis revealed regular changes in the chemical composition of cell walls, such as relative lower cellulose deposition in transition stage in vascular cambium, and higher lignin accumulation was found in dormant stage in secondary xylem. Moreover, real-time quantitative polymerase chain reaction analysis suggested that various IAA (Aux/IAA protein), CesA, CslA and HDZ genes, as well as NAC, PME3 and PME4, may be involved in cambium activities and secondary xylem formation. Taken together, these findings provide new information about cambium activity and cell differentiation in the formation, structure and chemistry in conifers during the active-dormant transition.
Collapse
Affiliation(s)
- Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongyang Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Weiwei Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuanyuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
6
|
Transcriptomic Analysis of Seasonal Gene Expression and Regulation during Xylem Development in “Shanxin” Hybrid Poplar (Populus davidiana × Populus bolleana). FORESTS 2021. [DOI: 10.3390/f12040451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Xylem development is a key process for wood formation in woody plants. To study the molecular regulatory mechanisms related to xylem development in hybrid poplar P. davidiana × P. bolleana, transcriptome analyses were conducted on developing xylem at six different growth stages within a single growing season. Xylem development and differentially expressed genes in the six time points were selected for a regulatory analysis. Xylem development was observed in stem sections at different growth stages, which showed that xylem development extended from the middle of April to early August and included cell expansion and secondary cell wall biosynthesis. An RNA-seq analysis of six samples with three replicates was performed. After transcriptome assembly and annotation, the differentially expressed genes (DEGs) were identified, and a Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and expression analysis of the DEGs were performed on each sample. On average, we obtained >20 million clean reads per sample, which were assembled into 84,733 nonredundant transcripts, of which there were 17,603 unigenes with lengths >1 kb. There were 14,890 genes that were differentially expressed among the six stages. The upregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S1 vs. S2 or S3 vs. S4 and, in GO terms, related to phytohormones in the S1 vs. S2 or S4 vs. S5 comparisons. The downregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S4 vs. S5 or S5 vs. S6 and, in GO terms, related to hormones between S1 vs. S2 or S2 vs. S3. The KEGG pathways in the DEGs related to “phenylpropanoid biosynthesis”, “plant hormone signal transduction” and “starch and sucrose metabolism” were significantly enriched among the different stages. The DEGs related to cell expansion, polysaccharide metabolism and synthesis, lignin synthesis, transcription factors and hormones were identified. The identification of genes involved in the regulation of xylem development will increase our understanding of the molecular regulation of wood formation in trees and, also, offers potential targets for genetic manipulation to improve the properties of wood.
Collapse
|
7
|
Cao PB, Ployet R, Nguyen C, Dupas A, Ladouce N, Martinez Y, Grima-Pettenati J, Marque C, Mounet F, Teulières C. Wood Architecture and Composition Are Deeply Remodeled in Frost Sensitive Eucalyptus Overexpressing CBF/DREB1 Transcription Factors. Int J Mol Sci 2020; 21:ijms21083019. [PMID: 32344718 PMCID: PMC7215815 DOI: 10.3390/ijms21083019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/03/2023] Open
Abstract
Eucalypts are the most planted trees worldwide, but most of them are frost sensitive. Overexpressing transcription factors for CRT-repeat binding factors (CBFs) in transgenic Eucalyptus confer cold resistance both in leaves and stems. While wood plays crucial roles in trees and is affected by environmental cues, its potential role in adaptation to cold stress has been neglected. Here, we addressed this question by investigating the changes occurring in wood in response to the overexpression of two CBFs, taking advantage of available transgenic Eucalyptus lines. We performed histological, biochemical, and transcriptomic analyses on xylem samples. CBF ectopic expression led to a reduction of both primary and secondary growth, and triggered changes in xylem architecture with smaller and more frequent vessels and fibers exhibiting reduced lumens. In addition, lignin content and syringyl/guaiacyl (S/G) ratio increased. Consistently, many genes of the phenylpropanoid and lignin branch pathway were upregulated. Most of the features of xylem remodeling induced by CBF overexpression are reminiscent of those observed after long exposure of Eucalyptus trees to chilling temperatures. Altogether, these results suggest that CBF plays a central role in the cross-talk between response to cold and wood formation and that the remodeling of wood is part of the adaptive strategies to face cold stress.
Collapse
Affiliation(s)
- Phi Bang Cao
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
- Department of Natural Sciences, Hung Vuong University, Nong Trang Ward, Viet Tri City, Phu Tho Province 29000, Vietnam
| | - Raphaël Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Chien Nguyen
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
- Biotechnology and crop protection Department; Northern Mountainous Agriculture and Forestry Science Institute, Phu Tho 29000, Vietnam
| | - Annabelle Dupas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
| | - Nathalie Ladouce
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
| | - Yves Martinez
- CMEAB, IFR40 Pôle de Biotechnologie Végétale, 31320 Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
| | - Christiane Marque
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
| | - Chantal Teulières
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 31320 Castanet-Tolosan, France; (P.B.C.); (R.P.)
- Correspondence:
| |
Collapse
|
8
|
Zhao L, Cai C, Wei C. An image processing method for investigating the morphology of cereal endosperm cells. Biotech Histochem 2019; 95:249-261. [PMID: 31774313 DOI: 10.1080/10520295.2019.1677940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In cereal seeds, the number, morphology and development of endosperm cells are closely related to grain quality, weight and yield. Endosperm cells differ morphologically in different regions of the seed. Nevertheless, it is important to be able to analyze the morphology of cereal endosperm cells. We established an image processing method to enhance the outlines of endosperm cells. The endosperm cell wall was traced precisely using the "pen tool" in Photoshop software (PS). The tracing was defined as the "work path" and was highlighted using the PS "brush tool." Images of mature rice, maize and wheat endosperm sections stained with different methods were analyzed using this method. Combined with the whole sections of mature and developing cereal kernels, the processed image exhibited clearly the morphology of endosperm cells in any region of endosperm and at any stage of endosperm development. The processed image was more accurate and efficient for analyzing morphological characteristics than the unprocessed image.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.,Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Canhui Cai
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.,Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.,Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Zhao Y, Man Y, Wen J, Guo Y, Lin J. Advances in Imaging Plant Cell Walls. TRENDS IN PLANT SCIENCE 2019; 24:867-878. [PMID: 31257154 DOI: 10.1016/j.tplants.2019.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 05/24/2023]
Abstract
Understanding of cell wall architecture, including the crosslinking of cell wall polymers, provides crucial information for elucidating the relationship between cell wall structure and cell function. Moreover, examination of the cell wall informs efforts to improve biomass breakdown in bioreactor conditions. Over the past decades, imaging techniques have been used extensively to reveal the structural organization and chemical composition of cell walls, but detailed imaging of the native composition and architecture of the cell wall remains challenging. Here, we review progress in the development of cell wall imaging techniques. In particular, we focus on several advanced, label-free techniques for imaging cell walls and their potential applications in investigation of the biological functions of plant cell walls.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jialong Wen
- Beijing Key laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Jin K, Liu X, Wang K, Jiang Z, Tian G, Yang S, Shang L, Ma J. Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus × euramericana. PLANTA 2018; 248:849-858. [PMID: 29938358 DOI: 10.1007/s00425-018-2931-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/29/2018] [Indexed: 05/13/2023]
Abstract
Both G units and S units deposited in the whole lignification process of xylem fiber. The topochemical variations in newly formed xylem and phloem of Populus × euramericana were investigated by combined microscopic techniques. During xylem formation, earlier cell wall deposition in vessel and afterwards in the neighboring fiber was observed in situ. Raman images in xylem fiber emphasized that cell wall deposition was an ordered process which lignification started in cell corner following carbohydrates deposition. Higher deposition speed of carbohydrates was revealed at the beginning of the cell wall differentiation, and the syringyl (S) units deposition was more pronounced compared with guaiacyl (G) units at the earlier stage of lignification. The comparative analysis of cell wall composition in phloem fiber indicated that phloem formed earlier than xylem and the distribution of lignin monomers varied significantly with phloem fiber location. Furthermore, an interesting phenomenon was found that the outermost phloem fiber near the periderm displayed a multilayered structure with alternating broad and narrow layer, and the broad lamellae showed higher concentration of carbohydrates and S lignin. The cytological information including cell wall composition and lignin structure of xylem and phloem might be helpful to understand the wood growth progresses and facilitate utilization of woody plants.
Collapse
Affiliation(s)
- Kexia Jin
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xinge Liu
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Kun Wang
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zehui Jiang
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Genlin Tian
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Shumin Yang
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Lili Shang
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Jianfeng Ma
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|