1
|
Subramani M, Urrea CA, Tamatamu SR, Sripathi VR, Williams K, Chintapenta LK, Todd A, Ozbay G. Comprehensive Proteomic Analysis of Common Bean ( Phaseolus vulgaris L.) Seeds Reveal Shared and Unique Proteins Involved in Terminal Drought Stress Response in Tolerant and Sensitive Genotypes. Biomolecules 2024; 14:109. [PMID: 38254709 PMCID: PMC10813106 DOI: 10.3390/biom14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
This study identified proteomic changes in the seeds of two tolerant (SB-DT3 and SB-DT2) and two sensitive (Merlot and Stampede) common bean genotypes in response to terminal drought stress. Differentially expressed proteins (DEPs) were abundant in the susceptible genotype compared to the tolerant line. DEPs associated with starch biosynthesis, protein-chromophore linkage, and photosynthesis were identified in both genotypes, while a few DEPs and enriched biological pathways exhibited genotype-specific differences. The tolerant genotypes uniquely showed DEPs related to sugar metabolism and plant signaling, while the sensitive genotypes displayed more DEPs involved in plant-pathogen interaction, proteasome function, and carbohydrate metabolism. DEPs linked with chaperone and signal transduction were significantly altered between both genotypes. In summary, our proteomic analysis revealed both conserved and genotype-specific DEPs that could be used as targets in selective breeding and developing drought-tolerant common bean genotypes.
Collapse
Affiliation(s)
- Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Carlos A. Urrea
- Panhandle Research Extension and Education Center, University of Nebraska, 4502 Avenue I, Scottsbluff, NE 69361, USA;
| | - Sowjanya R. Tamatamu
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762, USA; (S.R.T.); (V.R.S.)
| | | | - Krystal Williams
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Lathadevi K. Chintapenta
- Biology Department, College of Arts and Sciences (CAS), University of Wisconsin-River Falls, River Falls, WI 54022, USA;
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA; (K.W.); (A.T.)
| | - Gulnihal Ozbay
- Department of Agriculture and Natural Resources, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
2
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
3
|
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, Zargar SM, Mir RA, Khan MA, Mir RR. Proteomics for abiotic stresses in legumes: present status and future directions. Crit Rev Biotechnol 2023; 43:171-190. [PMID: 35109728 DOI: 10.1080/07388551.2021.2025033] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.
Collapse
Affiliation(s)
- Nelofer Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | | | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Faculty of Horticulture, SKUAST-Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Jammu, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| |
Collapse
|
4
|
Lu F, Duan W, Cui Y, Zhang J, Zhu D, Zhang M, Yan Y. 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress. BMC Genomics 2022; 23:369. [PMID: 35568798 PMCID: PMC9107758 DOI: 10.1186/s12864-022-08599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Drought stress is the most limiting factor for plant growth and crop production worldwide. As a major cereal crop, wheat is susceptible to drought. Thus, discovering and utilizing drought-tolerant gene resources from related species are highly important for improving wheat drought resistance. In this study, the drought tolerance of wheat Zhongmai 8601-Thinopyrum intermedium 7XL/7DS translocation line YW642 was estimated under drought stress, and then two-dimensional difference gel electrophoresis (2D-DIGE) based proteome analysis of the developing grains was performed to uncover the drought-resistant proteins. Results The results showed that 7XL/7DS translocation possessed a better drought-tolerance compared to Zhongmai 8601. 2D-DIGE identified 146 differential accumulation protein (DAP) spots corresponding to 113 unique proteins during five grain developmental stages of YW642 under drought stress. Among them, 55 DAP spots corresponding to 48 unique proteins displayed an upregulated expression, which were mainly involved in stress/defense, energy metabolism, starch metabolism, protein metabolism/folding and transport. The cis-acting element analysis revealed that abundant stress-related elements were present in the promoter regions of the drought-responsive protein genes, which could play important roles in drought defense. RNA-seq and RT-qPCR analyses revealed that some regulated DAP genes also showed a high expression level in response to drought stress. Conclusions Our results indicated that Wheat-Th. intermedium 7XL/7DS translocation line carried abundant drought-resistant proteins that had potential application values for wheat drought tolerance improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08599-1.
Collapse
Affiliation(s)
- Fengkun Lu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Wenjing Duan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yue Cui
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Junwei Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Dong Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, 2269 Daxue Road, Heze, 274015, Shandong, China.
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
5
|
Çulha Erdal Ş, Eyidoğan F, Ekmekçi Y. Comparative physiological and proteomic analysis of cultivated and wild safflower response to drought stress and re-watering. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:281-295. [PMID: 33707869 PMCID: PMC7907392 DOI: 10.1007/s12298-021-00934-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/01/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Drought is one of the major environmental stress that adversely affect the growth and development of oil seed plant, safflower. There is a limited knowledge on proteomic responses to support physiological, biochemical changes in how safflowers can regulate growth and metabolism under drought conditions and followed by re-watering. The changes in morphological, physiological, biochemical and proteomics of safflower genotypes (Carthamus tinctorius L.; Remzibey-05 and Linas, tolerant and sensitive cultivars, respectively, and C. oxyacantha M. Bieb., wild type) after exposure to drought and followed by re-watering have been examined. Drought negatively affected the shoot weight, water content, chlorophyll fluorescence, and biochemical parameters, including photosynthetic pigment, proline, MDA, and H2O2 contents and antioxidant enzyme activities in all genotypes, while the re-watering period allowed Remzibey-05 to recover, and it even provided the wild type completely recovered (approximately 100%). A total of 72 protein spots were observed as differently accumulated under treatments. The identified proteins were mainly involved in photosynthesis and carbohydrate, protein, defense, and energy metabolisms. Protein accumulation related to these metabolisms in Remzibey-05 were decreased under drought, while increased following re-watering. However, sensitive cultivar, Linas, could not exhibit an effective performance under drought and recovery when compared with other safflower genotypes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s12298-021-00934-2).
Collapse
Affiliation(s)
- Şeküre Çulha Erdal
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Füsun Eyidoğan
- Faculty of Education, Department of Elementary Education, Başkent University, 06810 Ankara, Turkey
| | - Yasemin Ekmekçi
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Chloroplast proteins involved in drought stress response in selected cultivars of common bean ( Phaseolus vulgaris L.). 3 Biotech 2019; 9:331. [PMID: 31456908 DOI: 10.1007/s13205-019-1862-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022] Open
Abstract
One of the major cell organelles, whose functions are affected during drought stress are chloroplasts. In this study, chloroplast proteome under drought was studied in two cultivars of common bean (Phaseolus vulgaris L), Tiber and more sensitive to drought, Starozagorski čern, which were subjected to drought for 6 and 13 days. A comparative proteomic analysis with 2D-DIGE was performed on the isolated chloroplast proteins from leaves. Together, 44 proteins with changed abundance between control and stressed plants were identified with LC-MS/MS from both cultivars. The majority of the identified proteins were involved in photosynthetic processes. The results showed a decrease in abundance in different structure components of photosystem I and II, and ATP synthase, which may indicate a suppression of light-dependent reactions by drought stress. Similar proteomic response for both cultivars after 6 and 13 days of drought was observed. Proteins with contrasting abundance patterns between the cultivars or proteins specific for only one cultivar, such as ferredoxin-NADP reductase, photosystem II stability/assembly factor HCF136, curvature thylakoid protein 1B, and plastidial membrane protein porin were pointed out as major identified proteins revealing differential abundance between the cultivars. Taken together, our results provide insight into the molecular response of chloroplasts in common bean under drought stress, whereas conclusions about the tolerance mechanisms require further studies.
Collapse
|
7
|
Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J Proteomics 2019; 198:1-10. [DOI: 10.1016/j.jprot.2018.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 02/03/2023]
|
8
|
Identification of Two Novel Wheat Drought Tolerance-Related Proteins by Comparative Proteomic Analysis Combined with Virus-Induced Gene Silencing. Int J Mol Sci 2018; 19:ijms19124020. [PMID: 30545152 PMCID: PMC6321273 DOI: 10.3390/ijms19124020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Drought is a major adversity that limits crop yields. Further exploration of wheat drought tolerance-related genes is critical for the genetic improvement of drought tolerance in this crop. Here, comparative proteomic analysis of two wheat varieties, XN979 and LA379, with contrasting drought tolerance was conducted to screen for drought tolerance-related proteins/genes. Virus-induced gene silencing (VIGS) technology was used to verify the functions of candidate proteins. A total of 335 differentially abundant proteins (DAPs) were exclusively identified in the drought-tolerant variety XN979. Most DAPs were mainly involved in photosynthesis, carbon fixation, glyoxylate and dicarboxylate metabolism, and several other pathways. Two DAPs (W5DYH0 and W5ERN8), dubbed TaDrSR1 and TaDrSR2, respectively, were selected for further functional analysis using VIGS. The relative electrolyte leakage rate and malonaldehyde content increased significantly, while the relative water content and proline content significantly decreased in the TaDrSR1- and TaDrSR2-knock-down plants compared to that in non-knocked-down plants under drought stress conditions. TaDrSR1- and TaDrSR2-knock-down plants exhibited more severe drooping and wilting phenotypes than non-knocked-down plants under drought stress conditions, suggesting that the former were more sensitive to drought stress. These results indicate that TaDrSR1 and TaDrSR2 potentially play vital roles in conferring drought tolerance in common wheat.
Collapse
|
9
|
Mora L, Gallego M, Toldrá F. New approaches based on comparative proteomics for the assessment of food quality. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Li P, Zhang Y, Wu X, Liu Y. Drought stress impact on leaf proteome variations of faba bean ( Vicia faba L.) in the Qinghai-Tibet Plateau of China. 3 Biotech 2018; 8:110. [PMID: 29430371 PMCID: PMC5797714 DOI: 10.1007/s13205-018-1088-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022] Open
Abstract
Water scarcity is a major abiotic stress factor that strongly influences growth, development and yield of grain legumes in arid and semi-arid area of the world. Drought stress frequently occurs during the seedling stage and finally affects yield of faba bean (Vicia faba L.). However, the responses of plant leaf to drought have not been documented very well at the proteomic level. "Ga da dou" of the drought-tolerant faba bean cultivar was exposed to drought to examine the proteome changes of leaves. In this study, 2-week-old seedlings were subjected to water deficit by 7 days drought stress, whereas control plants were regularly irrigated. After withdrawing water, plants exposed to drought for 7 days and control plants at the same developmental stage were included in quantitative proteomic analysis using two-dimensional electrophoresis gels of proteins in combination with mass spectrometry. Over 300 proteins were detected by 2-DE, 50 differentially expressed proteins were detected by t test and 30 proteins were successfully identified by MALDI-TOF/TOF, in which 25 proteins were clearly downregulated and five proteins were upregulated. The quantified proteins were grouped into five functional groups, mainly regulatory proteins (46.7%), energy metabolism (23.3%), cell cytoskeleton (6.7%), other functions (20%) and unknown function (3.3%). Chitinase was upregulated under drought, suggesting that it was an important part of the plant defense system, playing an important role in stress resistance. 50S ribosomal protein was upregulated under drought, suggesting its role in protecting plants against stress by re-establishing normal protein conformations. The abundance of proteins involved in protein synthesis such as chitinase, Bet protein and glutamate-glyoxylate aminotransferase was upregulated under drought stress. These proteins could play important roles in drought tolerance and contribute to the relatively stronger drought tolerance of "Ga da dou".
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai China
- Qinghai Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Xining, People’s Republic of China
| | - Yanxia Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xuexia Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai China
- Qinghai Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Xining, People’s Republic of China
| |
Collapse
|
11
|
Zadražnik T, Moen A, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Towards a better understanding of protein changes in common bean under drought: A case study of N-glycoproteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:400-412. [PMID: 28711789 DOI: 10.1016/j.plaphy.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Drought is one of the major abiotic stress conditions limiting crop growth and productivity. Glycosylation of proteins is very important post-translational modification that is involved in many physiological functions and biological pathways. To understand the involvement of N-glycoproteins in the mechanism of drought response in leaves of common bean, a proteomic approach using lectin affinity chromatography, SDS-PAGE and LC-MS/MS was applied. Quantification of N-glycoproteins was performed using MaxQuant with a label free quantification approach. Thirty five glycoproteins were changed in abundance in leaves of common bean under drought. The majority of these proteins were classified into functional groups that include cell wall processes, defence/stress related proteins and proteins related to proteolysis. Beta-glucosidase showed the highest increase in abundance among proteins involved in cell wall metabolism, suggesting its role in cell wall modification under drought stress. These results fit with the general concept of the stress response in plants and suggest that drought stress might affect biochemical metabolism in the cell wall. The structures of N-glycans were determined manually from spectra, where structures of high mannose, complex and hybrid types of N-glycans were found. The present study provided an insight into the glycoproteins related to drought stress in common bean at the proteome level, which is important for further understanding of molecular mechanisms of drought response in this important legume.
Collapse
Affiliation(s)
- Tanja Zadražnik
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia.
| | - Anders Moen
- University of Oslo, Department of Molecular Biosciences, 0316 Oslo, Norway
| | | | - Vladimir Meglič
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia
| | | |
Collapse
|