1
|
Ye X, Wang Z, van Bruggen R, Li XM, Zhang Y, Chen J. Low-intensity pulsed ultrasound enhances neurite growth in serum-starved human neuroblastoma cells. Front Neurosci 2023; 17:1269267. [PMID: 38053610 PMCID: PMC10694225 DOI: 10.3389/fnins.2023.1269267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Low-intensity pulsed ultrasound (LIPUS) is a recognized tool for promoting nerve regeneration and repair; however, the intracellular mechanisms of LIPUS stimulation remain underexplored. Method The present study delves into the effects of varying LIPUS parameters, namely duty cycle, spatial average-temporal average (SATA) intensity, and ultrasound amplitude, on the therapeutic efficacy using SK-N-SH cells cultured in serum-starved conditions. Four distinct LIPUS settings were employed: (A) 50 mW/cm2, 40%, (B) 25 mW/cm2, 10%, (C) 50 mW/cm2, 20%, and (D) 25 mW/cm2, 10%. Results Immunochemistry analysis exhibited neurite outgrowth promotion in all LIPUS-treated groups except for Group D. Further, LIPUS treatment was found to successfully promote brain-derived neurotrophic factor (BDNF) expression and enhance the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, protein kinase B (Akt), and mammalian target of rapamycin (mTOR) signaling pathways, as evidenced by western blot analysis. Discussion The study suggests that the parameter combination of LIPUS determines the therapeutic efficacy of LIPUS. Future investigations should aim to optimize these parameters for different cell types and settings and delve deeper into the cellular response mechanism to LIPUS treatment. Such advancements may aid in tailoring LIPUS treatment strategies to specific therapeutic needs.
Collapse
Affiliation(s)
- Xuanjie Ye
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Zitong Wang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rebekah van Bruggen
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Phan TN, Fan CH, Yeh CK. Application of Ultrasound to Enhancing Stem Cells Associated Therapies. Stem Cell Rev Rep 2023:10.1007/s12015-023-10546-w. [PMID: 37119453 DOI: 10.1007/s12015-023-10546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Pluripotent stem cell therapy exhibits self-renewal capacity and multi-directional differentiation potential and is considered an important regenerative approach for the treatment of several diseases. However, insufficient cell transplantation efficiency, uncontrollable differentiation, low cell viability, and difficult tracing limit its clinical applications and treatment outcome. Ultrasound (US) has mechanical, cavitation, and thermal effects that can produce different biological effects on organs, tissues, and cells. US can be combined with different US-responsive particles for enhanced physical-chemical stimulation and drug delivery. In the meantime, US also can provide a noninvasive and harmless imaging modality for deep tissue in vivo. An in-depth evaluation of the role and mechanism of action of US in stem cell therapy would enhance understanding of US and encourage research in this field. In this article, we comprehensively review progress in the application of US alone and combined with US-responsive particles for the promotion of proliferation, differentiation, migration, and in vivo detection of stem cells and the potential clinical applications.
Collapse
Affiliation(s)
- Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
da Silva ANG, de Oliveira JRS, Madureira ÁNDM, Lima WA, Lima VLDM. Biochemical and Physiological Events Involved in Responses to the Ultrasound Used in Physiotherapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2417-2429. [PMID: 36115728 DOI: 10.1016/j.ultrasmedbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic ultrasound (TUS) is the ultrasound modality widely used in physical therapy for the treatment of acute and chronic injuries of various biological tissues. Its thermal and mechanical effects modify the permeability of the plasma membrane, the flow of ions and molecules and cell signaling and, in this way, promote the cascade of physiological events that culminate in the repair of injuries. This article is a review of the biochemical and physiological effects of TUS with parameters commonly used by physical therapists. Integrins can translate the mechanical signal of the TUS into a cellular biochemical signal for protein synthesis and modification of the active site of enzymes, so cell function and metabolism are modified. TUS also alters the permeability of the plasma membrane, allowing the influx of ions and molecules that modulate the cellular electrochemical signaling pathways. With biochemical and electrochemical signals tampered with, the cellular response to damage is then modified or enhanced. Greater release of pro-inflammatory factors, cytokines and growth factors, increased blood flow and activation of protein kinases also seem to be involved in the therapeutic response of TUS. Although a vast number of publications describe the mechanisms by which TUS can interact with the biological system, little is known about the metabolic possibilities of TUS because of the lack of standardization in its application.
Collapse
Affiliation(s)
- Ayala Nathaly Gomes da Silva
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Ricardhis Saturnino de Oliveira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Álvaro Nóbrega de Melo Madureira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Wildberg Alencar Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
4
|
Babaei M, Jamshidi N, Amiri F, Rafienia M. Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: An in vitro study. J Tissue Eng Regen Med 2022; 16:812-824. [PMID: 35689535 DOI: 10.1002/term.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Menisci are fibrocartilaginous structures in the knee joint with an inadequate regenerative capacity, which causes low healing potential and further leads to osteoarthritis. Recently, three-dimensional (3D) printing techniques and ultrasound treatment have gained plenty of attention for meniscus tissue engineering. The present study investigates the effectiveness of low-intensity pulsed ultrasound stimulations (LIPUS) on the proliferation, viability, morphology, and gene expression of the chondrocytes seeded on 3D printed polyurethane scaffolds dip-coated with gellan gum, hyaluronic acid, and glucosamine. LIPUS stimulation was performed at 100, 200, and 300 mW/cm2 intensities for 20 min/day. A faster gap closure (78.08 ± 2.56%) in the migration scratch assay was observed in the 200 mW/cm2 group after 24 h. Also, inverted microscopic and scanning electron microscopic images showed no cell morphology changes during LIPUS exposure at different intensities. The 3D cultured chondrocytes under LIPUS treatment revealed a promotion in cell proliferation rate and viability as the intensity doses increased. Additionally, LIPUS could stimulate chondrocytes to overexpress the aggrecan and collagen II genes and improve their chondrogenic phenotype. This study recommends that the combination of LIPUS treatment and 3D hybrid scaffolds can be considered as a valuable treatment for meniscus regeneration based on our in vitro data.
Collapse
Affiliation(s)
- Melika Babaei
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nima Jamshidi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Farshad Amiri
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| |
Collapse
|
5
|
Jia Y, Xu J, Shi Q, Zheng L, Liu M, Wang M, Li P, Fan Y. Study on the effects of alternating capacitive electric fields with different frequencies on promoting wound healing. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
6
|
Chauvel-Picard J, Gourmet R, Vercherin P, Béra JC, Gleizal A. Stimulation of dental implant osseointegration by low-Intensity pulsed ultrasound: An in vivo preliminary study in a porcine model. J Prosthodont Res 2022; 66:639-645. [PMID: 35135957 DOI: 10.2186/jpr.jpr_d_21_00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSES Several studies have evaluated the interest of Low Intensity Pulsed Ultrasound (LIPUS) in the osseointegration of dental implants in murine or rabbit models. However, the thinness and narrowness bones make it difficult to study the effect of LIPUS. The purpose of this study is to assess the ability of LIPUS to stimulate bone formation in contact with a titanium dental implant in a porcine model. METHODS Eight adults mini-pigs were used. An implant is placed on each tibial crest in the metaphysis. The right side was treated with LIPUS at 1 MHz and 300 mW/cm2 of acoustic intensity during 15 minutes per day on 5 consecutive days and during 42 days. The left side was not treated. The Bone Volume/Total Volume ratio (BV/TV), the Intersection Surface (IS) of the volume of interest by the binarized bone and the Trabecular bone Thickness (TbTh) around the implant were analyzed. RESULTS At 42 days, BV/TV ratio is significantly higher on the treated side (42,1+/-8,76% versus 32,31+/-10,11%, p < 0,02); as well as TbTh with 0,13+/-0,01 mm versus 0,10+/-0,01 mm (p < 0,01). IS is also significantly higher on the treated side (40,7 +/- 12,68 mm2 versus 33,68+/-9,44 mm2 at 200 μm from the implant surface; p < 0,01). CONCLUSION The present study showed that LIPUS can significantly increase bone formation and accelerate the healing process at the bone-implant interface in a porcine model. Its low toxicity, low immunogenicity and non-invasion make it a complementary treatment of choice for improving the bone formation around titanium implants.
Collapse
Affiliation(s)
- Julie Chauvel-Picard
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, France.,Université Jean Monnet Saint-Etienne, France
| | - René Gourmet
- INSERM, National Institute of Health and Medical Research, Unit 1032, Lab of Therapeutic Applications of Ultrasound, France
| | - Paul Vercherin
- Public Health department, Centre Hospitalo-Universitaire Nord, France
| | - Jean-Christophe Béra
- INSERM, National Institute of Health and Medical Research, Unit 1032, Lab of Therapeutic Applications of Ultrasound, France
| | - Arnaud Gleizal
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, France.,Université Jean Monnet Saint-Etienne, France
| |
Collapse
|
7
|
Ueno M, Maeshige N, Hirayama Y, Yamaguchi A, Ma X, Uemura M, Kondo H, Fujino H. Pulsed ultrasound prevents lipopolysaccharide-induced muscle atrophy through inhibiting p38 MAPK phosphorylation in C2C12 myotubes. Biochem Biophys Res Commun 2021; 570:184-190. [PMID: 34293592 DOI: 10.1016/j.bbrc.2021.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Inflammation contributes to skeletal muscle atrophy via protein degradation induced by p38 mitogen-activated protein kinase (MAPK) phosphorylation. Meanwhile, pulsed ultrasound irradiation provides the mechanical stimulation to the target tissue, and has been reported to show anti-inflammatory effects. This study investigated the preventive effects of pulsed ultrasound irradiation on muscle atrophy induced by lipopolysaccharide (LPS) in C2C12 myotubes. METHODS C2C12 myotubes were used in this research. The pulsed ultrasound (a frequency of 3 MHz, duty cycle of 20%, intensity of 0.5 W/cm2) was irradiated to myotube before LPS administration. RESULTS The LPS increased phosphorylation of p38 MAPK and decreased the myofibril and myosin heavy chain protein (P < 0.05), followed by atrophy in C2C12 myotubes. The pulsed ultrasound irradiation attenuated p38 MAPK phosphorylation and myotube atrophy induced by LPS (P < 0.05). CONCLUSIONS Pulsed ultrasound irradiation has the preventive effects on inflammation-induced muscle atrophy through inhibiting phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Mizuki Ueno
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Hirayama
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
8
|
Alishahedani ME, Yadav M, McCann KJ, Gough P, Castillo CR, Matriz J, Myles IA. Therapeutic candidates for keloid scars identified by qualitative review of scratch assay research for wound healing. PLoS One 2021; 16:e0253669. [PMID: 34143844 PMCID: PMC8213172 DOI: 10.1371/journal.pone.0253669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The scratch assay is an in vitro technique used to analyze cell migration, proliferation, and cell-to-cell interaction. In the assay, cells are grown to confluence and then ‘scratched’ with a sterile instrument. For the cells in the leading edge, the resulting polarity induces migration and proliferation in attempt to ‘heal’ the modeled wound. Keloid scars are known to have an accelerated wound closure phenotype in the scratch assay, representing an overactivation of wound healing. We performed a qualitative review of the recent literature searching for inhibitors of scratch assay activity that were already available in topical formulations under the hypothesis that such compounds may offer therapeutic potential in keloid treatment. Although several shortcomings in the scratch assay literature were identified, caffeine and allicin successfully inhibited the scratch assay closure and inflammatory abnormalities in the commercially available keloid fibroblast cell line. Caffeine and allicin also impacted ATP production in keloid cells, most notably with inhibition of non-mitochondrial oxygen consumption. The traditional Chinese medicine, shikonin, was also successful in inhibiting scratch closure but displayed less dramatic impacts on metabolism. Together, our results partially summarize the strengths and limitations of current scratch assay literature and suggest clinical assessment of the therapeutic potential for these identified compounds against keloid scars may be warranted.
Collapse
Affiliation(s)
- Mohammadali E. Alishahedani
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Manoj Yadav
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Katelyn J. McCann
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Portia Gough
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Carlos R. Castillo
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Jobel Matriz
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
de Lucas B, Pérez LM, Bernal A, Gálvez BG. Application of low-intensity pulsed therapeutic ultrasound on mesenchymal precursors does not affect their cell properties. PLoS One 2021; 16:e0246261. [PMID: 33571276 PMCID: PMC7877602 DOI: 10.1371/journal.pone.0246261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ultrasound is considered a safe and non-invasive tool in regenerative medicine and has been used in the clinic for more than twenty years for applications in bone healing after the approval of the Exogen device, also known as low-intensity pulsed ultrasound (LIPUS). Beyond its effects on bone health, LIPUS has also been investigated for wound healing of soft tissues, with positive results for various cell processes including cell proliferation, migration and angiogenesis. As LIPUS has the potential to treat chronic skin wounds, we sought to evaluate the effects produced by a conventional therapeutic ultrasound device at low intensities (also considered LIPUS) on the migration capacity of mouse and human skin mesenchymal precursors (s-MPs). Cells were stimulated for 3 days (20 minutes per day) using a traditional ultrasound device with the following parameters: 100 mW/cm2 with 20% duty cycle and frequency of 3 MHz. At the parameters used, ultrasound failed to affect s-MP proliferation, with no evident changes in morphology or cell groupings, and no changes at the cytoskeletal level. Further, the migration and invasion ability of s-MPs were unaffected by the ultrasound protocol, and no major changes were detected in the gene/protein expression of ROCK1, integrin β1, laminin β1, type I collagen and transforming growth factor β1. Finally, RNA-seq analysis revealed that only 10 genes were differentially expressed after ultrasound stimulation. Among them, 5 encode for small nuclear RNAs and 2 encode for proteins belonging to the nuclear pore complex. Considering the results overall, while the viability of s-MPs was not affected by ultrasound stimulation and no changes were detected in proliferation/migration, RNA-seq analysis would suggest that s-MPs do respond to ultrasound. The use of 100 mW/cm2 intensity or conventional therapeutic ultrasound devices might not be optimal for the stimulation the properties of cell populations. Future studies should investigate the potential application of ultrasound using variations of the tested parameters.
Collapse
Affiliation(s)
- Beatriz de Lucas
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Laura M. Pérez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz G. Gálvez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Perrucini PDDO, Oliveira RFD, Medeiros FBPD, Bertin LD, Pires-Oliveira DADA, Frederico RCP. Ultrasonic therapy modulates the expression of genes related to neovascularization and inflammation in fibroblasts. FISIOTERAPIA EM MOVIMENTO 2021. [DOI: 10.1590/fm.2021.34112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: In the rehabilitation of musculoskeletal injuries, ultrasound is widely used in clinical practice. Objective: To evaluate the effects of pulsed ultrasonic therapy on the viability and modulation of genes involved in inflammation (IL-6) and neovascularization (VEGF) processes of L929 fibroblast cells. Methods: For irradiation with ultrasound the cells were subdivided into groups: G1 (without irradiation), G2 (0.3 W/cm2-20%) and G3 (0.6 W/cm2-20%), with periods of treatment at 24, 48 and 72 hours. The cell viability assay was analyzed by the MTT method and gene modulation was analyzed by RT-qPCR method. Results: After the comparative analysis between groups, only G2 and G3 (48-hour) presented statistically significant differences in relation to the control. In relation to the gene expression, the selection of the groups analyzed was delimited according to the comparative analysis of the values obtained by the MTT test. After the achievement of RT-qPCR, it could be observed that in G2 the amount of VEGF gene transcripts increased by 1.125-fold compared to endogenous controls, and increased 1.388-fold in G3. The IL-6 gene, on the other hand, had its transcripts reduced in both G2 (5.64x10-9) and G3 (1.91x10-6). Conclusion: Pulsed ultrasound in L929 fibroblasts showed a significant biostimulatory effect in the 48-hour period, with increased cell viability, and the same effect in the modulation of gene expression related the neovascularization and inflammation, mediating the acceleration of the tissue repair cascade.
Collapse
|
11
|
Aibara Y, Nakashima A, Kawano KI, Yusoff FM, Mizuki F, Kishimoto S, Kajikawa M, Maruhashi T, Higashi Y. Daily Low-intensity Pulsed Ultrasound Ameliorates Renal Fibrosis and Inflammation in Experimental Hypertensive and Diabetic Nephropathy. Hypertension 2020; 76:1906-1914. [PMID: 33131306 DOI: 10.1161/hypertensionaha.120.15237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The estimated morbidity rate of chronic kidney disease is 8% to 16% worldwide, and many patients with chronic kidney disease eventually develop renal failure. Thus, the development of new therapeutic strategies for preventing renal failure is crucial. In this study, we assessed the effects of daily low-intensity pulsed ultrasound (LIPUS) therapy on experimental hypertensive nephropathy and diabetic nephropathy. Unilateral nephrectomy and subcutaneous infusion of angiotensin II via osmotic mini-pumps were used to induce hypertensive nephropathy in mice. Immunohistochemistry revealed that daily LIPUS treatment ameliorated renal fibrosis and infiltration of inflammatory cells induced by angiotensin II. A similar therapeutic effect was also observed in mice with angiotensin II-induced hypertensive nephropathy in which splenectomy was performed. In addition, LIPUS treatment significantly decreased systolic blood pressure after 21 days. Subsequently, db/db mice with unilateral nephrectomy developed proteinuria; daily LIPUS treatment significantly reduced proteinuria after 42 days. In addition, immunohistochemistry revealed that renal fibrosis was significantly ameliorated by LIPUS treatment. Finally, LIPUS stimulation suppressed TGF-β1 (transforming growth factor-β1)-induced phosphorylation of Smad2 and Smad3 in HK-2 (human proximal tubular cell line) cells. LIPUS treatment may be a useful therapy for preventing the progression of renal fibrosis in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yoshiki Aibara
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Ayumu Nakashima
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University.,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences (A.N.), Hiroshima University
| | - Ki-Ichiro Kawano
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Farina Mohamad Yusoff
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Fumitaka Mizuki
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Shinji Kishimoto
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital (M.K., Y.H.)
| | - Tatsuya Maruhashi
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University
| | - Yukihito Higashi
- From the Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (Y.A., A.N., K.-i.K., F.M.Y., F.M., S.K., T.M., Y.H.), Hiroshima University.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital (M.K., Y.H.)
| |
Collapse
|
12
|
Chauvel-Picard J, Korn P, Corbin S, Brosset S, Bera JC, Gleizal A. Stimulation of oral mucosal regeneration by low intensity pulsed ultrasound: an in vivo study in a porcine model. J Prosthodont Res 2020; 65:46-51. [PMID: 32938859 DOI: 10.2186/jpr.jpor_2019_345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Many studies have shown the ability of low intensity pulsed ultrasound (LIPUS) to stimulate the bone, cartilage and tendon regeneration but only a few studied LIPUS interest in the regeneration of the oral mucosa. The purpose of this study is to assess the ability of LIPUS to stimulate the regeneration of the palatal mucosa in a porcine model. METHODS Ten adults mini-pigs were used. Two mucosal wounds were realised on the left and right side of the palate of each pig. The right side was treated with LIPUS at 1 MHz of frequency and 300 mW/cm2 of acoustic intensity. The left side was not treated. The morphology of the wound was evaluated using a polymer silicone molding. RESULTS The difference between two sides was significant from day 7 with a p value < 0.0001. At day 21, the wound is completely healed on all pigs with LIPUS. The control soft tissue defect exposed a healing of 80%. CONCLUSIONS The present study showed that the use of LIPUS on the oral mucosa accelerates the healing of the masticatory mucosa.
Collapse
Affiliation(s)
- Julie Chauvel-Picard
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, Avenue Albert Raimond, 42000 SAINT-ETIENNE.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität in Berlin
| | - Sara Corbin
- Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne.,Lyon Public Health Association, Hôpital Edouard Herriot, 5 place d'Arsonval, 69437 LYON CEDEX 03
| | - Sophie Brosset
- Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne.,Department of Plastic and Reconstructive Surgery, Hôpital Croix Rousse, 103 Grande Rue de la Croix Rousse, 69004 LYON
| | - Jean-Christophe Bera
- INSERM, National Institute of Health and Medical Research, Unit 1032, 151 Cours Albert Thomas 69424 LYON CEDEX 03
| | - Arnaud Gleizal
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, Avenue Albert Raimond, 42000 SAINT-ETIENNE.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne.,INSERM, National Institute of Health and Medical Research, Unit 1032, 151 Cours Albert Thomas 69424 LYON CEDEX 03
| |
Collapse
|
13
|
de Lucas B, Pérez LM, Bernal A, Gálvez BG. Ultrasound Therapy: Experiences and Perspectives for Regenerative Medicine. Genes (Basel) 2020; 11:genes11091086. [PMID: 32957737 PMCID: PMC7563547 DOI: 10.3390/genes11091086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Ultrasound has emerged as a novel tool for clinical applications, particularly in the context of regenerative medicine. Due to its unique physico-mechanical properties, low-intensity ultrasound (LIUS) has been approved for accelerated fracture healing and for the treatment of established non-union, but its utility has extended beyond tissue engineering to other fields, including cell regeneration. Cells and tissues respond to acoustic ultrasound by switching on genetic repair circuits, triggering a cascade of molecular signals that promote cell proliferation, adhesion, migration, differentiation, and extracellular matrix production. LIUS also induces angiogenesis and tissue regeneration and has anti-inflammatory and anti-degenerative effects. Accordingly, the potential application of ultrasound for tissue repair/regeneration has been tested in several studies as a stand-alone treatment and, more recently, as an adjunct to cell-based therapies. For example, ultrasound has been proposed to improve stem cell homing to target tissues due to its ability to create a transitional and local gradient of cytokines and chemokines. In this review, we provide an overview of the many applications of ultrasound in clinical medicine, with a focus on its value as an adjunct to cell-based interventions. Finally, we discuss the various preclinical and clinical studies that have investigated the potential of ultrasound for regenerative medicine.
Collapse
Affiliation(s)
- Beatriz de Lucas
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Laura M. Pérez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain;
| | - Beatriz G. Gálvez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
- Correspondence:
| |
Collapse
|
14
|
Floy ME, Mateyka TD, Foreman KL, Palecek SP. Human pluripotent stem cell-derived cardiac stromal cells and their applications in regenerative medicine. Stem Cell Res 2020; 45:101831. [PMID: 32446219 PMCID: PMC7931507 DOI: 10.1016/j.scr.2020.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is one of the leading causes of death in the United States. Recent advances in stem cell biology have led to the development and engineering of human pluripotent stem cell (hPSC)-derived cardiac cells and tissues for application in cellular therapy and cardiotoxicity studies. Initial studies in this area have largely focused on improving differentiation efficiency and maturation states of cardiomyocytes. However, other cell types in the heart, including endothelial and stromal cells, play crucial roles in cardiac development, injury response, and cardiomyocyte function. This review discusses recent advances in differentiation of hPSCs to cardiac stromal cells, identification and classification of cardiac stromal cell types, and application of hPSC-derived cardiac stromal cells and tissues containing these cells in regenerative and drug development applications.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Lucchetti D, Perelli L, Colella F, Ricciardi-Tenore C, Scoarughi GL, Barbato G, Boninsegna A, De Maria R, Sgambato A. Low-intensity pulsed ultrasound affects growth, differentiation, migration, and epithelial-to-mesenchymal transition of colorectal cancer cells. J Cell Physiol 2020; 235:5363-5377. [PMID: 31967331 DOI: 10.1002/jcp.29423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Ultrasound (US) offers potentially important opportunities from a therapeutic point of view. Thus, the study of the biological effects of US on cancer cells is important to understand the consequences of these changes on the malignant phenotype. This study aimed to investigate the effects of low-intensity ultrasound (LIPUS) on the phenotype of colorectal cancer cell lines. Cell proliferation was evaluated by viability test and by evaluation of pERK expression, while cell motility using the scratch test. Cell differentiation was evaluated assessing alkaline phosphatase activity. Epithelial mesenchymal transition was assessed by analyzing the expression of Vimentin and E-Cadherin. Release and uptake of extracellular vesicles (EVs) were evaluated by flow cytometry. LIPUS effects on the organization of cytoskeleton were analyzed by confocal microscopy and by evaluation of Rho GTPase expression. No alterations in vitality and clonogenicity were observed when the intermediate (0.4 MPa) and the lowest (0.035 MPa) acoustic intensities were administered while the treatment with high intensity (1 MPa) induced a reduction of both cell viability and clonogenicity in both cell lines in a frequency-dependent manner. LIPUS promoted the differentiation of colon cancer cells, affected epithelial-to-mesenchymal transition, promoted the closure of a wound as well as increased the release of EVs compared with untreated cells. LIPUS-induced increase in cell motility was likely due to a Rho GTPase-dependent mechanism. Overall, the results obtained warrant further studies on the potential combined effect of LIPUS with differentiating agents and on their potential use in a clinical setting.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luigi Perelli
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Filomena Colella
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | | | - Alma Boninsegna
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.,Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
16
|
Jiang X, Savchenko O, Li Y, Qi S, Yang T, Zhang W, Chen J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans Biomed Eng 2019; 66:2704-2718. [DOI: 10.1109/tbme.2018.2889669] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Postoperative Physiotherapy After Open Temporomandibular Joint Surgery: A 3-Step Program. J Oral Maxillofac Surg 2019; 77:932-950. [DOI: 10.1016/j.joms.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/30/2022]
|
18
|
Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-κB-mediated matrix metalloproteinase-13 expression. Chin J Nat Med 2018; 16:330-338. [PMID: 29860993 DOI: 10.1016/s1875-5364(18)30064-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/25/2022]
Abstract
Fibroblast-like synoviocytes (FLS) play a pivotal role in Rheumatoid arthritis (RA) pathogenesis through aggressive migration and invasion. Madecassoside (Madec), a triterpenoid saponin present in Centella asiatica herbs, has a potent anti-inflammatory effect. In the present study, Madec exerted an obvious therapeutic effect in reversing the histological lesions in adjuvant-induced arthritis (AIA) rats. To recognize the anti-rheumatoid potentials of Madec, we further investigated whether Madec interfered with FLS invasion and metalloproteinase (MMP) expression. In cultures of primary FLS isolated from the AIA rats, Madec (10 and 30 μmol·L-1) was proven to considerably inhibit migration and invasion of FLS induced by interleukin 1β (IL-1β), but exhibiting no obvious effect on cell proliferation. Madec repressed IL-1β-triggered FLS invasion by prohibiting the expression of MMP-13. Additionally, Madec suppressed MMP-13 transcription via inhibiting the MMP-13 promoter-binding activity of NF-κB. Our results further showed that Madec down-regulated the translocation and phosphorylation of NF-κB as demonstrated by Western blotting and immunofluorescence assays. In conclusion, our results suggest that Madec exerts anti-RA activity via inhibiting the NF-κB/MMP-13 pathway.
Collapse
|
19
|
Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, Nilforoushzadeh MA, Saeb MR, Hamblin MR, Mozafari M. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine (Lond) 2017; 12:2403-2422. [DOI: 10.2217/nnm-2017-0173] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skin is the outermost covering of the human body and at the same time the largest organ comprising 15% of body weight and 2 m2 surface area. Skin plays a key role as a barrier against the outer environment depending on its thickness, color and structure, which differ from one site to another. The four major types of problematic wounds include ulcers (diabetic, venous, pressure) and burn wounds. Developing novel dressings helps us to improve the wound healing process in difficult patients. Recent advances in regenerative medicine and nanotechnology are revolutionizing the field of wound healing. Antimicrobial activity, exogenous cell therapy, growth factor delivery, biodegradable and biocompatible matrix construction, all play a role in hi-tech dressing design. In the present review, we discuss how the principles of regenerative medicine and nanotechnology can be combined in innovative wound dressings.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Saeed Manouchehri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhaleh Atoufi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Anahita Amiri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin & Additives, Institute for Color Science & Technology, P.O. Box 16765–654, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Masoud Mozafari
- Nanotechnology & Advanced Materials Department, Materials & Energy Research Center (MERC), Tehran, Iran
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zhao X, Zhao G, Shi Z, Zhou C, Chen Y, Hu B, Yan S. Low-intensity pulsed ultrasound (LIPUS) prevents periprosthetic inflammatory loosening through FBXL2-TRAF6 ubiquitination pathway. Sci Rep 2017; 7:45779. [PMID: 28378753 PMCID: PMC5381120 DOI: 10.1038/srep45779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that Low intensity pulsed ultrasound(LIPUS) prevents polyethylene-debris-induced periprosthetic loosening in vivo, but the details of the mechanism by which it does so remain unclear. In this article, we used polyethylene debris induced RAW 264.7 cells as the in vitro model, and tested the effect of LIPUS on this model. Changes in the level of inflammatory cytokines, cell proliferation, and apoptosis were assessed. Gene overexpression and siRNA technique were applied, and the levels of expression of FBXL2, TRAF6, ERK, and related inflammatory cytokines were also measured. Results indicated that FBXL2-mediated TRAF6 ubiquitination and degradation also plays an important role in aseptic periprosthetic loosening process, and LIPUS prevents such loosening by strengthening this pathway.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Gangsheng Zhao
- Department of Orthopaedic Surgery, Yiwu Central Hospital, the affiliated hospital of Wenzhou Medical College, Yiwu, China
| | - Zhongli Shi
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Chenhe Zhou
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Yunlin Chen
- Department of Orthopaedic Surgery, Ningbo sixth hospital, China
| | - Bin Hu
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of orthopaedic surgery, the second affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of orthopaedic research, Zhejiang University, Hangzhou, China
| |
Collapse
|