1
|
Malaker SA. Glycoproteomics: Charting new territory in mass spectrometry and glycobiology. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5034. [PMID: 38726698 DOI: 10.1002/jms.5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/24/2024]
Abstract
Glycosylation is an incredibly common and diverse post-translational modification that contributes widely to cellular health and disease. Mass spectrometry is the premier technique to study glycoproteins; however, glycoproteomics has lagged behind traditional proteomics due to the challenges associated with studying glycosylation. For instance, glycans dissociate by collision-based fragmentation, thus necessitating electron-based fragmentation for site-localization. The vast glycan heterogeneity leads to lower overall abundance of each glycopeptide, and often, ion suppression is observed. One of the biggest issues facing glycoproteomics is the lack of reliable software for analysis, which necessitates manual validation and serves as a massive bottleneck in data processing. Here, I will discuss each of these challenges and some ways in which the field is attempting to address them, along with perspectives on how I believe we should move forward.
Collapse
Affiliation(s)
- Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Gao Y, Kim H, Kitata RB, Lin TT, Swensen AC, Shi T, Liu T. Multiplexed quantitative proteomics in prostate cancer biomarker development. Adv Cancer Res 2024; 161:31-69. [PMID: 39032952 DOI: 10.1016/bs.acr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer among men in the United States. However, the widely used protein biomarker in PCa, prostate-specific antigen (PSA), while useful for initial detection, its use alone cannot detect aggressive PCa and can lead to overtreatment. This chapter provides an overview of PCa protein biomarker development. It reviews the state-of-the-art liquid chromatography-mass spectrometry-based proteomics technologies for PCa biomarker development, such as enhancing the detection sensitivity of low-abundance proteins through antibody-based or antibody-independent protein/peptide enrichment, enriching post-translational modifications such as glycosylation as well as information-rich extracellular vesicles, and increasing accuracy and throughput using advanced data acquisition methodologies. This chapter also summarizes recent PCa biomarker validation studies that applied those techniques in diverse specimen types, including cell lines, tissues, proximal fluids, urine, and blood, developing novel protein biomarkers for various clinical applications, including early detection and diagnosis, prognosis, and therapeutic intervention of PCa.
Collapse
Affiliation(s)
- Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
3
|
Chao X, Zhang B, Yang S, Liu X, Zhang J, Zang X, Chen L, Qi L, Wang X, Hu H. Enrichment methods of N-linked glycopeptides from human serum or plasma: A mini-review. Carbohydr Res 2024; 538:109094. [PMID: 38564900 DOI: 10.1016/j.carres.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.
Collapse
Affiliation(s)
- Xuyuan Chao
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xizi Liu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China
| | - Jingyi Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xin Zang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Chen
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
4
|
Schorr HC, Schultz ZD. Chemical conjugation to differentiate monosaccharides by Raman and surface enhanced Raman spectroscopy. Analyst 2023; 148:2035-2044. [PMID: 36974935 PMCID: PMC10167912 DOI: 10.1039/d2an01762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sugars play important roles in numerous biological processes, from providing energy to modifying proteins to alter their function. Glycosylation, the attachment of a sugar residue to a protein, is the most common post translational modification. Identifying the glycans on a protein is a useful tool both for pharmaceutical development as well as probing the proteome and glycome further. Sugars, however, are difficult analytes to probe due to their isomeric nature. In this work, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are used to identify different monosaccharide species based on the vibrational modes of these isomeric analytes. The weak scattering of the sugars was overcome through conjugation with phenylboronic acid to provide a larger Raman scattering cross section and induce slight changes in the observed spectra associated with the structure of the monosaccharides. Spontaneous Raman, SERS in flow, and static SERS detection were performed in order to discriminate between arabinose, fructose, galactose, glucose, mannose, and ribose, as well as provide a method for identification and quantification for these sugar conjugates.
Collapse
Affiliation(s)
- Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Cavada BS, Oliveira MVD, Osterne VJS, Pinto-Junior VR, Martins FWV, Correia-Neto C, Pinheiro RF, Leal RB, Nascimento KS. Recent advances in the use of legume lectins for the diagnosis and treatment of breast cancer. Biochimie 2022; 208:100-116. [PMID: 36586566 DOI: 10.1016/j.biochi.2022.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Poor lifestyle choices and genetic predisposition are factors that increase the number of cancer cases, one example being breast cancer, the third most diagnosed type of malignancy. Currently, there is a demand for the development of new strategies to ensure early detection and treatment options that could contribute to the complete remission of breast tumors, which could lead to increased overall survival rates. In this context, the glycans observed at the surface of cancer cells are presented as efficient tumor cell markers. These carbohydrate structures can be recognized by lectins which can act as decoders of the glycocode. The application of plant lectins as tools for diagnosis/treatment of breast cancer encompasses the detection and sorting of glycans found in healthy and malignant cells. Here, we present an overview of the most recent studies in this field, demonstrating the potential of lectins as: mapping agents to detect differentially expressed glycans in breast cancer, as histochemistry/cytochemistry analysis agents, in lectin arrays, immobilized in chromatographic matrices, in drug delivery, and as biosensing agents. In addition, we describe lectins that present antiproliferative effects by themselves and/or in conjunction with other drugs in a synergistic effect.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | - Messias Vital de Oliveira
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinícius Jose Silva Osterne
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Vanir Reis Pinto-Junior
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Cornevile Correia-Neto
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ronald Feitosa Pinheiro
- Núcleo de Pesquisa e Desenvolvimento de Medicações (NPDM), Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Kyria Santiago Nascimento
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| |
Collapse
|
6
|
Luo M, Mao Y, Zeng W, Zheng S, Li H, Hu J, Xie X, Zhang Y. Site-specific N-glycosylation characterization of micro monoclonal immunoglobulins based on EThcD-sceHCD-MS/MS. Front Immunol 2022; 13:1013990. [PMID: 36189210 PMCID: PMC9520751 DOI: 10.3389/fimmu.2022.1013990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Monoclonal immunoglobulin produced by clonal plasma cells is the main cause in multiple myeloma and monoclonal gammopathy of renal significance. Because of the complicated purification method and the low stoichiometry of purified protein and glycans, site-specific N-glycosylation characterization for monoclonal immunoglobulin is still challenging. To profile the site-specific N-glycosylation of monoclonal immunoglobulins is of great interest. Therefore, in this study, we presented an integrated workflow for micro monoclonal IgA and IgG purification from patients with multiple myeloma in the HYDRASYS system, in-agarose-gel digestion, LC-MS/MS analysis without intact N-glycopeptide enrichment, and compared the identification performance of different mass spectrometry dissociation methods (EThcD-sceHCD, sceHCD, EThcD and sceHCD-pd-ETD). The results showed that EThcD-sceHCD was a better choice for site-specific N-glycosylation characterization of micro in-agarose-gel immunoglobulins (~2 μg) because it can cover more unique intact N-glycopeptides (37 and 50 intact N-glycopeptides from IgA1 and IgG2, respectively) and provide more high-quality spectra than sceHCD, EThcD and sceHCD-pd-ETD. We demonstrated the benefits of the alternative strategy in site-specific N-glycosylation characterizing micro monoclonal immunoglobulins obtained from bands separated by electrophoresis. This work could promote the development of clinical N-glycoproteomics and related immunology.
Collapse
Affiliation(s)
- Mengqi Luo
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Zeng
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Huixian Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Juanjuan Hu
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of People’s Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yong Zhang, ; Xinfang Xie,
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Zhang, ; Xinfang Xie,
| |
Collapse
|
7
|
Iannetta AA, Hicks LM. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling. Methods Mol Biol 2022; 2499:1-41. [PMID: 35696073 DOI: 10.1007/978-1-0716-2317-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Post-translational modifications (PTMs) regulate complex biological processes through the modulation of protein activity, stability, and localization. Insights into the specific modification type and localization within a protein sequence can help ascertain functional significance. Computational models are increasingly demonstrated to offer a low-cost, high-throughput method for comprehensive PTM predictions. Algorithms are optimized using existing experimental PTM data, thus accurate prediction performance relies on the creation of robust datasets. Herein, advancements in mass spectrometry-based proteomics technologies to maximize PTM coverage are reviewed. Further, requisite experimental validation approaches for PTM predictions are explored to ensure that follow-up mechanistic studies are focused on accurate modification sites.
Collapse
Affiliation(s)
- Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
9
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
10
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021; 60:66-78. [PMID: 33125942 PMCID: PMC7955280 DOI: 10.1016/j.cbpa.2020.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
11
|
Cipollo JF, Parsons LM. Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure-function relationships. MASS SPECTROMETRY REVIEWS 2020; 39:371-409. [PMID: 32350911 PMCID: PMC7318305 DOI: 10.1002/mas.21629] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 05/21/2023]
Abstract
The advancement of viral glycomics has paralleled that of the mass spectrometry glycomics toolbox. In some regard the glycoproteins studied have provided the impetus for this advancement. Viral proteins are often highly glycosylated, especially those targeted by the host immune system. Glycosylation tends to be dynamic over time as viruses propagate in host populations leading to increased number of and/or "movement" of glycosylation sites in response to the immune system and other pressures. This relationship can lead to highly glycosylated, difficult to analyze glycoproteins that challenge the capabilities of modern mass spectrometry. In this review, we briefly discuss five general areas where glycosylation is important in the viral niche and how mass spectrometry has been used to reveal key information regarding structure-function relationships between viral glycoproteins and host cells. We describe the recent past and current glycomics toolbox used in these analyses and give examples of how the requirement to analyze these complex glycoproteins has provided the incentive for some advances seen in glycomics mass spectrometry. A general overview of viral glycomics, special cases, mass spectrometry methods and work-flows, informatics and complementary chemical techniques currently used are discussed. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- John F. Cipollo
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| | - Lisa M. Parsons
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| |
Collapse
|
12
|
Lastovickova M, Strouhalova D, Bobalova J. Use of Lectin-based Affinity Techniques in Breast Cancer Glycoproteomics: A Review. J Proteome Res 2020; 19:1885-1899. [PMID: 32181666 DOI: 10.1021/acs.jproteome.9b00818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Changes in glycoprotein content, altered glycosylations, and aberrant glycan structures are increasingly recognized as cancer hallmarks. Because breast cancer is one of the most common causes of cancer deaths in the world, it is highly urgent to find other reliable biomarkers for its initial diagnosis and to learn as much as possible about this disease. In this Review, the applications of lectins to a screening of potential breast cancer biomarkers published during recent years are overviewed. These data provide a deeper insight into the use of modern strategies, technologies, and scientific knowledge in glycoproteomic breast cancer research. Particular attention is concentrated on the use of lectin-based affinity techniques, applied independently or most frequently in combination with mass spectrometry, as an effective tool for the targeting, separation, and reliable identification of glycoprotein molecules. Individual procedures and lectins used in published glycoproteomic studies of breast-cancer-related glycoproteins are discussed. The summarized approaches have the potential for use in diagnostic and predictive applications. Finally, the use of lectins is briefly discussed from the view of their future applications in the analysis of glycoproteins in cancer.
Collapse
Affiliation(s)
- Marketa Lastovickova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Dana Strouhalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Janette Bobalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
13
|
Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells. J Proteomics 2020; 212:103594. [DOI: 10.1016/j.jprot.2019.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
14
|
Liu S, Fu Y, Huang Z, Liu Y, Liu BF, Cheng L, Liu X. A comprehensive analysis of subclass-specific IgG glycosylation in colorectal cancer progression by nanoLC-MS/MS. Analyst 2020; 145:3136-3147. [DOI: 10.1039/d0an00369g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is associated with changed IgG glycosylation, but the alteration in specific subclasses of IgG is unknown.
Collapse
Affiliation(s)
- Si Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yang Fu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Zhiwen Huang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yuanyuan Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Liming Cheng
- Department of Laboratory Medicine
- Tongji Hospital
- Tongji Medical College
- Huzhong University of Science and Technology
- China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| |
Collapse
|
15
|
|
16
|
Cui Y, Yang K, Tabang DN, Huang J, Tang W, Li L. Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2491-2501. [PMID: 31286442 PMCID: PMC6917886 DOI: 10.1007/s13361-019-02230-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 05/30/2023]
Abstract
Simultaneous enrichment of glyco- and phosphopeptides will benefit the studies of biological processes regulated by these posttranslational modifications (PTMs). It will also reveal potential crosstalk between these two ubiquitous PTMs. Unlike custom-designed multifunctional solid phase extraction (SPE) materials, operating strong anion exchange (SAX) resin in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) mode provides a readily available strategy to analytical labs for enrichment of these PTMs for subsequent mass spectrometry (MS)-based characterization. However, the choice of mobile phase has largely relied on empirical rules from hydrophilic interaction chromatography (HILIC) or ion-exchange chromatography (IEX) without further optimization and adjustments. In this study, ten mobile phase compositions of ERLIC were systematically compared; the impact of multiple factors including organic phase proportion, ion pairing reagent, pH, and salt on the retention of glycosylated and phosphorylated peptides was evaluated. This study demonstrated good enrichment of glyco- and phosphopeptides from the nonmodified peptides in a complex tryptic digest. Moreover, the enriched glyco- and phosphopeptides elute in different fractions by orthogonal retention mechanisms of hydrophilic interaction and electrostatic interaction in ERLIC, maximizing the LC-MS identification of each PTM. The optimized mobile phase can be adapted to the ERLIC HPLC system, where the high resolution in separating multiple PTMs will benefit large-scale MS-based PTM profiling and in-depth characterization.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Ka Yang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | | | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Weiping Tang
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
17
|
Sun S, Hu Y, Ao M, Shah P, Chen J, Yang W, Jia X, Tian Y, Thomas S, Zhang H. N-GlycositeAtlas: a database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clin Proteomics 2019; 16:35. [PMID: 31516400 PMCID: PMC6731604 DOI: 10.1186/s12014-019-9254-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N-linked glycoprotein is a highly interesting class of proteins for clinical and biological research. The large-scale characterization of N-linked glycoproteins accomplished by mass spectrometry-based glycoproteomics has provided valuable insights into the interdependence of glycoprotein structure and protein function. However, these studies focused mainly on the analysis of specific sample type, and lack the integration of glycoproteomic data from different tissues, body fluids or cell types. METHODS In this study, we collected the human glycosite-containing peptides identified through their de-glycosylated forms by mass spectrometry from over 100 publications and unpublished datasets generated from our laboratory. A database resource termed N-GlycositeAtlas was created and further used for the distribution analyses of glycoproteins among different human cells, tissues and body fluids. Finally, a web interface of N-GlycositeAtlas was created to maximize the utility and value of the database. RESULTS The N-GlycositeAtlas database contains more than 30,000 glycosite-containing peptides (representing > 14,000 N-glycosylation sites) from more than 7200 N-glycoproteins from different biological sources including human-derived tissues, body fluids and cell lines from over 100 studies. CONCLUSIONS The entire human N-glycoproteome database as well as 22 sub-databases associated with individual tissues or body fluids can be downloaded from the N-GlycositeAtlas website at http://nglycositeatlas.biomarkercenter.org.
Collapse
Affiliation(s)
- Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
- College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Jing Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Xingwang Jia
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
18
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
19
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
20
|
Xiao H, Hwang JE, Wu R. Mass spectrometric analysis of the N-glycoproteome in statin-treated liver cells with two lectin-independent chemical enrichment methods. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 429:66-75. [PMID: 30147434 PMCID: PMC6103449 DOI: 10.1016/j.ijms.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein N-glycosylation is essential for mammalian cell survival and is well-known to be involved in many biological processes. Aberrant glycosylation is directly related to human disease including cancer and infectious diseases. Global analysis of protein N-glycosylation will allow a better understanding of protein functions and cellular activities. Mass spectrometry (MS)-based proteomics provides a unique opportunity to site-specifically characterize protein glycosylation on a large scale. Due to the complexity of biological samples, effective enrichment methods are critical prior to MS analysis. Here, we compared two lectin-independent methods to enrich glycopeptides for the global analysis of protein N-glycosylation by MS. The first boronic acid-based enrichment (BA) method benefits from the universal and reversible interactions between boronic acid and sugars; the other method utilizes metabolic labeling and click chemistry (MC) to incorporate a chemical handle into glycoproteins for future affinity enrichment. We comprehensively compared the performance of the two methods in the identification and quantification of glycoproteins in statin-treated liver cells. Based on the current results, the BA method is more universal in enriching glycopeptides, while with the MC method, cell surface glycoproteins were highly enriched, and the quantification results appear to be more dynamic because only the newly-synthesized glycoproteins were analyzed. In addition, we normalized the glycosylation site ratios by the corresponding parent protein ratios to reflect the real modification changes. In combination with MS-based proteomics, effective enrichment methods will vertically advance protein glycosylation research.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ju Eun Hwang
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
21
|
Chen Z, Yu Q, Hao L, Liu F, Johnson J, Tian Z, Kao WJ, Xu W, Li L. Site-specific characterization and quantitation of N-glycopeptides in PKM2 knockout breast cancer cells using DiLeu isobaric tags enabled by electron-transfer/higher-energy collision dissociation (EThcD). Analyst 2018; 143:2508-2519. [PMID: 29687791 PMCID: PMC5975206 DOI: 10.1039/c8an00216a] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The system-wide site-specific analysis of intact glycopeptides is crucial for understanding the exact functional relevance of protein glycosylation. A dedicated workflow with the capability to simultaneously characterize and quantify intact glycopeptides in a site-specific and high-throughput manner is essential to reveal specific glycosylation alteration patterns in complex biological systems. In this study, an enhanced, dedicated, large-scale site-specific quantitative N-glycoproteomics workflow has been established, which includes improved specific extraction of membrane-bound glycoproteins using the filter aided sample preparation (FASP) method, enhanced enrichment of N-glycopeptides using sequential hydrophilic interaction liquid chromatography (HILIC) and multi-lectin affinity (MLA) enrichment, site-specific N-glycopeptide characterization enabled by EThcD, relative quantitation utilizing isobaric N,N-dimethyl leucine (DiLeu) tags and automated FDR-based large-scale data analysis by Byonic. For the first time, our study shows that HILIC complements to a very large extent to MLA enrichment with only 20% overlapping in enriching intact N-glycopeptides. When applying the developed workflow to site-specific N-glycoproteome study in PANC1 cells, we were able to identify 1067 intact N-glycopeptides, representing 311 glycosylation sites and 88 glycan compositions from 205 glycoproteins. We further applied this approach to study the glycosylation alterations in PKM2 knockout cells vs. parental breast cancer cells and revealed altered N-glycoprotein/N-glycopeptide patterns and very different glycosylation microheterogeneity for different types of glycans. To obtain a more comprehensive map of glycoprotein alterations, N-glycopeptides after treatment with PNGase F were also analyzed. A total of 484 deglycosylated peptides were quantified, among which 81 deglycosylated peptides from 70 glycoproteins showed significant changes. KEGG pathway analysis revealed that the PI3K/Akt signaling pathway was highly enriched, which provided evidence to support the previous finding that PKM2 knockdown cancer cells rely on activation of Akt for their survival. With glycosylation being one of the most important signaling modulators, our results provide additional evidence that signaling pathways are closely regulated by metabolism.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Ling Hao
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Zichuan Tian
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | - W. John Kao
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, P.R. China
| |
Collapse
|
22
|
Sun S, Hu Y, Jia L, Eshghi ST, Liu Y, Shah P, Zhang H. Site-Specific Profiling of Serum Glycoproteins Using N-Linked Glycan and Glycosite Analysis Revealing Atypical N-Glycosylation Sites on Albumin and α-1B-Glycoprotein. Anal Chem 2018; 90:6292-6299. [PMID: 29671580 PMCID: PMC6467210 DOI: 10.1021/acs.analchem.8b01051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Most serum proteins are N-linked glycosylated, and therefore the glycoproteomic profiling of serum is essential for characterization of serum proteins. In this study, we profiled serum N-glycoproteome by our recently developed N-glycoproteomic method using solid-phase extraction of N-linked glycans and glycosite-containing peptides (NGAG) coupled with LC-MS/MS and site-specific glycosylation analysis using GPQuest software. Our data indicated that half of identified N-glycosites were modified by at least two glycans, with a majority of them being sialylated. Specifically, 3/4 of glycosites were modified by biantennary N-glycans and 1/3 of glycosites were modified by triantennary sialylated N-glycans. In addition, two novel atypical glycosites (with N-X-V motif) were identified and validated from albumin and α-1B-glycoprotein. The widespread presence of these two glycosites among individuals was further confirmed by individual serum analyses.
Collapse
Affiliation(s)
- Shisheng Sun
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, China
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Li Jia
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Shadi Toghi Eshghi
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Yang Liu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
23
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 1. Expert Rev Proteomics 2018; 15:165-182. [PMID: 29285957 DOI: 10.1080/14789450.2018.1421946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Protein glycosylation is recognized as an important post-translational modification, with specific substructures having significant effects on protein folding, conformation, distribution, stability and activity. However, due to the structural complexity of glycans, elucidating glycan structure-function relationships is demanding. The fine detail of glycan structures attached to proteins (including sequence, branching, linkage and anomericity) is still best analysed after the glycans are released from the purified or mixture of glycoproteins (glycomics). The technologies currently available for glycomics are becoming streamlined and standardized and many features of protein glycosylation can now be determined using instruments available in most protein analytical laboratories. Areas covered: This review focuses on the current glycomics technologies being commonly used for the analysis of the microheterogeneity of monosaccharide composition, sequence, branching and linkage of released N- and O-linked glycans that enable the determination of precise glycan structural determinants presented on secreted proteins and on the surface of all cells. Expert commentary: Several emerging advances in these technologies enabling glycomics analysis are discussed. The technological and bioinformatics requirements to be able to accurately assign these precise glycan features at biological levels in a disease context are assessed.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Edward S X Moh
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| |
Collapse
|
24
|
Li X, Jiang J, Zhao X, Zhao Y, Cao Q, Zhao Q, Han H, Wang J, Yu Z, Peng B, Ying W, Qian X. In-depth analysis of secretome and N-glycosecretome of human hepatocellular carcinoma metastatic cell lines shed light on metastasis correlated proteins. Oncotarget 2017; 7:22031-49. [PMID: 27014972 PMCID: PMC5008342 DOI: 10.18632/oncotarget.8247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/05/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer cell metastasis is a major cause of cancer fatality. But the underlying molecular mechanisms remain incompletely understood, which results in the lack of efficient diagnosis, therapy and prevention approaches. Here, we report a systematic study on the secretory proteins (secretome) and secretory N-glycoproteins (N-glycosecretome) of four human hepatocellular carcinoma (HCC) cell lines with different metastatic potential, to explore the molecular mechanism of metastasis and supply the clues for effective measurement of diagnosis and therapy. Totally, 6242 unique gene products (GPs) and 1637 unique N-glycosites from 635 GPs were confidently identified. About 4000 GPs on average were quantified in each of the cell lines, 1156 of which show differential expression (p<0.05). Ninety-nine percentage of the significantly altered proteins were secretory proteins and proteins correlated to cell movement were significantly activated with the increasing of metastatic potential of the cell lines. Twenty-three GPs increased both in the secretome and the N-glycosecretome were chosen as candidates and verified by western blot analysis, and 10 of them were chosen for immunohistochemistry (IHC) analysis. The cumulative survival rates of the patients with candidate (FAT1, DKK3) suggested that these proteins might be used as biomarkers for HCC diagnosis. In addition, a comparative analysis with the published core human plasma database (1754 GPs) revealed that there were 182 proteins not presented in the human plasma database but identified by our studies, some of which were selected and verified successfully by western blotting in human plasma.
Collapse
Affiliation(s)
- Xianyu Li
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Jiang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinyuan Zhao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Zhao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qichen Cao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing Zhao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Huanhuan Han
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jifeng Wang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zixiang Yu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bo Peng
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wantao Ying
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
25
|
Lin CH, Krisp C, Packer NH, Molloy MP. Development of a data independent acquisition mass spectrometry workflow to enable glycopeptide analysis without predefined glycan compositional knowledge. J Proteomics 2017; 172:68-75. [PMID: 29069609 DOI: 10.1016/j.jprot.2017.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/16/2023]
Abstract
Glycoproteomics investigates glycan moieties in a site specific manner to reveal the functional roles of protein glycosylation. Identification of glycopeptides from data-dependent acquisition (DDA) relies on high quality MS/MS spectra of glycopeptide precursors and often requires manual validation to ensure confident assignments. In this study, we investigated pseudo-MRM (MRM-HR) and data-independent acquisition (DIA) as alternative acquisition strategies for glycopeptide analysis. These approaches allow data acquisition over the full MS/MS scan range allowing data re-analysis post-acquisition, without data re-acquisition. The advantage of MRM-HR over DDA for N-glycopeptide detection was demonstrated from targeted analysis of bovine fetuin where all three N-glycosylation sites were detected, which was not the case with DDA. To overcome the duty cycle limitation of MRM-HR acquisition needed for analysis of complex samples such as plasma we trialed DIA. This allowed development of a targeted DIA method to identify N-glycopeptides without pre-defined knowledge of the glycan composition, thus providing the potential to identify N-glycopeptides with unexpected structures. This workflow was demonstrated by detection of 59 N-glycosylation sites from 41 glycoproteins from a HILIC enriched human plasma tryptic digest. 21 glycoforms of IgG1 glycopeptides were identified including two truncated structures that are rarely reported. SIGNIFICANCE We developed a data-independent mass spectrometry workflow to identify specific glycopeptides from complex biological mixtures. The novelty is that this approach does not require glycan composition to be pre-defined, thereby allowing glycopeptides carrying unexpected glycans to be identified. This is demonstrated through the analysis of immunoglobulins in human plasma where we detected two IgG1 glycoforms that are rarely observed.
Collapse
Affiliation(s)
- Chi-Hung Lin
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia
| | - Christoph Krisp
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia.
| |
Collapse
|
26
|
Mancera-Arteu M, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of O-Glycopeptides by Acetone Enrichment and Capillary Electrophoresis-Mass Spectrometry. J Proteome Res 2017; 16:4166-4176. [DOI: 10.1021/acs.jproteome.7b00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Montserrat Mancera-Arteu
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Estela Giménez
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Benavente
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - José Barbosa
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Victòria Sanz-Nebot
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Poplar catkin: A natural biomaterial for highly specific and efficient enrichment of sialoglycopeptides. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Totten SM, Feasley CL, Bermudez A, Pitteri SJ. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC. J Proteome Res 2017; 16:1249-1260. [PMID: 28199111 DOI: 10.1021/acs.jproteome.6b00849] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655.
Collapse
Affiliation(s)
- Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| | - Christa L Feasley
- ThermoFisher Scientific , 1400 Northpoint Parkway Suite 10, West Palm Beach, Florida 33407, United States
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine , 3155 Porter Drive MC5483, Palo Alto, California 94304, United States
| |
Collapse
|
29
|
Abstract
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted.
Collapse
|
30
|
Improving Proteome Coverage by Reducing Sample Complexity via Chromatography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:83-143. [DOI: 10.1007/978-3-319-41448-5_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
32
|
Liu Y, Fu D, Yu L, Xiao Y, Peng X, Liang X. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. J Chromatogr A 2016; 1455:147-155. [DOI: 10.1016/j.chroma.2016.05.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023]
|
33
|
Li J, Wang F, Wan H, Liu J, Liu Z, Cheng K, Zou H. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. J Chromatogr A 2015; 1425:213-20. [DOI: 10.1016/j.chroma.2015.11.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 02/08/2023]
|
34
|
Hong Q, Ruhaak LR, Stroble C, Parker E, Huang J, Maverakis E, Lebrilla CB. A Method for Comprehensive Glycosite-Mapping and Direct Quantitation of Serum Glycoproteins. J Proteome Res 2015; 14:5179-92. [PMID: 26510530 DOI: 10.1021/acs.jproteome.5b00756] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive glycan map was constructed for the top eight abundant glycoproteins in plasma using both specific and nonspecific enzyme digestions followed by nano liquid chromatography (LC)-chip/quadrupole time-of-flight mass spectrometry (MS) analysis. Glycopeptides were identified using an in-house software tool, GPFinder. A sensitive and reproducible multiple reaction monitoring (MRM) technique on a triple quadrupole MS was developed and applied to quantify immunoglobulins G, A, M, and their site-specific glycans simultaneously and directly from human serum/plasma without protein enrichments. A total of 64 glycopeptides and 15 peptides were monitored for IgG, IgA, and IgM in a 20 min ultra high performance (UP)LC gradient. The absolute protein contents were quantified using peptide calibration curves. The glycopeptide ion abundances were normalized to the respective protein abundances to separate protein glycosylation from protein expression. This technique yields higher method reproducibility and less sample loss when compared with the quantitation method that involves protein enrichments. The absolute protein quantitation has a wide linear range (3-4 orders of magnitude) and low limit of quantitation (femtomole level). This rapid and robust quantitation technique, which provides quantitative information for both proteins and glycosylation, will further facilitate disease biomarker discoveries.
Collapse
Affiliation(s)
- Qiuting Hong
- Department of Chemistry and ‡Department of Dermatology, School of Medicine, University of California , Davis, California 95616, United States
| | - L Renee Ruhaak
- Department of Chemistry and ‡Department of Dermatology, School of Medicine, University of California , Davis, California 95616, United States
| | - Carol Stroble
- Department of Chemistry and ‡Department of Dermatology, School of Medicine, University of California , Davis, California 95616, United States
| | - Evan Parker
- Department of Chemistry and ‡Department of Dermatology, School of Medicine, University of California , Davis, California 95616, United States
| | - Jincui Huang
- Department of Chemistry and ‡Department of Dermatology, School of Medicine, University of California , Davis, California 95616, United States
| | - Emanual Maverakis
- Department of Chemistry and ‡Department of Dermatology, School of Medicine, University of California , Davis, California 95616, United States
| | - Carlito B Lebrilla
- Department of Chemistry and ‡Department of Dermatology, School of Medicine, University of California , Davis, California 95616, United States
| |
Collapse
|
35
|
Cao L, Zhang Y, Chen L, Shen A, Zhang X, Ren S, Gu J, Yu L, Liang X. Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction. Analyst 2015; 139:4538-46. [PMID: 25068150 DOI: 10.1039/c4an00660g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Expression levels of N-linked glycans derived from human serum glycoproteins have been shown to change during the progression of many diseases. Generally, N-glycans released from human serum proteins co-exist with endogenous serum peptides, salts, and other contaminants. Effective removal of these contaminants is essential to obtain the glycan profile of human serum proteins. Here, we developed a sample preparation method for mass spectrometry (MS) analysis of N-linked glycans derived from human serum glycoproteins based on a zwitterionic hydrophilic material named Click TE-Cys. The high hydrophilicity of Click TE-Cys, resulting from its unique surface structure and charge distribution, facilitated removal of co-existing salts and endogenous serum peptides. Furthermore, the present enrichment approach was handled in parallel, thus saving time. Using this method, a total of 47 unique N-glycans released from human serum proteins were identified. The intrabatch and interbatch coefficients of variation for the 47 N-linked glycans were 8.57% ± 0.96% and 9.22% ± 1.03%, respectively. These results demonstrate that the present method is suitable for fast purification of N-linked glycans derived from human serum glycoproteins, and has potential for clinical application.
Collapse
Affiliation(s)
- Liwei Cao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Huang G, Sun Z, Qin H, Zhao L, Xiong Z, Peng X, Ou J, Zou H. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides. Analyst 2015; 139:2199-206. [PMID: 24615010 DOI: 10.1039/c4an00076e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrazide chemistry is a powerful technique in glycopeptides enrichment. However, the low density of the monolayer hydrazine groups on the conventional hydrazine-functionalized magnetic nanoparticles limits the efficiency of glycopeptides enrichment. Herein, a novel magnetic nanoparticle grafted with poly(glycidyl methacrylate) (GMA) brushes was fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization, and a large amount of hydrazine groups were further introduced to the GMA brushes by ring-opening the epoxy groups with hydrazine hydrate. The resulting magnetic nanoparticles (denoted as Fe3O4@SiO2@GMA-NHNH2) demonstrated the high specificity of capturing glycopeptides from a tryptic digest of the sample comprising a standard non-glycosylated protein bovine serum albumin (BSA) and four standard glycoproteins with a weight ratio of 50 : 1, and the detection limit was as low as 130 fmol. In the analysis of a real complex biological sample, the tryptic digest of hepatocellular carcinoma, 179 glycosites were identified by the Fe3O4@SiO2@GMA-NHNH2 nanoparticles, surpassing that of 68 glycosites by Fe3O4@SiO2-single-NHNH2 (with monolayer hydrazine groups on the surface). It can be expected that the magnetic nanoparticles modified with hydrazine functionalized polymer brushes via RAFT technique will improve the specificity and the binding capacity of glycopeptides from complex samples, and show great potential in the analysis of protein glycosylation in biological samples.
Collapse
Affiliation(s)
- Guang Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Shah P, De Marzo AM, Van Eyk JE, Li Q, Chan DW, Zhang H. Identification of glycoproteins containing specific glycans using a lectin-chemical method. Anal Chem 2015; 87:4683-7. [PMID: 25837443 PMCID: PMC4496425 DOI: 10.1021/ac504304v] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycosylation is one of the most common protein modifications. Each glycoprotein can be glycosylated at multiple glycosites, and each glycosites can be modified by different glycans. Due to this heterogeneity of glycosylation, it has proven difficult to study the structure-function relationship of specific glycans and their affected glycoproteins. Here, we report a novel method for rapid and quantitative identification of glycoproteins containing specific glycans. Lectin affinity isolations are followed by chemical immobilization of the captured glycopeptides, allowing the identification of glycoproteins containing specific glycans by subsequent mass spectrometry. The application of the method should be useful to facilitate our understanding of how changes in glycan associate with diseases, and to discover novel glycoproteins with certain glycans that could serve as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China 100101
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Jennifer E. Van Eyk
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, United States
- Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Qianqian Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China 100101
| | - Daniel W. Chan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
38
|
Sok Hwee Cheow E, Hwan Sim K, de Kleijn D, Neng Lee C, Sorokin V, Sze SK. Simultaneous Enrichment of Plasma Soluble and Extracellular Vesicular Glycoproteins Using Prolonged Ultracentrifugation-Electrostatic Repulsion-hydrophilic Interaction Chromatography (PUC-ERLIC) Approach. Mol Cell Proteomics 2015; 14:1657-71. [PMID: 25862729 DOI: 10.1074/mcp.o114.046391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
Plasma glycoproteins and extracellular vesicles represent excellent sources of disease biomarkers, but laboratory detection of these circulating structures are limited by their relatively low abundance in complex biological fluids. Although intensive research has led to the development of effective methods for the enrichment and isolation of either plasma glycoproteins or extracellular vesicles from clinical materials, at present it is not possible to enrich both structures simultaneously from individual patient sample, a method that affords the identification of biomarker combinations from both entities for the prediction of clinical outcomes will be clinically useful. We have therefore developed an enrichment method for use in mass spectrometry-based proteomic profiling that couples prolonged ultracentrifugation with electrostatic repulsion-hydrophilic interaction chromatography, to facilitate the recovery of both glycoproteins and extracellular vesicles from nondepleted human plasma. Following prolonged ultracentrifugation, plasma glycoproteins and extracellular vesicles were concentrated as a yellow suspension, and simultaneous analyses of low abundant secretory and vesicular glycoproteins was achieved in a single LC-MS/MS run. Using this systematic prolonged ultracentrifugation-electrostatic repulsion-hydrophilic interaction chromatography approach, we identified a total of 127 plasma glycoproteins at a high level of confidence (FDR ≤ 1%), including 48 glycoproteins with concentrations ranging from pg to ng/ml. The novel enrichment method we report should facilitate future human plasma-based proteome and glycoproteome that will identify novel biomarkers, or combinations of secreted and vesicle-derived biomarkers, that can be used to predict clinical outcomes in human patients.
Collapse
Affiliation(s)
- Esther Sok Hwee Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Kae Hwan Sim
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Dominique de Kleijn
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ¶Experimental Cardiology Laboratory, Cardiology, University Medical Center Utrecht, the Netherlands & Interuniversity Cardiovascular Institute of the Netherlands, Utrecht, the Netherlands
| | - Chuen Neng Lee
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ‖National University Heart Centre, Department of Cardiac, Thoracic and Vascular Surgery, Singapore 119228; **Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Vitaly Sorokin
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ‖National University Heart Centre, Department of Cardiac, Thoracic and Vascular Surgery, Singapore 119228; **Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551;
| |
Collapse
|
39
|
Goyallon A, Cholet S, Chapelle M, Junot C, Fenaille F. Evaluation of a combined glycomics and glycoproteomics approach for studying the major glycoproteins present in biofluids: Application to cerebrospinal fluid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:461-473. [PMID: 26160412 DOI: 10.1002/rcm.7125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE Glycosylation is one of the most complex types of post-translational modifications of proteins. The alteration of glycans bound to proteins from cerebrospinal fluid (CSF) in relation to disorders of the central nervous system is a highly relevant subject, but only few studies have focused on the glycosylation of CSF proteins. METHODS Reproducible profiles of CSF N-glycans were first obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after permethylation. Tryptic glycopeptides from CSF proteins were also enriched by hydrophilic interaction, and the resulting extracts divided into two equal aliquots. A first aliquot was enzymatically deglycosylated and analyzed by nano-liquid chromatography/tandem mass spectrometry while the second one, containing intact enriched glycopeptides, was directly analyzed. Site-specific data were obtained by combining the data from these three experiments. RESULTS We describe the development of a versatile approach for obtaining site-specific information on the N-glycosylation of CSF glycoproteins. Under these conditions, 124 N-glycopeptides representing 55 N-glycosites from 36 glycoproteins were tentatively identified. Special emphasis was placed on the analysis of glycoproteins/glycopeptides bearing 'brain-type' N-glycans, representing potential biologically relevant structures in the field of neurodegenerative disorders. Using our workflow, only a few proteins were shown to carry such particular glycan motifs. CONCLUSIONS We developed an approach combining N-glycomics and N-glycoproteomics and underline its usefulness to study the site-specific glycosylation of major human CSF proteins. The final rather long-term objective is to combine these data with those from other omics approaches to delve deeper into the understanding of particular neurological disorders.
Collapse
Affiliation(s)
- Arnaud Goyallon
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - Sophie Cholet
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | | | - Christophe Junot
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| |
Collapse
|
40
|
Pabst M, Küster SK, Wahl F, Krismer J, Dittrich PS, Zenobi R. A Microarray-Matrix-assisted Laser Desorption/Ionization-Mass Spectrometry Approach for Site-specific Protein N-glycosylation Analysis, as Demonstrated for Human Serum Immunoglobulin M (IgM). Mol Cell Proteomics 2015; 14:1645-56. [PMID: 25802287 DOI: 10.1074/mcp.o114.046748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 12/31/2022] Open
Abstract
We demonstrate a new approach for the site-specific identification and characterization of protein N-glycosylation. It is based on a nano-liquid chromatography microarray-matrix assisted laser desorption/ionization-MS platform, which employs droplet microfluidics for on-plate nanoliter reactions. A chromatographic separation of a proteolytic digest is deposited at a high frequency on the microarray. In this way, a short separation run is archived into thousands of nanoliter reaction cavities, and chromatographic peaks are spread over multiple array spots. After fractionation, each other spot is treated with PNGaseF to generate two correlated traces within one run, one with treated spots where glycans are enzymatically released from the peptides, and one containing the intact glycopeptides. Mining for distinct glycosites is performed by searching for the predicted deglycosylated peptides in the treated trace. An identified peptide then leads directly to the position of the "intact" glycopeptide clusters, which are located in the adjacent spots. Furthermore, the deglycosylated peptide can be sequenced efficiently in a simple collision-induced dissociation-MS experiment. We applied the microarray approach to a detailed site-specific glycosylation analysis of human serum IgM. By scanning the treated spots with low-resolution matrix assisted laser desorption/ionization-time-of-flight-MS, we observed all five deglycosylated peptides, including the one originating from the secretory chain. A detailed glycopeptide characterization was then accomplished on the adjacent, untreated spots with high mass resolution and high mass accuracy using a matrix assisted laser desorption ionization-Fourier transform-MS. We present the first detailed and comprehensive mass spectrometric analysis on the glycopeptide level for human polyclonal IgM with high mass accuracy. Besides complex type glycans on Asn 395, 332, 171, and on the J chain, we observed oligomannosidic glycans on Asn 563, Asn 402 and minor amounts of oligomannosidic glycans on the glycosite Asn 171. Furthermore, hybrid type glycans were found on Asn 402, Asn 171 and in traces Asn 332.
Collapse
Affiliation(s)
- Martin Pabst
- From the ‡Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Simon Karl Küster
- From the ‡Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Fabian Wahl
- §Sigma-Aldrich Chemie GmbH, Industriestrasse 25, 9471 Buchs (SG), Switzerland
| | - Jasmin Krismer
- From the ‡Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Petra S Dittrich
- From the ‡Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Renato Zenobi
- From the ‡Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland;
| |
Collapse
|
41
|
Autelitano F, Loyaux D, Roudières S, Déon C, Guette F, Fabre P, Ping Q, Wang S, Auvergne R, Badarinarayana V, Smith M, Guillemot JC, Goldman SA, Natesan S, Ferrara P, August P. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative proteomics. PLoS One 2014; 9:e110316. [PMID: 25360666 PMCID: PMC4216004 DOI: 10.1371/journal.pone.0110316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.
Collapse
Affiliation(s)
- François Autelitano
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
- * E-mail:
| | - Denis Loyaux
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Sébastien Roudières
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Catherine Déon
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Frédérique Guette
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Philippe Fabre
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Qinggong Ping
- ALS Therapy Development Institute, Cambridge, Massachusetts, United States of America
| | - Su Wang
- Department of Neurology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Romane Auvergne
- Department of Neurology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | | | - Michael Smith
- Sanofi Tucson Research Center, Oro Valley, Arizona, United States of America
| | | | - Steven A. Goldman
- Department of Neurology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | | | - Pascual Ferrara
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Paul August
- Sanofi Tucson Research Center, Oro Valley, Arizona, United States of America
| |
Collapse
|
42
|
Kim JY, Oh D, Kim SK, Kang D, Moon MH. Isotope-coded carbamidomethylation for quantification of N-glycoproteins with online microbore hollow fiber enzyme reactor-nanoflow liquid chromatography-tandem mass spectrometry. Anal Chem 2014; 86:7650-7. [PMID: 24960276 DOI: 10.1021/ac501544r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper introduces a simple, inexpensive, and robust quantitative proteomic method for quantifying N-linked glycoproteins based on isotope-coded carbamidomethylation (iCCM) incorporated into an online microbore hollow fiber enzyme reactor and nanoflow liquid chromatography-tandem mass spectrometry (mHFER-nLC-MS/MS). The iCCM quantitation uses carbamidomethylation (CM; a routine protection of thiol groups before proteolysis) of the Cys residue of proteins with iodoacetamide (IAA) or its isotope (IAA-(13)C2,D2: 4 Da difference). CM-/iCCM-labeled proteome samples are mixed for proteolysis; then, online enrichment of N-glycopeptides using lectin affinity is carried out in an mHFER before nLC-MS/MS for quantification using multiple reaction monitoring (MRM). Initial evaluation of the iCCM method varying the mixing ratio of CM-/iCCM-labeled bovine serum albumin (BSA) standards yielded successful quantification of 18 peptides with less than 2% variation in the calculated ratio of light/heavy-labeled peptides. The iCCM quantitation with mHFER-nLC-MS/MS was evaluated with three standard glycoproteins (α-1-acid glycoproteins, fetuin and transferrin) and then applied to serum glycoproteins from liver cancer patients and controls, resulting in successful quantification of 73 N-glycopeptides (from 49 N-glycoproteins), among which 19 N-glycopeptides from 14 N-glycoproteins showed more than a 2.5-fold aberrant change in liver cancer patients' sera compared with the pooled control. Although iCCM quantitation with mHFER-nLC-MS/MS applies only to glycopeptides with Cys residue, the method can offer several advantages over other labeling methods when applied to targeted glycoproteins: The iCCM method does not require an additional labeling reaction under special conditions nor complicated procedures to purify labeled products using additional columns. Isotope labeling at the protein level can minimize potential uncertainty originating from unequal efficiencies in protein digestion in separate vials and retrieval of each labeled peptide when labeling takes place at the peptide level. In addition, the labeling reagents for the iCCM method are readily obtained at a reasonable cost, which can make protein quantification easily accessible.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | | | | | | | | |
Collapse
|
43
|
Takakura D, Harazono A, Hashii N, Kawasaki N. Selective glycopeptide profiling by acetone enrichment and LC/MS. J Proteomics 2014; 101:17-30. [DOI: 10.1016/j.jprot.2014.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
|
44
|
Cao L, Yu L, Guo Z, Shen A, Guo Y, Liang X. N-Glycosylation Site Analysis of Proteins from Saccharomyces cerevisiae by Using Hydrophilic Interaction Liquid Chromatography-Based Enrichment, Parallel Deglycosylation, and Mass Spectrometry. J Proteome Res 2014; 13:1485-93. [DOI: 10.1021/pr401049e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liwei Cao
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Long Yu
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aijin Shen
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunü Guo
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinmiao Liang
- Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
45
|
Characterization of intact N- and O-linked glycopeptides using higher energy collisional dissociation. Anal Biochem 2014; 452:96-102. [PMID: 24440233 DOI: 10.1016/j.ab.2014.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/23/2022]
Abstract
Simultaneous elucidation of the glycan structure and the glycosylation site are needed to reveal the biological function of protein glycosylation. In this study, we employed a recent type of fragmentation termed higher energy collisional dissociation (HCD) to examine fragmentation patterns of intact glycopeptides generated from a mixture of standard glycosylated proteins. The normalized collisional energy (NCE) value for HCD was varied from 30 to 60% to evaluate the optimal conditions for the fragmentation of peptide backbones and glycoconjugates. Our results indicated that HCD with lower NCE values preferentially fragmented the sugar chains attached to the peptides to generate a ladder of neutral loss of monosaccharides, thereby enabling the putative glycan structure characterization. In addition, detection of the oxonium ions enabled unambiguous differentiation of glycopeptides from non-glycopeptides. In contrast, HCD with higher NCE values preferentially fragmented the peptide backbone and, thus, provided information needed for confident peptide identification. We evaluated the HCD approach with alternating NCE parameters for confident characterization of intact N- and O-linked glycopeptides in a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In addition, we applied a novel data analysis pipeline, so-called GlycoFinder, to form a basis for automated data analysis. Overall, 38 unique intact glycopeptides corresponding to eight glycosylation sites (six N-linked and two O-linked sites) were confidently identified from a standard protein mixture. This approach provided concurrent characterization of both the peptide and the glycan, thereby enabling comprehensive structural characterization of glycoproteins in a single LC-MS/MS analysis.
Collapse
|
46
|
MRM validation of targeted nonglycosylated peptides from N-glycoprotein biomarkers using direct trypsin digestion of undepleted human plasma. J Proteomics 2014; 98:206-17. [PMID: 24434586 DOI: 10.1016/j.jprot.2014.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED A rapid, simple, and reproducible MRM-based validation method for serological glycoprotein biomarkers in clinical use was developed by targeting the nonglycosylated tryptic peptides adjacent to N-glycosylation sites. Since changes in protein glycosylation are known to be associated with a variety of diseases, glycoproteins have been major targets in biomarker discovery. We previously found that nonglycosylated tryptic peptides adjacent to N-glycosylation sites differed in concentration between normal and hepatocellular carcinoma (HCC) plasma due to differences in steric hindrance of the glycan moiety in N-glycoproteins to tryptic digestion (Lee et al., 2011). To increase the feasibility and applicability of clinical validation of biomarker candidates (nonglycosylated tryptic peptides), we developed a method to effectively monitor nonglycosylated tryptic peptides from a large number of plasma samples and to reduce the total analysis time with maximizing the effect of steric hindrance by the glycans during digestion of glycoproteins. The AUC values of targeted nonglycosylated tryptic peptides were excellent (0.955 for GQYCYELDEK, 0.880 for FEDGVLDPDYPR and 0.907 for TEDTIFLR), indicating that these could be effective biomarkers for hepatocellular carcinoma. This method provides the necessary throughput required to validate glycoprotein biomarkers, as well as quantitative accuracy for human plasma analysis, and should be amenable to clinical use. BIOLOGICAL SIGNIFICANCE Difficulties in verifying and validating putative protein biomarkers are often caused by complex sample preparation procedures required to determine their concentrations in a large number of plasma samples. To solve the difficulties, we developed MRM-based protein biomarker assays that greatly reduce complex, time-consuming, and less reproducible sample pretreatment steps in plasma for clinical implementation. First, we used undepleted human plasma samples without any enrichment procedures. Using nanoLC/MS/MS, we targeted nonglycosylated tryptic peptides adjacent to N-linked glycosylation sites in N-linked glycoprotein biomarkers, which could be detected in human plasma samples without depleting highly abundant proteins. Second, human plasma proteins were digested with trypsin without reduction and alkylation procedures to minimize sample preparation. Third, trypsin digestion times were shortened so as to obtain reproducible results with maximization of the steric hindrance effect of the glycans during enzyme digestion. Finally, this rapid and simple sample preparation method was applied to validate targeted nonglycosylated tryptic peptides as liver cancer biomarker candidates for diagnosis in 40 normal and 41 hepatocellular carcinoma (HCC) human plasma samples. This strategy provided the necessary throughput required to monitor protein biomarkers, as well as quantitative accuracy in human plasma analysis. From biomarker discovery to clinical implementation, our method will provide a biomarker study platform that is suitable for clinical deployment, and can be applied to high-throughput approaches.
Collapse
|
47
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Cao Q, Ma C, Bai H, Li X, Yan H, Zhao Y, Ying W, Qian X. Multivalent hydrazide-functionalized magnetic nanoparticles for glycopeptide enrichment and identification. Analyst 2014; 139:603-9. [DOI: 10.1039/c3an01532g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 2014; 139:688-704. [DOI: 10.1039/c3an01813j] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Li X, Jiang J, Zhao X, Wang J, Han H, Zhao Y, Peng B, Zhong R, Ying W, Qian X. N-glycoproteome analysis of the secretome of human metastatic hepatocellular carcinoma cell lines combining hydrazide chemistry, HILIC enrichment and mass spectrometry. PLoS One 2013; 8:e81921. [PMID: 24324730 PMCID: PMC3852754 DOI: 10.1371/journal.pone.0081921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/17/2013] [Indexed: 12/30/2022] Open
Abstract
Cancer cell metastasis is a major cause of cancer death. Unfortunately, the underlying molecular mechanisms remain unknown, which results in the lack of efficient diagnosis, therapy and prevention approaches. Nevertheless, the dysregulation of the cancer cell secretome is known to play key roles in tumor transformation and progression. The majority of proteins in the secretome are secretory proteins and membrane-released proteins, and, mostly, the glycosylated proteins. Until recently, few studies have explored protein N-glycosylation changes in the secretome, although protein glycosylation has received increasing attention in the study of tumor development processes. Here, the N-glycoproteins in the secretome of two human hepatocellular carcinoma (HCC) cell lines with low (MHCC97L) or high (HCCLM3) metastatic potential were investigated with a in-depth characterization of the N-glycosites by combining two general glycopeptide enrichment approaches, hydrazide chemistry and zwitterionic hydrophilic interaction chromatography (zic-HILIC), with mass spectrometry analysis. A total of 1,213 unique N-glycosites from 611 N-glycoproteins were confidently identified. These N-glycoproteins were primarily localized to the extracellular space and plasma membrane, supporting the important role of N-glycosylation in the secretory pathway. Coupling label-free quantification with a hierarchical clustering strategy, we determined the differential regulation of several N-glycoproteins that are related to metastasis, among which AFP, DKK1, FN1, CD151 and TGFβ2 were up-regulated in HCCLM3 cells. The inclusion of the well-known metastasis-related proteins AFP and DKK1 in this list provides solid supports for our study. Further western blotting experiments detecting FN1 and FAT1 confirmed our discovery. The glycoproteome strategy in this study provides an effective means to explore potential cancer biomarkers.
Collapse
Affiliation(s)
- Xianyu Li
- The College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinyuan Zhao
- The College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jifeng Wang
- The College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Huanhuan Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bo Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rugang Zhong
- The College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (WY); (XQ)
| | - Xiaohong Qian
- The College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (WY); (XQ)
| |
Collapse
|